1 /*
2 * FreeRTOS Kernel V11.1.0
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4 *
5 * SPDX-License-Identifier: MIT
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
8 * this software and associated documentation files (the "Software"), to deal in
9 * the Software without restriction, including without limitation the rights to
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 * the Software, and to permit persons to whom the Software is furnished to do so,
12 * subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in all
15 * copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * https://www.FreeRTOS.org
25 * https://github.com/FreeRTOS
26 *
27 */
28
29 /* Standard includes. */
30 #include <stdlib.h>
31 #include <string.h>
32
33 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
34 * all the API functions to use the MPU wrappers. That should only be done when
35 * task.h is included from an application file. */
36 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
37
38 /* FreeRTOS includes. */
39 #include "FreeRTOS.h"
40 #include "task.h"
41 #include "timers.h"
42 #include "stack_macros.h"
43
44 /* The default definitions are only available for non-MPU ports. The
45 * reason is that the stack alignment requirements vary for different
46 * architectures.*/
47 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS != 0 ) )
48 #error configKERNEL_PROVIDED_STATIC_MEMORY cannot be set to 1 when using an MPU port. The vApplicationGet*TaskMemory() functions must be provided manually.
49 #endif
50
51 /* The MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
52 * for the header files above, but not in this file, in order to generate the
53 * correct privileged Vs unprivileged linkage and placement. */
54 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
55
56 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
57 * functions but without including stdio.h here. */
58 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
59
60 /* At the bottom of this file are two optional functions that can be used
61 * to generate human readable text from the raw data generated by the
62 * uxTaskGetSystemState() function. Note the formatting functions are provided
63 * for convenience only, and are NOT considered part of the kernel. */
64 #include <stdio.h>
65 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
66
67 #if ( configUSE_PREEMPTION == 0 )
68
69 /* If the cooperative scheduler is being used then a yield should not be
70 * performed just because a higher priority task has been woken. */
71 #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB )
72 #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB )
73 #else
74
75 #if ( configNUMBER_OF_CORES == 1 )
76
77 /* This macro requests the running task pxTCB to yield. In single core
78 * scheduler, a running task always runs on core 0 and portYIELD_WITHIN_API()
79 * can be used to request the task running on core 0 to yield. Therefore, pxTCB
80 * is not used in this macro. */
81 #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) \
82 do { \
83 ( void ) ( pxTCB ); \
84 portYIELD_WITHIN_API(); \
85 } while( 0 )
86
87 #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) \
88 do { \
89 if( pxCurrentTCB->uxPriority < ( pxTCB )->uxPriority ) \
90 { \
91 portYIELD_WITHIN_API(); \
92 } \
93 else \
94 { \
95 mtCOVERAGE_TEST_MARKER(); \
96 } \
97 } while( 0 )
98
99 #else /* if ( configNUMBER_OF_CORES == 1 ) */
100
101 /* Yield the core on which this task is running. */
102 #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldCore( ( pxTCB )->xTaskRunState )
103
104 /* Yield for the task if a running task has priority lower than this task. */
105 #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldForTask( pxTCB )
106
107 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
108
109 #endif /* if ( configUSE_PREEMPTION == 0 ) */
110
111 /* Values that can be assigned to the ucNotifyState member of the TCB. */
112 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
113 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
114 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
115
116 /*
117 * The value used to fill the stack of a task when the task is created. This
118 * is used purely for checking the high water mark for tasks.
119 */
120 #define tskSTACK_FILL_BYTE ( 0xa5U )
121
122 /* Bits used to record how a task's stack and TCB were allocated. */
123 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
124 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
125 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
126
127 /* If any of the following are set then task stacks are filled with a known
128 * value so the high water mark can be determined. If none of the following are
129 * set then don't fill the stack so there is no unnecessary dependency on memset. */
130 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
131 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
132 #else
133 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
134 #endif
135
136 /*
137 * Macros used by vListTask to indicate which state a task is in.
138 */
139 #define tskRUNNING_CHAR ( 'X' )
140 #define tskBLOCKED_CHAR ( 'B' )
141 #define tskREADY_CHAR ( 'R' )
142 #define tskDELETED_CHAR ( 'D' )
143 #define tskSUSPENDED_CHAR ( 'S' )
144
145 /*
146 * Some kernel aware debuggers require the data the debugger needs access to be
147 * global, rather than file scope.
148 */
149 #ifdef portREMOVE_STATIC_QUALIFIER
150 #define static
151 #endif
152
153 /* The name allocated to the Idle task. This can be overridden by defining
154 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
155 #ifndef configIDLE_TASK_NAME
156 #define configIDLE_TASK_NAME "IDLE"
157 #endif
158
159 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
160
161 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
162 * performed in a generic way that is not optimised to any particular
163 * microcontroller architecture. */
164
165 /* uxTopReadyPriority holds the priority of the highest priority ready
166 * state task. */
167 #define taskRECORD_READY_PRIORITY( uxPriority ) \
168 do { \
169 if( ( uxPriority ) > uxTopReadyPriority ) \
170 { \
171 uxTopReadyPriority = ( uxPriority ); \
172 } \
173 } while( 0 ) /* taskRECORD_READY_PRIORITY */
174
175 /*-----------------------------------------------------------*/
176
177 #if ( configNUMBER_OF_CORES == 1 )
178 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
179 do { \
180 UBaseType_t uxTopPriority = uxTopReadyPriority; \
181 \
182 /* Find the highest priority queue that contains ready tasks. */ \
183 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) != pdFALSE ) \
184 { \
185 configASSERT( uxTopPriority ); \
186 --uxTopPriority; \
187 } \
188 \
189 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
190 * the same priority get an equal share of the processor time. */ \
191 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
192 uxTopReadyPriority = uxTopPriority; \
193 } while( 0 ) /* taskSELECT_HIGHEST_PRIORITY_TASK */
194 #else /* if ( configNUMBER_OF_CORES == 1 ) */
195
196 #define taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID ) prvSelectHighestPriorityTask( xCoreID )
197
198 #endif /* if ( configNUMBER_OF_CORES == 1 ) */
199
200 /*-----------------------------------------------------------*/
201
202 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
203 * they are only required when a port optimised method of task selection is
204 * being used. */
205 #define taskRESET_READY_PRIORITY( uxPriority )
206 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
207
208 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
209
210 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
211 * performed in a way that is tailored to the particular microcontroller
212 * architecture being used. */
213
214 /* A port optimised version is provided. Call the port defined macros. */
215 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( ( uxPriority ), uxTopReadyPriority )
216
217 /*-----------------------------------------------------------*/
218
219 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
220 do { \
221 UBaseType_t uxTopPriority; \
222 \
223 /* Find the highest priority list that contains ready tasks. */ \
224 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
225 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
226 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
227 } while( 0 )
228
229 /*-----------------------------------------------------------*/
230
231 /* A port optimised version is provided, call it only if the TCB being reset
232 * is being referenced from a ready list. If it is referenced from a delayed
233 * or suspended list then it won't be in a ready list. */
234 #define taskRESET_READY_PRIORITY( uxPriority ) \
235 do { \
236 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
237 { \
238 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
239 } \
240 } while( 0 )
241
242 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
243
244 /*-----------------------------------------------------------*/
245
246 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
247 * count overflows. */
248 #define taskSWITCH_DELAYED_LISTS() \
249 do { \
250 List_t * pxTemp; \
251 \
252 /* The delayed tasks list should be empty when the lists are switched. */ \
253 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
254 \
255 pxTemp = pxDelayedTaskList; \
256 pxDelayedTaskList = pxOverflowDelayedTaskList; \
257 pxOverflowDelayedTaskList = pxTemp; \
258 xNumOfOverflows = ( BaseType_t ) ( xNumOfOverflows + 1 ); \
259 prvResetNextTaskUnblockTime(); \
260 } while( 0 )
261
262 /*-----------------------------------------------------------*/
263
264 /*
265 * Place the task represented by pxTCB into the appropriate ready list for
266 * the task. It is inserted at the end of the list.
267 */
268 #define prvAddTaskToReadyList( pxTCB ) \
269 do { \
270 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
271 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
272 listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
273 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB ); \
274 } while( 0 )
275 /*-----------------------------------------------------------*/
276
277 /*
278 * Several functions take a TaskHandle_t parameter that can optionally be NULL,
279 * where NULL is used to indicate that the handle of the currently executing
280 * task should be used in place of the parameter. This macro simply checks to
281 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
282 */
283 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
284
285 /* The item value of the event list item is normally used to hold the priority
286 * of the task to which it belongs (coded to allow it to be held in reverse
287 * priority order). However, it is occasionally borrowed for other purposes. It
288 * is important its value is not updated due to a task priority change while it is
289 * being used for another purpose. The following bit definition is used to inform
290 * the scheduler that the value should not be changed - in which case it is the
291 * responsibility of whichever module is using the value to ensure it gets set back
292 * to its original value when it is released. */
293 #if ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS )
294 #define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint16_t ) 0x8000U )
295 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS )
296 #define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint32_t ) 0x80000000U )
297 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_64_BITS )
298 #define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint64_t ) 0x8000000000000000U )
299 #endif
300
301 /* Indicates that the task is not actively running on any core. */
302 #define taskTASK_NOT_RUNNING ( ( BaseType_t ) ( -1 ) )
303
304 /* Indicates that the task is actively running but scheduled to yield. */
305 #define taskTASK_SCHEDULED_TO_YIELD ( ( BaseType_t ) ( -2 ) )
306
307 /* Returns pdTRUE if the task is actively running and not scheduled to yield. */
308 #if ( configNUMBER_OF_CORES == 1 )
309 #define taskTASK_IS_RUNNING( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
310 #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
311 #else
312 #define taskTASK_IS_RUNNING( pxTCB ) ( ( ( ( pxTCB )->xTaskRunState >= ( BaseType_t ) 0 ) && ( ( pxTCB )->xTaskRunState < ( BaseType_t ) configNUMBER_OF_CORES ) ) ? ( pdTRUE ) : ( pdFALSE ) )
313 #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB )->xTaskRunState != taskTASK_NOT_RUNNING ) ? ( pdTRUE ) : ( pdFALSE ) )
314 #endif
315
316 /* Indicates that the task is an Idle task. */
317 #define taskATTRIBUTE_IS_IDLE ( UBaseType_t ) ( 1U << 0U )
318
319 #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) )
320 #define portGET_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting )
321 #define portSET_CRITICAL_NESTING_COUNT( x ) ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting = ( x ) )
322 #define portINCREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting++ )
323 #define portDECREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting-- )
324 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) ) */
325
326 #define taskBITS_PER_BYTE ( ( size_t ) 8 )
327
328 #if ( configNUMBER_OF_CORES > 1 )
329
330 /* Yields the given core. This must be called from a critical section and xCoreID
331 * must be valid. This macro is not required in single core since there is only
332 * one core to yield. */
333 #define prvYieldCore( xCoreID ) \
334 do { \
335 if( ( xCoreID ) == ( BaseType_t ) portGET_CORE_ID() ) \
336 { \
337 /* Pending a yield for this core since it is in the critical section. */ \
338 xYieldPendings[ ( xCoreID ) ] = pdTRUE; \
339 } \
340 else \
341 { \
342 /* Request other core to yield if it is not requested before. */ \
343 if( pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD ) \
344 { \
345 portYIELD_CORE( xCoreID ); \
346 pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState = taskTASK_SCHEDULED_TO_YIELD; \
347 } \
348 } \
349 } while( 0 )
350 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
351 /*-----------------------------------------------------------*/
352
353 /*
354 * Task control block. A task control block (TCB) is allocated for each task,
355 * and stores task state information, including a pointer to the task's context
356 * (the task's run time environment, including register values)
357 */
358 typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
359 {
360 volatile StackType_t * pxTopOfStack; /**< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
361
362 #if ( portUSING_MPU_WRAPPERS == 1 )
363 xMPU_SETTINGS xMPUSettings; /**< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
364 #endif
365
366 #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
367 UBaseType_t uxCoreAffinityMask; /**< Used to link the task to certain cores. UBaseType_t must have greater than or equal to the number of bits as configNUMBER_OF_CORES. */
368 #endif
369
370 ListItem_t xStateListItem; /**< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
371 ListItem_t xEventListItem; /**< Used to reference a task from an event list. */
372 UBaseType_t uxPriority; /**< The priority of the task. 0 is the lowest priority. */
373 StackType_t * pxStack; /**< Points to the start of the stack. */
374 #if ( configNUMBER_OF_CORES > 1 )
375 volatile BaseType_t xTaskRunState; /**< Used to identify the core the task is running on, if the task is running. Otherwise, identifies the task's state - not running or yielding. */
376 UBaseType_t uxTaskAttributes; /**< Task's attributes - currently used to identify the idle tasks. */
377 #endif
378 char pcTaskName[ configMAX_TASK_NAME_LEN ]; /**< Descriptive name given to the task when created. Facilitates debugging only. */
379
380 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
381 BaseType_t xPreemptionDisable; /**< Used to prevent the task from being preempted. */
382 #endif
383
384 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
385 StackType_t * pxEndOfStack; /**< Points to the highest valid address for the stack. */
386 #endif
387
388 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
389 UBaseType_t uxCriticalNesting; /**< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
390 #endif
391
392 #if ( configUSE_TRACE_FACILITY == 1 )
393 UBaseType_t uxTCBNumber; /**< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
394 UBaseType_t uxTaskNumber; /**< Stores a number specifically for use by third party trace code. */
395 #endif
396
397 #if ( configUSE_MUTEXES == 1 )
398 UBaseType_t uxBasePriority; /**< The priority last assigned to the task - used by the priority inheritance mechanism. */
399 UBaseType_t uxMutexesHeld;
400 #endif
401
402 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
403 TaskHookFunction_t pxTaskTag;
404 #endif
405
406 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
407 void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
408 #endif
409
410 #if ( configGENERATE_RUN_TIME_STATS == 1 )
411 configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /**< Stores the amount of time the task has spent in the Running state. */
412 #endif
413
414 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
415 configTLS_BLOCK_TYPE xTLSBlock; /**< Memory block used as Thread Local Storage (TLS) Block for the task. */
416 #endif
417
418 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
419 volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
420 volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
421 #endif
422
423 /* See the comments in FreeRTOS.h with the definition of
424 * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
425 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
426 uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
427 #endif
428
429 #if ( INCLUDE_xTaskAbortDelay == 1 )
430 uint8_t ucDelayAborted;
431 #endif
432
433 #if ( configUSE_POSIX_ERRNO == 1 )
434 int iTaskErrno;
435 #endif
436 } tskTCB;
437
438 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
439 * below to enable the use of older kernel aware debuggers. */
440 typedef tskTCB TCB_t;
441
442 #if ( configNUMBER_OF_CORES == 1 )
443 /* MISRA Ref 8.4.1 [Declaration shall be visible] */
444 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
445 /* coverity[misra_c_2012_rule_8_4_violation] */
446 portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
447 #else
448 /* MISRA Ref 8.4.1 [Declaration shall be visible] */
449 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
450 /* coverity[misra_c_2012_rule_8_4_violation] */
451 portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCBs[ configNUMBER_OF_CORES ];
452 #define pxCurrentTCB xTaskGetCurrentTaskHandle()
453 #endif
454
455 /* Lists for ready and blocked tasks. --------------------
456 * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
457 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
458 * the static qualifier. */
459 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /**< Prioritised ready tasks. */
460 PRIVILEGED_DATA static List_t xDelayedTaskList1; /**< Delayed tasks. */
461 PRIVILEGED_DATA static List_t xDelayedTaskList2; /**< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
462 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /**< Points to the delayed task list currently being used. */
463 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /**< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
464 PRIVILEGED_DATA static List_t xPendingReadyList; /**< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
465
466 #if ( INCLUDE_vTaskDelete == 1 )
467
468 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /**< Tasks that have been deleted - but their memory not yet freed. */
469 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
470
471 #endif
472
473 #if ( INCLUDE_vTaskSuspend == 1 )
474
475 PRIVILEGED_DATA static List_t xSuspendedTaskList; /**< Tasks that are currently suspended. */
476
477 #endif
478
479 /* Global POSIX errno. Its value is changed upon context switching to match
480 * the errno of the currently running task. */
481 #if ( configUSE_POSIX_ERRNO == 1 )
482 int FreeRTOS_errno = 0;
483 #endif
484
485 /* Other file private variables. --------------------------------*/
486 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
487 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
488 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
489 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
490 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
491 PRIVILEGED_DATA static volatile BaseType_t xYieldPendings[ configNUMBER_OF_CORES ] = { pdFALSE };
492 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
493 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
494 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
495 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandles[ configNUMBER_OF_CORES ]; /**< Holds the handles of the idle tasks. The idle tasks are created automatically when the scheduler is started. */
496
497 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
498 * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
499 * to determine the number of priority lists to read back from the remote target. */
500 static const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
501
502 /* Context switches are held pending while the scheduler is suspended. Also,
503 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
504 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
505 * If an interrupt needs to unblock a task while the scheduler is suspended then it
506 * moves the task's event list item into the xPendingReadyList, ready for the
507 * kernel to move the task from the pending ready list into the real ready list
508 * when the scheduler is unsuspended. The pending ready list itself can only be
509 * accessed from a critical section.
510 *
511 * Updates to uxSchedulerSuspended must be protected by both the task lock and the ISR lock
512 * and must not be done from an ISR. Reads must be protected by either lock and may be done
513 * from either an ISR or a task. */
514 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) 0U;
515
516 #if ( configGENERATE_RUN_TIME_STATS == 1 )
517
518 /* Do not move these variables to function scope as doing so prevents the
519 * code working with debuggers that need to remove the static qualifier. */
520 PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the value of a timer/counter the last time a task was switched in. */
521 PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the total amount of execution time as defined by the run time counter clock. */
522
523 #endif
524
525 /*-----------------------------------------------------------*/
526
527 /* File private functions. --------------------------------*/
528
529 /*
530 * Creates the idle tasks during scheduler start.
531 */
532 static BaseType_t prvCreateIdleTasks( void );
533
534 #if ( configNUMBER_OF_CORES > 1 )
535
536 /*
537 * Checks to see if another task moved the current task out of the ready
538 * list while it was waiting to enter a critical section and yields, if so.
539 */
540 static void prvCheckForRunStateChange( void );
541 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
542
543 #if ( configNUMBER_OF_CORES > 1 )
544
545 /*
546 * Yields a core, or cores if multiple priorities are not allowed to run
547 * simultaneously, to allow the task pxTCB to run.
548 */
549 static void prvYieldForTask( const TCB_t * pxTCB );
550 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
551
552 #if ( configNUMBER_OF_CORES > 1 )
553
554 /*
555 * Selects the highest priority available task for the given core.
556 */
557 static void prvSelectHighestPriorityTask( BaseType_t xCoreID );
558 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
559
560 /**
561 * Utility task that simply returns pdTRUE if the task referenced by xTask is
562 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
563 * is in any other state.
564 */
565 #if ( INCLUDE_vTaskSuspend == 1 )
566
567 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
568
569 #endif /* INCLUDE_vTaskSuspend */
570
571 /*
572 * Utility to ready all the lists used by the scheduler. This is called
573 * automatically upon the creation of the first task.
574 */
575 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
576
577 /*
578 * The idle task, which as all tasks is implemented as a never ending loop.
579 * The idle task is automatically created and added to the ready lists upon
580 * creation of the first user task.
581 *
582 * In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks are also
583 * created to ensure that each core has an idle task to run when no other
584 * task is available to run.
585 *
586 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
587 * language extensions. The equivalent prototype for these functions are:
588 *
589 * void prvIdleTask( void *pvParameters );
590 * void prvPassiveIdleTask( void *pvParameters );
591 *
592 */
593 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
594 #if ( configNUMBER_OF_CORES > 1 )
595 static portTASK_FUNCTION_PROTO( prvPassiveIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
596 #endif
597
598 /*
599 * Utility to free all memory allocated by the scheduler to hold a TCB,
600 * including the stack pointed to by the TCB.
601 *
602 * This does not free memory allocated by the task itself (i.e. memory
603 * allocated by calls to pvPortMalloc from within the tasks application code).
604 */
605 #if ( INCLUDE_vTaskDelete == 1 )
606
607 static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
608
609 #endif
610
611 /*
612 * Used only by the idle task. This checks to see if anything has been placed
613 * in the list of tasks waiting to be deleted. If so the task is cleaned up
614 * and its TCB deleted.
615 */
616 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
617
618 /*
619 * The currently executing task is entering the Blocked state. Add the task to
620 * either the current or the overflow delayed task list.
621 */
622 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
623 const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
624
625 /*
626 * Fills an TaskStatus_t structure with information on each task that is
627 * referenced from the pxList list (which may be a ready list, a delayed list,
628 * a suspended list, etc.).
629 *
630 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
631 * NORMAL APPLICATION CODE.
632 */
633 #if ( configUSE_TRACE_FACILITY == 1 )
634
635 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
636 List_t * pxList,
637 eTaskState eState ) PRIVILEGED_FUNCTION;
638
639 #endif
640
641 /*
642 * Searches pxList for a task with name pcNameToQuery - returning a handle to
643 * the task if it is found, or NULL if the task is not found.
644 */
645 #if ( INCLUDE_xTaskGetHandle == 1 )
646
647 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
648 const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
649
650 #endif
651
652 /*
653 * When a task is created, the stack of the task is filled with a known value.
654 * This function determines the 'high water mark' of the task stack by
655 * determining how much of the stack remains at the original preset value.
656 */
657 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
658
659 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
660
661 #endif
662
663 /*
664 * Return the amount of time, in ticks, that will pass before the kernel will
665 * next move a task from the Blocked state to the Running state.
666 *
667 * This conditional compilation should use inequality to 0, not equality to 1.
668 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
669 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
670 * set to a value other than 1.
671 */
672 #if ( configUSE_TICKLESS_IDLE != 0 )
673
674 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
675
676 #endif
677
678 /*
679 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
680 * will exit the Blocked state.
681 */
682 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
683
684 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
685
686 /*
687 * Helper function used to pad task names with spaces when printing out
688 * human readable tables of task information.
689 */
690 static char * prvWriteNameToBuffer( char * pcBuffer,
691 const char * pcTaskName ) PRIVILEGED_FUNCTION;
692
693 #endif
694
695 /*
696 * Called after a Task_t structure has been allocated either statically or
697 * dynamically to fill in the structure's members.
698 */
699 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
700 const char * const pcName,
701 const configSTACK_DEPTH_TYPE uxStackDepth,
702 void * const pvParameters,
703 UBaseType_t uxPriority,
704 TaskHandle_t * const pxCreatedTask,
705 TCB_t * pxNewTCB,
706 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
707
708 /*
709 * Called after a new task has been created and initialised to place the task
710 * under the control of the scheduler.
711 */
712 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
713
714 /*
715 * Create a task with static buffer for both TCB and stack. Returns a handle to
716 * the task if it is created successfully. Otherwise, returns NULL.
717 */
718 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
719 static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
720 const char * const pcName,
721 const configSTACK_DEPTH_TYPE uxStackDepth,
722 void * const pvParameters,
723 UBaseType_t uxPriority,
724 StackType_t * const puxStackBuffer,
725 StaticTask_t * const pxTaskBuffer,
726 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
727 #endif /* #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
728
729 /*
730 * Create a restricted task with static buffer for both TCB and stack. Returns
731 * a handle to the task if it is created successfully. Otherwise, returns NULL.
732 */
733 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
734 static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
735 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
736 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
737
738 /*
739 * Create a restricted task with static buffer for task stack and allocated buffer
740 * for TCB. Returns a handle to the task if it is created successfully. Otherwise,
741 * returns NULL.
742 */
743 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
744 static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
745 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
746 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
747
748 /*
749 * Create a task with allocated buffer for both TCB and stack. Returns a handle to
750 * the task if it is created successfully. Otherwise, returns NULL.
751 */
752 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
753 static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
754 const char * const pcName,
755 const configSTACK_DEPTH_TYPE uxStackDepth,
756 void * const pvParameters,
757 UBaseType_t uxPriority,
758 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
759 #endif /* #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) */
760
761 /*
762 * freertos_tasks_c_additions_init() should only be called if the user definable
763 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
764 * called by the function.
765 */
766 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
767
768 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
769
770 #endif
771
772 #if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
773 extern void vApplicationPassiveIdleHook( void );
774 #endif /* #if ( configUSE_PASSIVE_IDLE_HOOK == 1 ) */
775
776 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
777
778 /*
779 * Convert the snprintf return value to the number of characters
780 * written. The following are the possible cases:
781 *
782 * 1. The buffer supplied to snprintf is large enough to hold the
783 * generated string. The return value in this case is the number
784 * of characters actually written, not counting the terminating
785 * null character.
786 * 2. The buffer supplied to snprintf is NOT large enough to hold
787 * the generated string. The return value in this case is the
788 * number of characters that would have been written if the
789 * buffer had been sufficiently large, not counting the
790 * terminating null character.
791 * 3. Encoding error. The return value in this case is a negative
792 * number.
793 *
794 * From 1 and 2 above ==> Only when the return value is non-negative
795 * and less than the supplied buffer length, the string has been
796 * completely written.
797 */
798 static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
799 size_t n );
800
801 #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
802 /*-----------------------------------------------------------*/
803
804 #if ( configNUMBER_OF_CORES > 1 )
prvCheckForRunStateChange(void)805 static void prvCheckForRunStateChange( void )
806 {
807 UBaseType_t uxPrevCriticalNesting;
808 const TCB_t * pxThisTCB;
809
810 /* This must only be called from within a task. */
811 portASSERT_IF_IN_ISR();
812
813 /* This function is always called with interrupts disabled
814 * so this is safe. */
815 pxThisTCB = pxCurrentTCBs[ portGET_CORE_ID() ];
816
817 while( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD )
818 {
819 /* We are only here if we just entered a critical section
820 * or if we just suspended the scheduler, and another task
821 * has requested that we yield.
822 *
823 * This is slightly complicated since we need to save and restore
824 * the suspension and critical nesting counts, as well as release
825 * and reacquire the correct locks. And then, do it all over again
826 * if our state changed again during the reacquisition. */
827 uxPrevCriticalNesting = portGET_CRITICAL_NESTING_COUNT();
828
829 if( uxPrevCriticalNesting > 0U )
830 {
831 portSET_CRITICAL_NESTING_COUNT( 0U );
832 portRELEASE_ISR_LOCK();
833 }
834 else
835 {
836 /* The scheduler is suspended. uxSchedulerSuspended is updated
837 * only when the task is not requested to yield. */
838 mtCOVERAGE_TEST_MARKER();
839 }
840
841 portRELEASE_TASK_LOCK();
842 portMEMORY_BARRIER();
843 configASSERT( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD );
844
845 portENABLE_INTERRUPTS();
846
847 /* Enabling interrupts should cause this core to immediately
848 * service the pending interrupt and yield. If the run state is still
849 * yielding here then that is a problem. */
850 configASSERT( pxThisTCB->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD );
851
852 portDISABLE_INTERRUPTS();
853 portGET_TASK_LOCK();
854 portGET_ISR_LOCK();
855
856 portSET_CRITICAL_NESTING_COUNT( uxPrevCriticalNesting );
857
858 if( uxPrevCriticalNesting == 0U )
859 {
860 portRELEASE_ISR_LOCK();
861 }
862 }
863 }
864 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
865
866 /*-----------------------------------------------------------*/
867
868 #if ( configNUMBER_OF_CORES > 1 )
prvYieldForTask(const TCB_t * pxTCB)869 static void prvYieldForTask( const TCB_t * pxTCB )
870 {
871 BaseType_t xLowestPriorityToPreempt;
872 BaseType_t xCurrentCoreTaskPriority;
873 BaseType_t xLowestPriorityCore = ( BaseType_t ) -1;
874 BaseType_t xCoreID;
875
876 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
877 BaseType_t xYieldCount = 0;
878 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
879
880 /* This must be called from a critical section. */
881 configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
882
883 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
884
885 /* No task should yield for this one if it is a lower priority
886 * than priority level of currently ready tasks. */
887 if( pxTCB->uxPriority >= uxTopReadyPriority )
888 #else
889 /* Yield is not required for a task which is already running. */
890 if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
891 #endif
892 {
893 xLowestPriorityToPreempt = ( BaseType_t ) pxTCB->uxPriority;
894
895 /* xLowestPriorityToPreempt will be decremented to -1 if the priority of pxTCB
896 * is 0. This is ok as we will give system idle tasks a priority of -1 below. */
897 --xLowestPriorityToPreempt;
898
899 for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
900 {
901 xCurrentCoreTaskPriority = ( BaseType_t ) pxCurrentTCBs[ xCoreID ]->uxPriority;
902
903 /* System idle tasks are being assigned a priority of tskIDLE_PRIORITY - 1 here. */
904 if( ( pxCurrentTCBs[ xCoreID ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
905 {
906 xCurrentCoreTaskPriority = ( BaseType_t ) ( xCurrentCoreTaskPriority - 1 );
907 }
908
909 if( ( taskTASK_IS_RUNNING( pxCurrentTCBs[ xCoreID ] ) != pdFALSE ) && ( xYieldPendings[ xCoreID ] == pdFALSE ) )
910 {
911 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
912 if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
913 #endif
914 {
915 if( xCurrentCoreTaskPriority <= xLowestPriorityToPreempt )
916 {
917 #if ( configUSE_CORE_AFFINITY == 1 )
918 if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
919 #endif
920 {
921 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
922 if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
923 #endif
924 {
925 xLowestPriorityToPreempt = xCurrentCoreTaskPriority;
926 xLowestPriorityCore = xCoreID;
927 }
928 }
929 }
930 else
931 {
932 mtCOVERAGE_TEST_MARKER();
933 }
934 }
935
936 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
937 {
938 /* Yield all currently running non-idle tasks with a priority lower than
939 * the task that needs to run. */
940 if( ( xCurrentCoreTaskPriority > ( ( BaseType_t ) tskIDLE_PRIORITY - 1 ) ) &&
941 ( xCurrentCoreTaskPriority < ( BaseType_t ) pxTCB->uxPriority ) )
942 {
943 prvYieldCore( xCoreID );
944 xYieldCount++;
945 }
946 else
947 {
948 mtCOVERAGE_TEST_MARKER();
949 }
950 }
951 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
952 }
953 else
954 {
955 mtCOVERAGE_TEST_MARKER();
956 }
957 }
958
959 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
960 if( ( xYieldCount == 0 ) && ( xLowestPriorityCore >= 0 ) )
961 #else /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
962 if( xLowestPriorityCore >= 0 )
963 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
964 {
965 prvYieldCore( xLowestPriorityCore );
966 }
967
968 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
969 /* Verify that the calling core always yields to higher priority tasks. */
970 if( ( ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U ) &&
971 ( pxTCB->uxPriority > pxCurrentTCBs[ portGET_CORE_ID() ]->uxPriority ) )
972 {
973 configASSERT( ( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) ||
974 ( taskTASK_IS_RUNNING( pxCurrentTCBs[ portGET_CORE_ID() ] ) == pdFALSE ) );
975 }
976 #endif
977 }
978 }
979 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
980 /*-----------------------------------------------------------*/
981
982 #if ( configNUMBER_OF_CORES > 1 )
prvSelectHighestPriorityTask(BaseType_t xCoreID)983 static void prvSelectHighestPriorityTask( BaseType_t xCoreID )
984 {
985 UBaseType_t uxCurrentPriority = uxTopReadyPriority;
986 BaseType_t xTaskScheduled = pdFALSE;
987 BaseType_t xDecrementTopPriority = pdTRUE;
988 TCB_t * pxTCB = NULL;
989
990 #if ( configUSE_CORE_AFFINITY == 1 )
991 const TCB_t * pxPreviousTCB = NULL;
992 #endif
993 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
994 BaseType_t xPriorityDropped = pdFALSE;
995 #endif
996
997 /* This function should be called when scheduler is running. */
998 configASSERT( xSchedulerRunning == pdTRUE );
999
1000 /* A new task is created and a running task with the same priority yields
1001 * itself to run the new task. When a running task yields itself, it is still
1002 * in the ready list. This running task will be selected before the new task
1003 * since the new task is always added to the end of the ready list.
1004 * The other problem is that the running task still in the same position of
1005 * the ready list when it yields itself. It is possible that it will be selected
1006 * earlier then other tasks which waits longer than this task.
1007 *
1008 * To fix these problems, the running task should be put to the end of the
1009 * ready list before searching for the ready task in the ready list. */
1010 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
1011 &pxCurrentTCBs[ xCoreID ]->xStateListItem ) == pdTRUE )
1012 {
1013 ( void ) uxListRemove( &pxCurrentTCBs[ xCoreID ]->xStateListItem );
1014 vListInsertEnd( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
1015 &pxCurrentTCBs[ xCoreID ]->xStateListItem );
1016 }
1017
1018 while( xTaskScheduled == pdFALSE )
1019 {
1020 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1021 {
1022 if( uxCurrentPriority < uxTopReadyPriority )
1023 {
1024 /* We can't schedule any tasks, other than idle, that have a
1025 * priority lower than the priority of a task currently running
1026 * on another core. */
1027 uxCurrentPriority = tskIDLE_PRIORITY;
1028 }
1029 }
1030 #endif
1031
1032 if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurrentPriority ] ) ) == pdFALSE )
1033 {
1034 const List_t * const pxReadyList = &( pxReadyTasksLists[ uxCurrentPriority ] );
1035 const ListItem_t * pxEndMarker = listGET_END_MARKER( pxReadyList );
1036 ListItem_t * pxIterator;
1037
1038 /* The ready task list for uxCurrentPriority is not empty, so uxTopReadyPriority
1039 * must not be decremented any further. */
1040 xDecrementTopPriority = pdFALSE;
1041
1042 for( pxIterator = listGET_HEAD_ENTRY( pxReadyList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
1043 {
1044 /* MISRA Ref 11.5.3 [Void pointer assignment] */
1045 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1046 /* coverity[misra_c_2012_rule_11_5_violation] */
1047 pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxIterator );
1048
1049 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1050 {
1051 /* When falling back to the idle priority because only one priority
1052 * level is allowed to run at a time, we should ONLY schedule the true
1053 * idle tasks, not user tasks at the idle priority. */
1054 if( uxCurrentPriority < uxTopReadyPriority )
1055 {
1056 if( ( pxTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U )
1057 {
1058 continue;
1059 }
1060 }
1061 }
1062 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
1063
1064 if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
1065 {
1066 #if ( configUSE_CORE_AFFINITY == 1 )
1067 if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1068 #endif
1069 {
1070 /* If the task is not being executed by any core swap it in. */
1071 pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_NOT_RUNNING;
1072 #if ( configUSE_CORE_AFFINITY == 1 )
1073 pxPreviousTCB = pxCurrentTCBs[ xCoreID ];
1074 #endif
1075 pxTCB->xTaskRunState = xCoreID;
1076 pxCurrentTCBs[ xCoreID ] = pxTCB;
1077 xTaskScheduled = pdTRUE;
1078 }
1079 }
1080 else if( pxTCB == pxCurrentTCBs[ xCoreID ] )
1081 {
1082 configASSERT( ( pxTCB->xTaskRunState == xCoreID ) || ( pxTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ) );
1083
1084 #if ( configUSE_CORE_AFFINITY == 1 )
1085 if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1086 #endif
1087 {
1088 /* The task is already running on this core, mark it as scheduled. */
1089 pxTCB->xTaskRunState = xCoreID;
1090 xTaskScheduled = pdTRUE;
1091 }
1092 }
1093 else
1094 {
1095 /* This task is running on the core other than xCoreID. */
1096 mtCOVERAGE_TEST_MARKER();
1097 }
1098
1099 if( xTaskScheduled != pdFALSE )
1100 {
1101 /* A task has been selected to run on this core. */
1102 break;
1103 }
1104 }
1105 }
1106 else
1107 {
1108 if( xDecrementTopPriority != pdFALSE )
1109 {
1110 uxTopReadyPriority--;
1111 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1112 {
1113 xPriorityDropped = pdTRUE;
1114 }
1115 #endif
1116 }
1117 }
1118
1119 /* There are configNUMBER_OF_CORES Idle tasks created when scheduler started.
1120 * The scheduler should be able to select a task to run when uxCurrentPriority
1121 * is tskIDLE_PRIORITY. uxCurrentPriority is never decreased to value blow
1122 * tskIDLE_PRIORITY. */
1123 if( uxCurrentPriority > tskIDLE_PRIORITY )
1124 {
1125 uxCurrentPriority--;
1126 }
1127 else
1128 {
1129 /* This function is called when idle task is not created. Break the
1130 * loop to prevent uxCurrentPriority overrun. */
1131 break;
1132 }
1133 }
1134
1135 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1136 {
1137 if( xTaskScheduled == pdTRUE )
1138 {
1139 if( xPriorityDropped != pdFALSE )
1140 {
1141 /* There may be several ready tasks that were being prevented from running because there was
1142 * a higher priority task running. Now that the last of the higher priority tasks is no longer
1143 * running, make sure all the other idle tasks yield. */
1144 BaseType_t x;
1145
1146 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configNUMBER_OF_CORES; x++ )
1147 {
1148 if( ( pxCurrentTCBs[ x ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1149 {
1150 prvYieldCore( x );
1151 }
1152 }
1153 }
1154 }
1155 }
1156 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
1157
1158 #if ( configUSE_CORE_AFFINITY == 1 )
1159 {
1160 if( xTaskScheduled == pdTRUE )
1161 {
1162 if( ( pxPreviousTCB != NULL ) && ( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxPreviousTCB->uxPriority ] ), &( pxPreviousTCB->xStateListItem ) ) != pdFALSE ) )
1163 {
1164 /* A ready task was just evicted from this core. See if it can be
1165 * scheduled on any other core. */
1166 UBaseType_t uxCoreMap = pxPreviousTCB->uxCoreAffinityMask;
1167 BaseType_t xLowestPriority = ( BaseType_t ) pxPreviousTCB->uxPriority;
1168 BaseType_t xLowestPriorityCore = -1;
1169 BaseType_t x;
1170
1171 if( ( pxPreviousTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1172 {
1173 xLowestPriority = xLowestPriority - 1;
1174 }
1175
1176 if( ( uxCoreMap & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1177 {
1178 /* pxPreviousTCB was removed from this core and this core is not excluded
1179 * from it's core affinity mask.
1180 *
1181 * pxPreviousTCB is preempted by the new higher priority task
1182 * pxCurrentTCBs[ xCoreID ]. When searching a new core for pxPreviousTCB,
1183 * we do not need to look at the cores on which pxCurrentTCBs[ xCoreID ]
1184 * is allowed to run. The reason is - when more than one cores are
1185 * eligible for an incoming task, we preempt the core with the minimum
1186 * priority task. Because this core (i.e. xCoreID) was preempted for
1187 * pxCurrentTCBs[ xCoreID ], this means that all the others cores
1188 * where pxCurrentTCBs[ xCoreID ] can run, are running tasks with priority
1189 * no lower than pxPreviousTCB's priority. Therefore, the only cores where
1190 * which can be preempted for pxPreviousTCB are the ones where
1191 * pxCurrentTCBs[ xCoreID ] is not allowed to run (and obviously,
1192 * pxPreviousTCB is allowed to run).
1193 *
1194 * This is an optimization which reduces the number of cores needed to be
1195 * searched for pxPreviousTCB to run. */
1196 uxCoreMap &= ~( pxCurrentTCBs[ xCoreID ]->uxCoreAffinityMask );
1197 }
1198 else
1199 {
1200 /* pxPreviousTCB's core affinity mask is changed and it is no longer
1201 * allowed to run on this core. Searching all the cores in pxPreviousTCB's
1202 * new core affinity mask to find a core on which it can run. */
1203 }
1204
1205 uxCoreMap &= ( ( 1U << configNUMBER_OF_CORES ) - 1U );
1206
1207 for( x = ( ( BaseType_t ) configNUMBER_OF_CORES - 1 ); x >= ( BaseType_t ) 0; x-- )
1208 {
1209 UBaseType_t uxCore = ( UBaseType_t ) x;
1210 BaseType_t xTaskPriority;
1211
1212 if( ( uxCoreMap & ( ( UBaseType_t ) 1U << uxCore ) ) != 0U )
1213 {
1214 xTaskPriority = ( BaseType_t ) pxCurrentTCBs[ uxCore ]->uxPriority;
1215
1216 if( ( pxCurrentTCBs[ uxCore ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1217 {
1218 xTaskPriority = xTaskPriority - ( BaseType_t ) 1;
1219 }
1220
1221 uxCoreMap &= ~( ( UBaseType_t ) 1U << uxCore );
1222
1223 if( ( xTaskPriority < xLowestPriority ) &&
1224 ( taskTASK_IS_RUNNING( pxCurrentTCBs[ uxCore ] ) != pdFALSE ) &&
1225 ( xYieldPendings[ uxCore ] == pdFALSE ) )
1226 {
1227 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
1228 if( pxCurrentTCBs[ uxCore ]->xPreemptionDisable == pdFALSE )
1229 #endif
1230 {
1231 xLowestPriority = xTaskPriority;
1232 xLowestPriorityCore = ( BaseType_t ) uxCore;
1233 }
1234 }
1235 }
1236 }
1237
1238 if( xLowestPriorityCore >= 0 )
1239 {
1240 prvYieldCore( xLowestPriorityCore );
1241 }
1242 }
1243 }
1244 }
1245 #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) */
1246 }
1247
1248 #endif /* ( configNUMBER_OF_CORES > 1 ) */
1249
1250 /*-----------------------------------------------------------*/
1251
1252 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
1253
prvCreateStaticTask(TaskFunction_t pxTaskCode,const char * const pcName,const configSTACK_DEPTH_TYPE uxStackDepth,void * const pvParameters,UBaseType_t uxPriority,StackType_t * const puxStackBuffer,StaticTask_t * const pxTaskBuffer,TaskHandle_t * const pxCreatedTask)1254 static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
1255 const char * const pcName,
1256 const configSTACK_DEPTH_TYPE uxStackDepth,
1257 void * const pvParameters,
1258 UBaseType_t uxPriority,
1259 StackType_t * const puxStackBuffer,
1260 StaticTask_t * const pxTaskBuffer,
1261 TaskHandle_t * const pxCreatedTask )
1262 {
1263 TCB_t * pxNewTCB;
1264
1265 configASSERT( puxStackBuffer != NULL );
1266 configASSERT( pxTaskBuffer != NULL );
1267
1268 #if ( configASSERT_DEFINED == 1 )
1269 {
1270 /* Sanity check that the size of the structure used to declare a
1271 * variable of type StaticTask_t equals the size of the real task
1272 * structure. */
1273 volatile size_t xSize = sizeof( StaticTask_t );
1274 configASSERT( xSize == sizeof( TCB_t ) );
1275 ( void ) xSize; /* Prevent unused variable warning when configASSERT() is not used. */
1276 }
1277 #endif /* configASSERT_DEFINED */
1278
1279 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
1280 {
1281 /* The memory used for the task's TCB and stack are passed into this
1282 * function - use them. */
1283 /* MISRA Ref 11.3.1 [Misaligned access] */
1284 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
1285 /* coverity[misra_c_2012_rule_11_3_violation] */
1286 pxNewTCB = ( TCB_t * ) pxTaskBuffer;
1287 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1288 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
1289
1290 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1291 {
1292 /* Tasks can be created statically or dynamically, so note this
1293 * task was created statically in case the task is later deleted. */
1294 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
1295 }
1296 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1297
1298 prvInitialiseNewTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
1299 }
1300 else
1301 {
1302 pxNewTCB = NULL;
1303 }
1304
1305 return pxNewTCB;
1306 }
1307 /*-----------------------------------------------------------*/
1308
xTaskCreateStatic(TaskFunction_t pxTaskCode,const char * const pcName,const configSTACK_DEPTH_TYPE uxStackDepth,void * const pvParameters,UBaseType_t uxPriority,StackType_t * const puxStackBuffer,StaticTask_t * const pxTaskBuffer)1309 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
1310 const char * const pcName,
1311 const configSTACK_DEPTH_TYPE uxStackDepth,
1312 void * const pvParameters,
1313 UBaseType_t uxPriority,
1314 StackType_t * const puxStackBuffer,
1315 StaticTask_t * const pxTaskBuffer )
1316 {
1317 TaskHandle_t xReturn = NULL;
1318 TCB_t * pxNewTCB;
1319
1320 traceENTER_xTaskCreateStatic( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer );
1321
1322 pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
1323
1324 if( pxNewTCB != NULL )
1325 {
1326 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1327 {
1328 /* Set the task's affinity before scheduling it. */
1329 pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
1330 }
1331 #endif
1332
1333 prvAddNewTaskToReadyList( pxNewTCB );
1334 }
1335 else
1336 {
1337 mtCOVERAGE_TEST_MARKER();
1338 }
1339
1340 traceRETURN_xTaskCreateStatic( xReturn );
1341
1342 return xReturn;
1343 }
1344 /*-----------------------------------------------------------*/
1345
1346 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
xTaskCreateStaticAffinitySet(TaskFunction_t pxTaskCode,const char * const pcName,const configSTACK_DEPTH_TYPE uxStackDepth,void * const pvParameters,UBaseType_t uxPriority,StackType_t * const puxStackBuffer,StaticTask_t * const pxTaskBuffer,UBaseType_t uxCoreAffinityMask)1347 TaskHandle_t xTaskCreateStaticAffinitySet( TaskFunction_t pxTaskCode,
1348 const char * const pcName,
1349 const configSTACK_DEPTH_TYPE uxStackDepth,
1350 void * const pvParameters,
1351 UBaseType_t uxPriority,
1352 StackType_t * const puxStackBuffer,
1353 StaticTask_t * const pxTaskBuffer,
1354 UBaseType_t uxCoreAffinityMask )
1355 {
1356 TaskHandle_t xReturn = NULL;
1357 TCB_t * pxNewTCB;
1358
1359 traceENTER_xTaskCreateStaticAffinitySet( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, uxCoreAffinityMask );
1360
1361 pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
1362
1363 if( pxNewTCB != NULL )
1364 {
1365 /* Set the task's affinity before scheduling it. */
1366 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1367
1368 prvAddNewTaskToReadyList( pxNewTCB );
1369 }
1370 else
1371 {
1372 mtCOVERAGE_TEST_MARKER();
1373 }
1374
1375 traceRETURN_xTaskCreateStaticAffinitySet( xReturn );
1376
1377 return xReturn;
1378 }
1379 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1380
1381 #endif /* SUPPORT_STATIC_ALLOCATION */
1382 /*-----------------------------------------------------------*/
1383
1384 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
prvCreateRestrictedStaticTask(const TaskParameters_t * const pxTaskDefinition,TaskHandle_t * const pxCreatedTask)1385 static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
1386 TaskHandle_t * const pxCreatedTask )
1387 {
1388 TCB_t * pxNewTCB;
1389
1390 configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
1391 configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
1392
1393 if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
1394 {
1395 /* Allocate space for the TCB. Where the memory comes from depends
1396 * on the implementation of the port malloc function and whether or
1397 * not static allocation is being used. */
1398 pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
1399 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1400
1401 /* Store the stack location in the TCB. */
1402 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
1403
1404 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1405 {
1406 /* Tasks can be created statically or dynamically, so note this
1407 * task was created statically in case the task is later deleted. */
1408 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
1409 }
1410 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1411
1412 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
1413 pxTaskDefinition->pcName,
1414 pxTaskDefinition->usStackDepth,
1415 pxTaskDefinition->pvParameters,
1416 pxTaskDefinition->uxPriority,
1417 pxCreatedTask, pxNewTCB,
1418 pxTaskDefinition->xRegions );
1419 }
1420 else
1421 {
1422 pxNewTCB = NULL;
1423 }
1424
1425 return pxNewTCB;
1426 }
1427 /*-----------------------------------------------------------*/
1428
xTaskCreateRestrictedStatic(const TaskParameters_t * const pxTaskDefinition,TaskHandle_t * pxCreatedTask)1429 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
1430 TaskHandle_t * pxCreatedTask )
1431 {
1432 TCB_t * pxNewTCB;
1433 BaseType_t xReturn;
1434
1435 traceENTER_xTaskCreateRestrictedStatic( pxTaskDefinition, pxCreatedTask );
1436
1437 configASSERT( pxTaskDefinition != NULL );
1438
1439 pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
1440
1441 if( pxNewTCB != NULL )
1442 {
1443 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1444 {
1445 /* Set the task's affinity before scheduling it. */
1446 pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
1447 }
1448 #endif
1449
1450 prvAddNewTaskToReadyList( pxNewTCB );
1451 xReturn = pdPASS;
1452 }
1453 else
1454 {
1455 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1456 }
1457
1458 traceRETURN_xTaskCreateRestrictedStatic( xReturn );
1459
1460 return xReturn;
1461 }
1462 /*-----------------------------------------------------------*/
1463
1464 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
xTaskCreateRestrictedStaticAffinitySet(const TaskParameters_t * const pxTaskDefinition,UBaseType_t uxCoreAffinityMask,TaskHandle_t * pxCreatedTask)1465 BaseType_t xTaskCreateRestrictedStaticAffinitySet( const TaskParameters_t * const pxTaskDefinition,
1466 UBaseType_t uxCoreAffinityMask,
1467 TaskHandle_t * pxCreatedTask )
1468 {
1469 TCB_t * pxNewTCB;
1470 BaseType_t xReturn;
1471
1472 traceENTER_xTaskCreateRestrictedStaticAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
1473
1474 configASSERT( pxTaskDefinition != NULL );
1475
1476 pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
1477
1478 if( pxNewTCB != NULL )
1479 {
1480 /* Set the task's affinity before scheduling it. */
1481 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1482
1483 prvAddNewTaskToReadyList( pxNewTCB );
1484 xReturn = pdPASS;
1485 }
1486 else
1487 {
1488 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1489 }
1490
1491 traceRETURN_xTaskCreateRestrictedStaticAffinitySet( xReturn );
1492
1493 return xReturn;
1494 }
1495 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1496
1497 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
1498 /*-----------------------------------------------------------*/
1499
1500 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
prvCreateRestrictedTask(const TaskParameters_t * const pxTaskDefinition,TaskHandle_t * const pxCreatedTask)1501 static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
1502 TaskHandle_t * const pxCreatedTask )
1503 {
1504 TCB_t * pxNewTCB;
1505
1506 configASSERT( pxTaskDefinition->puxStackBuffer );
1507
1508 if( pxTaskDefinition->puxStackBuffer != NULL )
1509 {
1510 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1511 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1512 /* coverity[misra_c_2012_rule_11_5_violation] */
1513 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1514
1515 if( pxNewTCB != NULL )
1516 {
1517 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1518
1519 /* Store the stack location in the TCB. */
1520 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
1521
1522 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1523 {
1524 /* Tasks can be created statically or dynamically, so note
1525 * this task had a statically allocated stack in case it is
1526 * later deleted. The TCB was allocated dynamically. */
1527 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
1528 }
1529 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1530
1531 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
1532 pxTaskDefinition->pcName,
1533 pxTaskDefinition->usStackDepth,
1534 pxTaskDefinition->pvParameters,
1535 pxTaskDefinition->uxPriority,
1536 pxCreatedTask, pxNewTCB,
1537 pxTaskDefinition->xRegions );
1538 }
1539 }
1540 else
1541 {
1542 pxNewTCB = NULL;
1543 }
1544
1545 return pxNewTCB;
1546 }
1547 /*-----------------------------------------------------------*/
1548
xTaskCreateRestricted(const TaskParameters_t * const pxTaskDefinition,TaskHandle_t * pxCreatedTask)1549 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
1550 TaskHandle_t * pxCreatedTask )
1551 {
1552 TCB_t * pxNewTCB;
1553 BaseType_t xReturn;
1554
1555 traceENTER_xTaskCreateRestricted( pxTaskDefinition, pxCreatedTask );
1556
1557 pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
1558
1559 if( pxNewTCB != NULL )
1560 {
1561 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1562 {
1563 /* Set the task's affinity before scheduling it. */
1564 pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
1565 }
1566 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1567
1568 prvAddNewTaskToReadyList( pxNewTCB );
1569
1570 xReturn = pdPASS;
1571 }
1572 else
1573 {
1574 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1575 }
1576
1577 traceRETURN_xTaskCreateRestricted( xReturn );
1578
1579 return xReturn;
1580 }
1581 /*-----------------------------------------------------------*/
1582
1583 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
xTaskCreateRestrictedAffinitySet(const TaskParameters_t * const pxTaskDefinition,UBaseType_t uxCoreAffinityMask,TaskHandle_t * pxCreatedTask)1584 BaseType_t xTaskCreateRestrictedAffinitySet( const TaskParameters_t * const pxTaskDefinition,
1585 UBaseType_t uxCoreAffinityMask,
1586 TaskHandle_t * pxCreatedTask )
1587 {
1588 TCB_t * pxNewTCB;
1589 BaseType_t xReturn;
1590
1591 traceENTER_xTaskCreateRestrictedAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
1592
1593 pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
1594
1595 if( pxNewTCB != NULL )
1596 {
1597 /* Set the task's affinity before scheduling it. */
1598 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1599
1600 prvAddNewTaskToReadyList( pxNewTCB );
1601
1602 xReturn = pdPASS;
1603 }
1604 else
1605 {
1606 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1607 }
1608
1609 traceRETURN_xTaskCreateRestrictedAffinitySet( xReturn );
1610
1611 return xReturn;
1612 }
1613 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1614
1615
1616 #endif /* portUSING_MPU_WRAPPERS */
1617 /*-----------------------------------------------------------*/
1618
1619 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
prvCreateTask(TaskFunction_t pxTaskCode,const char * const pcName,const configSTACK_DEPTH_TYPE uxStackDepth,void * const pvParameters,UBaseType_t uxPriority,TaskHandle_t * const pxCreatedTask)1620 static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
1621 const char * const pcName,
1622 const configSTACK_DEPTH_TYPE uxStackDepth,
1623 void * const pvParameters,
1624 UBaseType_t uxPriority,
1625 TaskHandle_t * const pxCreatedTask )
1626 {
1627 TCB_t * pxNewTCB;
1628
1629 /* If the stack grows down then allocate the stack then the TCB so the stack
1630 * does not grow into the TCB. Likewise if the stack grows up then allocate
1631 * the TCB then the stack. */
1632 #if ( portSTACK_GROWTH > 0 )
1633 {
1634 /* Allocate space for the TCB. Where the memory comes from depends on
1635 * the implementation of the port malloc function and whether or not static
1636 * allocation is being used. */
1637 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1638 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1639 /* coverity[misra_c_2012_rule_11_5_violation] */
1640 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1641
1642 if( pxNewTCB != NULL )
1643 {
1644 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1645
1646 /* Allocate space for the stack used by the task being created.
1647 * The base of the stack memory stored in the TCB so the task can
1648 * be deleted later if required. */
1649 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1650 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1651 /* coverity[misra_c_2012_rule_11_5_violation] */
1652 pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) uxStackDepth ) * sizeof( StackType_t ) ) );
1653
1654 if( pxNewTCB->pxStack == NULL )
1655 {
1656 /* Could not allocate the stack. Delete the allocated TCB. */
1657 vPortFree( pxNewTCB );
1658 pxNewTCB = NULL;
1659 }
1660 }
1661 }
1662 #else /* portSTACK_GROWTH */
1663 {
1664 StackType_t * pxStack;
1665
1666 /* Allocate space for the stack used by the task being created. */
1667 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1668 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1669 /* coverity[misra_c_2012_rule_11_5_violation] */
1670 pxStack = pvPortMallocStack( ( ( ( size_t ) uxStackDepth ) * sizeof( StackType_t ) ) );
1671
1672 if( pxStack != NULL )
1673 {
1674 /* Allocate space for the TCB. */
1675 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1676 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1677 /* coverity[misra_c_2012_rule_11_5_violation] */
1678 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1679
1680 if( pxNewTCB != NULL )
1681 {
1682 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1683
1684 /* Store the stack location in the TCB. */
1685 pxNewTCB->pxStack = pxStack;
1686 }
1687 else
1688 {
1689 /* The stack cannot be used as the TCB was not created. Free
1690 * it again. */
1691 vPortFreeStack( pxStack );
1692 }
1693 }
1694 else
1695 {
1696 pxNewTCB = NULL;
1697 }
1698 }
1699 #endif /* portSTACK_GROWTH */
1700
1701 if( pxNewTCB != NULL )
1702 {
1703 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1704 {
1705 /* Tasks can be created statically or dynamically, so note this
1706 * task was created dynamically in case it is later deleted. */
1707 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
1708 }
1709 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1710
1711 prvInitialiseNewTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
1712 }
1713
1714 return pxNewTCB;
1715 }
1716 /*-----------------------------------------------------------*/
1717
xTaskCreate(TaskFunction_t pxTaskCode,const char * const pcName,const configSTACK_DEPTH_TYPE uxStackDepth,void * const pvParameters,UBaseType_t uxPriority,TaskHandle_t * const pxCreatedTask)1718 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
1719 const char * const pcName,
1720 const configSTACK_DEPTH_TYPE uxStackDepth,
1721 void * const pvParameters,
1722 UBaseType_t uxPriority,
1723 TaskHandle_t * const pxCreatedTask )
1724 {
1725 TCB_t * pxNewTCB;
1726 BaseType_t xReturn;
1727
1728 traceENTER_xTaskCreate( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
1729
1730 pxNewTCB = prvCreateTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
1731
1732 if( pxNewTCB != NULL )
1733 {
1734 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1735 {
1736 /* Set the task's affinity before scheduling it. */
1737 pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
1738 }
1739 #endif
1740
1741 prvAddNewTaskToReadyList( pxNewTCB );
1742 xReturn = pdPASS;
1743 }
1744 else
1745 {
1746 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1747 }
1748
1749 traceRETURN_xTaskCreate( xReturn );
1750
1751 return xReturn;
1752 }
1753 /*-----------------------------------------------------------*/
1754
1755 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
xTaskCreateAffinitySet(TaskFunction_t pxTaskCode,const char * const pcName,const configSTACK_DEPTH_TYPE uxStackDepth,void * const pvParameters,UBaseType_t uxPriority,UBaseType_t uxCoreAffinityMask,TaskHandle_t * const pxCreatedTask)1756 BaseType_t xTaskCreateAffinitySet( TaskFunction_t pxTaskCode,
1757 const char * const pcName,
1758 const configSTACK_DEPTH_TYPE uxStackDepth,
1759 void * const pvParameters,
1760 UBaseType_t uxPriority,
1761 UBaseType_t uxCoreAffinityMask,
1762 TaskHandle_t * const pxCreatedTask )
1763 {
1764 TCB_t * pxNewTCB;
1765 BaseType_t xReturn;
1766
1767 traceENTER_xTaskCreateAffinitySet( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, uxCoreAffinityMask, pxCreatedTask );
1768
1769 pxNewTCB = prvCreateTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
1770
1771 if( pxNewTCB != NULL )
1772 {
1773 /* Set the task's affinity before scheduling it. */
1774 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1775
1776 prvAddNewTaskToReadyList( pxNewTCB );
1777 xReturn = pdPASS;
1778 }
1779 else
1780 {
1781 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1782 }
1783
1784 traceRETURN_xTaskCreateAffinitySet( xReturn );
1785
1786 return xReturn;
1787 }
1788 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1789
1790 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
1791 /*-----------------------------------------------------------*/
1792
prvInitialiseNewTask(TaskFunction_t pxTaskCode,const char * const pcName,const configSTACK_DEPTH_TYPE uxStackDepth,void * const pvParameters,UBaseType_t uxPriority,TaskHandle_t * const pxCreatedTask,TCB_t * pxNewTCB,const MemoryRegion_t * const xRegions)1793 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
1794 const char * const pcName,
1795 const configSTACK_DEPTH_TYPE uxStackDepth,
1796 void * const pvParameters,
1797 UBaseType_t uxPriority,
1798 TaskHandle_t * const pxCreatedTask,
1799 TCB_t * pxNewTCB,
1800 const MemoryRegion_t * const xRegions )
1801 {
1802 StackType_t * pxTopOfStack;
1803 UBaseType_t x;
1804
1805 #if ( portUSING_MPU_WRAPPERS == 1 )
1806 /* Should the task be created in privileged mode? */
1807 BaseType_t xRunPrivileged;
1808
1809 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
1810 {
1811 xRunPrivileged = pdTRUE;
1812 }
1813 else
1814 {
1815 xRunPrivileged = pdFALSE;
1816 }
1817 uxPriority &= ~portPRIVILEGE_BIT;
1818 #endif /* portUSING_MPU_WRAPPERS == 1 */
1819
1820 /* Avoid dependency on memset() if it is not required. */
1821 #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
1822 {
1823 /* Fill the stack with a known value to assist debugging. */
1824 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) uxStackDepth * sizeof( StackType_t ) );
1825 }
1826 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
1827
1828 /* Calculate the top of stack address. This depends on whether the stack
1829 * grows from high memory to low (as per the 80x86) or vice versa.
1830 * portSTACK_GROWTH is used to make the result positive or negative as required
1831 * by the port. */
1832 #if ( portSTACK_GROWTH < 0 )
1833 {
1834 pxTopOfStack = &( pxNewTCB->pxStack[ uxStackDepth - ( configSTACK_DEPTH_TYPE ) 1 ] );
1835 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
1836
1837 /* Check the alignment of the calculated top of stack is correct. */
1838 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0U ) );
1839
1840 #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
1841 {
1842 /* Also record the stack's high address, which may assist
1843 * debugging. */
1844 pxNewTCB->pxEndOfStack = pxTopOfStack;
1845 }
1846 #endif /* configRECORD_STACK_HIGH_ADDRESS */
1847 }
1848 #else /* portSTACK_GROWTH */
1849 {
1850 pxTopOfStack = pxNewTCB->pxStack;
1851 pxTopOfStack = ( StackType_t * ) ( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) + portBYTE_ALIGNMENT_MASK ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
1852
1853 /* Check the alignment of the calculated top of stack is correct. */
1854 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0U ) );
1855
1856 /* The other extreme of the stack space is required if stack checking is
1857 * performed. */
1858 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( uxStackDepth - ( configSTACK_DEPTH_TYPE ) 1 );
1859 }
1860 #endif /* portSTACK_GROWTH */
1861
1862 /* Store the task name in the TCB. */
1863 if( pcName != NULL )
1864 {
1865 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
1866 {
1867 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
1868
1869 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
1870 * configMAX_TASK_NAME_LEN characters just in case the memory after the
1871 * string is not accessible (extremely unlikely). */
1872 if( pcName[ x ] == ( char ) 0x00 )
1873 {
1874 break;
1875 }
1876 else
1877 {
1878 mtCOVERAGE_TEST_MARKER();
1879 }
1880 }
1881
1882 /* Ensure the name string is terminated in the case that the string length
1883 * was greater or equal to configMAX_TASK_NAME_LEN. */
1884 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1U ] = '\0';
1885 }
1886 else
1887 {
1888 mtCOVERAGE_TEST_MARKER();
1889 }
1890
1891 /* This is used as an array index so must ensure it's not too large. */
1892 configASSERT( uxPriority < configMAX_PRIORITIES );
1893
1894 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
1895 {
1896 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
1897 }
1898 else
1899 {
1900 mtCOVERAGE_TEST_MARKER();
1901 }
1902
1903 pxNewTCB->uxPriority = uxPriority;
1904 #if ( configUSE_MUTEXES == 1 )
1905 {
1906 pxNewTCB->uxBasePriority = uxPriority;
1907 }
1908 #endif /* configUSE_MUTEXES */
1909
1910 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
1911 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
1912
1913 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
1914 * back to the containing TCB from a generic item in a list. */
1915 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
1916
1917 /* Event lists are always in priority order. */
1918 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority );
1919 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
1920
1921 #if ( portUSING_MPU_WRAPPERS == 1 )
1922 {
1923 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, uxStackDepth );
1924 }
1925 #else
1926 {
1927 /* Avoid compiler warning about unreferenced parameter. */
1928 ( void ) xRegions;
1929 }
1930 #endif
1931
1932 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
1933 {
1934 /* Allocate and initialize memory for the task's TLS Block. */
1935 configINIT_TLS_BLOCK( pxNewTCB->xTLSBlock, pxTopOfStack );
1936 }
1937 #endif
1938
1939 /* Initialize the TCB stack to look as if the task was already running,
1940 * but had been interrupted by the scheduler. The return address is set
1941 * to the start of the task function. Once the stack has been initialised
1942 * the top of stack variable is updated. */
1943 #if ( portUSING_MPU_WRAPPERS == 1 )
1944 {
1945 /* If the port has capability to detect stack overflow,
1946 * pass the stack end address to the stack initialization
1947 * function as well. */
1948 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1949 {
1950 #if ( portSTACK_GROWTH < 0 )
1951 {
1952 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1953 }
1954 #else /* portSTACK_GROWTH */
1955 {
1956 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1957 }
1958 #endif /* portSTACK_GROWTH */
1959 }
1960 #else /* portHAS_STACK_OVERFLOW_CHECKING */
1961 {
1962 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1963 }
1964 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1965 }
1966 #else /* portUSING_MPU_WRAPPERS */
1967 {
1968 /* If the port has capability to detect stack overflow,
1969 * pass the stack end address to the stack initialization
1970 * function as well. */
1971 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1972 {
1973 #if ( portSTACK_GROWTH < 0 )
1974 {
1975 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
1976 }
1977 #else /* portSTACK_GROWTH */
1978 {
1979 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
1980 }
1981 #endif /* portSTACK_GROWTH */
1982 }
1983 #else /* portHAS_STACK_OVERFLOW_CHECKING */
1984 {
1985 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
1986 }
1987 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1988 }
1989 #endif /* portUSING_MPU_WRAPPERS */
1990
1991 /* Initialize task state and task attributes. */
1992 #if ( configNUMBER_OF_CORES > 1 )
1993 {
1994 pxNewTCB->xTaskRunState = taskTASK_NOT_RUNNING;
1995
1996 /* Is this an idle task? */
1997 if( ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvIdleTask ) || ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvPassiveIdleTask ) )
1998 {
1999 pxNewTCB->uxTaskAttributes |= taskATTRIBUTE_IS_IDLE;
2000 }
2001 }
2002 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
2003
2004 if( pxCreatedTask != NULL )
2005 {
2006 /* Pass the handle out in an anonymous way. The handle can be used to
2007 * change the created task's priority, delete the created task, etc.*/
2008 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
2009 }
2010 else
2011 {
2012 mtCOVERAGE_TEST_MARKER();
2013 }
2014 }
2015 /*-----------------------------------------------------------*/
2016
2017 #if ( configNUMBER_OF_CORES == 1 )
2018
prvAddNewTaskToReadyList(TCB_t * pxNewTCB)2019 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
2020 {
2021 /* Ensure interrupts don't access the task lists while the lists are being
2022 * updated. */
2023 taskENTER_CRITICAL();
2024 {
2025 uxCurrentNumberOfTasks = ( UBaseType_t ) ( uxCurrentNumberOfTasks + 1U );
2026
2027 if( pxCurrentTCB == NULL )
2028 {
2029 /* There are no other tasks, or all the other tasks are in
2030 * the suspended state - make this the current task. */
2031 pxCurrentTCB = pxNewTCB;
2032
2033 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
2034 {
2035 /* This is the first task to be created so do the preliminary
2036 * initialisation required. We will not recover if this call
2037 * fails, but we will report the failure. */
2038 prvInitialiseTaskLists();
2039 }
2040 else
2041 {
2042 mtCOVERAGE_TEST_MARKER();
2043 }
2044 }
2045 else
2046 {
2047 /* If the scheduler is not already running, make this task the
2048 * current task if it is the highest priority task to be created
2049 * so far. */
2050 if( xSchedulerRunning == pdFALSE )
2051 {
2052 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
2053 {
2054 pxCurrentTCB = pxNewTCB;
2055 }
2056 else
2057 {
2058 mtCOVERAGE_TEST_MARKER();
2059 }
2060 }
2061 else
2062 {
2063 mtCOVERAGE_TEST_MARKER();
2064 }
2065 }
2066
2067 uxTaskNumber++;
2068
2069 #if ( configUSE_TRACE_FACILITY == 1 )
2070 {
2071 /* Add a counter into the TCB for tracing only. */
2072 pxNewTCB->uxTCBNumber = uxTaskNumber;
2073 }
2074 #endif /* configUSE_TRACE_FACILITY */
2075 traceTASK_CREATE( pxNewTCB );
2076
2077 prvAddTaskToReadyList( pxNewTCB );
2078
2079 portSETUP_TCB( pxNewTCB );
2080 }
2081 taskEXIT_CRITICAL();
2082
2083 if( xSchedulerRunning != pdFALSE )
2084 {
2085 /* If the created task is of a higher priority than the current task
2086 * then it should run now. */
2087 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
2088 }
2089 else
2090 {
2091 mtCOVERAGE_TEST_MARKER();
2092 }
2093 }
2094
2095 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2096
prvAddNewTaskToReadyList(TCB_t * pxNewTCB)2097 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
2098 {
2099 /* Ensure interrupts don't access the task lists while the lists are being
2100 * updated. */
2101 taskENTER_CRITICAL();
2102 {
2103 uxCurrentNumberOfTasks++;
2104
2105 if( xSchedulerRunning == pdFALSE )
2106 {
2107 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
2108 {
2109 /* This is the first task to be created so do the preliminary
2110 * initialisation required. We will not recover if this call
2111 * fails, but we will report the failure. */
2112 prvInitialiseTaskLists();
2113 }
2114 else
2115 {
2116 mtCOVERAGE_TEST_MARKER();
2117 }
2118
2119 /* All the cores start with idle tasks before the SMP scheduler
2120 * is running. Idle tasks are assigned to cores when they are
2121 * created in prvCreateIdleTasks(). */
2122 }
2123
2124 uxTaskNumber++;
2125
2126 #if ( configUSE_TRACE_FACILITY == 1 )
2127 {
2128 /* Add a counter into the TCB for tracing only. */
2129 pxNewTCB->uxTCBNumber = uxTaskNumber;
2130 }
2131 #endif /* configUSE_TRACE_FACILITY */
2132 traceTASK_CREATE( pxNewTCB );
2133
2134 prvAddTaskToReadyList( pxNewTCB );
2135
2136 portSETUP_TCB( pxNewTCB );
2137
2138 if( xSchedulerRunning != pdFALSE )
2139 {
2140 /* If the created task is of a higher priority than another
2141 * currently running task and preemption is on then it should
2142 * run now. */
2143 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
2144 }
2145 else
2146 {
2147 mtCOVERAGE_TEST_MARKER();
2148 }
2149 }
2150 taskEXIT_CRITICAL();
2151 }
2152
2153 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2154 /*-----------------------------------------------------------*/
2155
2156 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
2157
prvSnprintfReturnValueToCharsWritten(int iSnprintfReturnValue,size_t n)2158 static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
2159 size_t n )
2160 {
2161 size_t uxCharsWritten;
2162
2163 if( iSnprintfReturnValue < 0 )
2164 {
2165 /* Encoding error - Return 0 to indicate that nothing
2166 * was written to the buffer. */
2167 uxCharsWritten = 0;
2168 }
2169 else if( iSnprintfReturnValue >= ( int ) n )
2170 {
2171 /* This is the case when the supplied buffer is not
2172 * large to hold the generated string. Return the
2173 * number of characters actually written without
2174 * counting the terminating NULL character. */
2175 uxCharsWritten = n - 1U;
2176 }
2177 else
2178 {
2179 /* Complete string was written to the buffer. */
2180 uxCharsWritten = ( size_t ) iSnprintfReturnValue;
2181 }
2182
2183 return uxCharsWritten;
2184 }
2185
2186 #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
2187 /*-----------------------------------------------------------*/
2188
2189 #if ( INCLUDE_vTaskDelete == 1 )
2190
vTaskDelete(TaskHandle_t xTaskToDelete)2191 void vTaskDelete( TaskHandle_t xTaskToDelete )
2192 {
2193 TCB_t * pxTCB;
2194 BaseType_t xDeleteTCBInIdleTask = pdFALSE;
2195 BaseType_t xTaskIsRunningOrYielding;
2196
2197 traceENTER_vTaskDelete( xTaskToDelete );
2198
2199 taskENTER_CRITICAL();
2200 {
2201 /* If null is passed in here then it is the calling task that is
2202 * being deleted. */
2203 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
2204
2205 /* Remove task from the ready/delayed list. */
2206 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
2207 {
2208 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
2209 }
2210 else
2211 {
2212 mtCOVERAGE_TEST_MARKER();
2213 }
2214
2215 /* Is the task waiting on an event also? */
2216 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
2217 {
2218 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
2219 }
2220 else
2221 {
2222 mtCOVERAGE_TEST_MARKER();
2223 }
2224
2225 /* Increment the uxTaskNumber also so kernel aware debuggers can
2226 * detect that the task lists need re-generating. This is done before
2227 * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
2228 * not return. */
2229 uxTaskNumber++;
2230
2231 /* Use temp variable as distinct sequence points for reading volatile
2232 * variables prior to a logical operator to ensure compliance with
2233 * MISRA C 2012 Rule 13.5. */
2234 xTaskIsRunningOrYielding = taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB );
2235
2236 /* If the task is running (or yielding), we must add it to the
2237 * termination list so that an idle task can delete it when it is
2238 * no longer running. */
2239 if( ( xSchedulerRunning != pdFALSE ) && ( xTaskIsRunningOrYielding != pdFALSE ) )
2240 {
2241 /* A running task or a task which is scheduled to yield is being
2242 * deleted. This cannot complete when the task is still running
2243 * on a core, as a context switch to another task is required.
2244 * Place the task in the termination list. The idle task will check
2245 * the termination list and free up any memory allocated by the
2246 * scheduler for the TCB and stack of the deleted task. */
2247 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
2248
2249 /* Increment the ucTasksDeleted variable so the idle task knows
2250 * there is a task that has been deleted and that it should therefore
2251 * check the xTasksWaitingTermination list. */
2252 ++uxDeletedTasksWaitingCleanUp;
2253
2254 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
2255 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
2256 traceTASK_DELETE( pxTCB );
2257
2258 /* Delete the task TCB in idle task. */
2259 xDeleteTCBInIdleTask = pdTRUE;
2260
2261 /* The pre-delete hook is primarily for the Windows simulator,
2262 * in which Windows specific clean up operations are performed,
2263 * after which it is not possible to yield away from this task -
2264 * hence xYieldPending is used to latch that a context switch is
2265 * required. */
2266 #if ( configNUMBER_OF_CORES == 1 )
2267 portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ 0 ] ) );
2268 #else
2269 portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ pxTCB->xTaskRunState ] ) );
2270 #endif
2271
2272 /* In the case of SMP, it is possible that the task being deleted
2273 * is running on another core. We must evict the task before
2274 * exiting the critical section to ensure that the task cannot
2275 * take an action which puts it back on ready/state/event list,
2276 * thereby nullifying the delete operation. Once evicted, the
2277 * task won't be scheduled ever as it will no longer be on the
2278 * ready list. */
2279 #if ( configNUMBER_OF_CORES > 1 )
2280 {
2281 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2282 {
2283 if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() )
2284 {
2285 configASSERT( uxSchedulerSuspended == 0 );
2286 taskYIELD_WITHIN_API();
2287 }
2288 else
2289 {
2290 prvYieldCore( pxTCB->xTaskRunState );
2291 }
2292 }
2293 }
2294 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
2295 }
2296 else
2297 {
2298 --uxCurrentNumberOfTasks;
2299 traceTASK_DELETE( pxTCB );
2300
2301 /* Reset the next expected unblock time in case it referred to
2302 * the task that has just been deleted. */
2303 prvResetNextTaskUnblockTime();
2304 }
2305 }
2306 taskEXIT_CRITICAL();
2307
2308 /* If the task is not deleting itself, call prvDeleteTCB from outside of
2309 * critical section. If a task deletes itself, prvDeleteTCB is called
2310 * from prvCheckTasksWaitingTermination which is called from Idle task. */
2311 if( xDeleteTCBInIdleTask != pdTRUE )
2312 {
2313 prvDeleteTCB( pxTCB );
2314 }
2315
2316 /* Force a reschedule if it is the currently running task that has just
2317 * been deleted. */
2318 #if ( configNUMBER_OF_CORES == 1 )
2319 {
2320 if( xSchedulerRunning != pdFALSE )
2321 {
2322 if( pxTCB == pxCurrentTCB )
2323 {
2324 configASSERT( uxSchedulerSuspended == 0 );
2325 taskYIELD_WITHIN_API();
2326 }
2327 else
2328 {
2329 mtCOVERAGE_TEST_MARKER();
2330 }
2331 }
2332 }
2333 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2334
2335 traceRETURN_vTaskDelete();
2336 }
2337
2338 #endif /* INCLUDE_vTaskDelete */
2339 /*-----------------------------------------------------------*/
2340
2341 #if ( INCLUDE_xTaskDelayUntil == 1 )
2342
xTaskDelayUntil(TickType_t * const pxPreviousWakeTime,const TickType_t xTimeIncrement)2343 BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
2344 const TickType_t xTimeIncrement )
2345 {
2346 TickType_t xTimeToWake;
2347 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
2348
2349 traceENTER_xTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement );
2350
2351 configASSERT( pxPreviousWakeTime );
2352 configASSERT( ( xTimeIncrement > 0U ) );
2353
2354 vTaskSuspendAll();
2355 {
2356 /* Minor optimisation. The tick count cannot change in this
2357 * block. */
2358 const TickType_t xConstTickCount = xTickCount;
2359
2360 configASSERT( uxSchedulerSuspended == 1U );
2361
2362 /* Generate the tick time at which the task wants to wake. */
2363 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
2364
2365 if( xConstTickCount < *pxPreviousWakeTime )
2366 {
2367 /* The tick count has overflowed since this function was
2368 * lasted called. In this case the only time we should ever
2369 * actually delay is if the wake time has also overflowed,
2370 * and the wake time is greater than the tick time. When this
2371 * is the case it is as if neither time had overflowed. */
2372 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
2373 {
2374 xShouldDelay = pdTRUE;
2375 }
2376 else
2377 {
2378 mtCOVERAGE_TEST_MARKER();
2379 }
2380 }
2381 else
2382 {
2383 /* The tick time has not overflowed. In this case we will
2384 * delay if either the wake time has overflowed, and/or the
2385 * tick time is less than the wake time. */
2386 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
2387 {
2388 xShouldDelay = pdTRUE;
2389 }
2390 else
2391 {
2392 mtCOVERAGE_TEST_MARKER();
2393 }
2394 }
2395
2396 /* Update the wake time ready for the next call. */
2397 *pxPreviousWakeTime = xTimeToWake;
2398
2399 if( xShouldDelay != pdFALSE )
2400 {
2401 traceTASK_DELAY_UNTIL( xTimeToWake );
2402
2403 /* prvAddCurrentTaskToDelayedList() needs the block time, not
2404 * the time to wake, so subtract the current tick count. */
2405 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
2406 }
2407 else
2408 {
2409 mtCOVERAGE_TEST_MARKER();
2410 }
2411 }
2412 xAlreadyYielded = xTaskResumeAll();
2413
2414 /* Force a reschedule if xTaskResumeAll has not already done so, we may
2415 * have put ourselves to sleep. */
2416 if( xAlreadyYielded == pdFALSE )
2417 {
2418 taskYIELD_WITHIN_API();
2419 }
2420 else
2421 {
2422 mtCOVERAGE_TEST_MARKER();
2423 }
2424
2425 traceRETURN_xTaskDelayUntil( xShouldDelay );
2426
2427 return xShouldDelay;
2428 }
2429
2430 #endif /* INCLUDE_xTaskDelayUntil */
2431 /*-----------------------------------------------------------*/
2432
2433 #if ( INCLUDE_vTaskDelay == 1 )
2434
vTaskDelay(const TickType_t xTicksToDelay)2435 void vTaskDelay( const TickType_t xTicksToDelay )
2436 {
2437 BaseType_t xAlreadyYielded = pdFALSE;
2438
2439 traceENTER_vTaskDelay( xTicksToDelay );
2440
2441 /* A delay time of zero just forces a reschedule. */
2442 if( xTicksToDelay > ( TickType_t ) 0U )
2443 {
2444 vTaskSuspendAll();
2445 {
2446 configASSERT( uxSchedulerSuspended == 1U );
2447
2448 traceTASK_DELAY();
2449
2450 /* A task that is removed from the event list while the
2451 * scheduler is suspended will not get placed in the ready
2452 * list or removed from the blocked list until the scheduler
2453 * is resumed.
2454 *
2455 * This task cannot be in an event list as it is the currently
2456 * executing task. */
2457 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
2458 }
2459 xAlreadyYielded = xTaskResumeAll();
2460 }
2461 else
2462 {
2463 mtCOVERAGE_TEST_MARKER();
2464 }
2465
2466 /* Force a reschedule if xTaskResumeAll has not already done so, we may
2467 * have put ourselves to sleep. */
2468 if( xAlreadyYielded == pdFALSE )
2469 {
2470 taskYIELD_WITHIN_API();
2471 }
2472 else
2473 {
2474 mtCOVERAGE_TEST_MARKER();
2475 }
2476
2477 traceRETURN_vTaskDelay();
2478 }
2479
2480 #endif /* INCLUDE_vTaskDelay */
2481 /*-----------------------------------------------------------*/
2482
2483 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
2484
eTaskGetState(TaskHandle_t xTask)2485 eTaskState eTaskGetState( TaskHandle_t xTask )
2486 {
2487 eTaskState eReturn;
2488 List_t const * pxStateList;
2489 List_t const * pxEventList;
2490 List_t const * pxDelayedList;
2491 List_t const * pxOverflowedDelayedList;
2492 const TCB_t * const pxTCB = xTask;
2493
2494 traceENTER_eTaskGetState( xTask );
2495
2496 configASSERT( pxTCB );
2497
2498 #if ( configNUMBER_OF_CORES == 1 )
2499 if( pxTCB == pxCurrentTCB )
2500 {
2501 /* The task calling this function is querying its own state. */
2502 eReturn = eRunning;
2503 }
2504 else
2505 #endif
2506 {
2507 taskENTER_CRITICAL();
2508 {
2509 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
2510 pxEventList = listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) );
2511 pxDelayedList = pxDelayedTaskList;
2512 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
2513 }
2514 taskEXIT_CRITICAL();
2515
2516 if( pxEventList == &xPendingReadyList )
2517 {
2518 /* The task has been placed on the pending ready list, so its
2519 * state is eReady regardless of what list the task's state list
2520 * item is currently placed on. */
2521 eReturn = eReady;
2522 }
2523 else if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
2524 {
2525 /* The task being queried is referenced from one of the Blocked
2526 * lists. */
2527 eReturn = eBlocked;
2528 }
2529
2530 #if ( INCLUDE_vTaskSuspend == 1 )
2531 else if( pxStateList == &xSuspendedTaskList )
2532 {
2533 /* The task being queried is referenced from the suspended
2534 * list. Is it genuinely suspended or is it blocked
2535 * indefinitely? */
2536 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
2537 {
2538 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
2539 {
2540 BaseType_t x;
2541
2542 /* The task does not appear on the event list item of
2543 * and of the RTOS objects, but could still be in the
2544 * blocked state if it is waiting on its notification
2545 * rather than waiting on an object. If not, is
2546 * suspended. */
2547 eReturn = eSuspended;
2548
2549 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
2550 {
2551 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
2552 {
2553 eReturn = eBlocked;
2554 break;
2555 }
2556 }
2557 }
2558 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
2559 {
2560 eReturn = eSuspended;
2561 }
2562 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
2563 }
2564 else
2565 {
2566 eReturn = eBlocked;
2567 }
2568 }
2569 #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
2570
2571 #if ( INCLUDE_vTaskDelete == 1 )
2572 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
2573 {
2574 /* The task being queried is referenced from the deleted
2575 * tasks list, or it is not referenced from any lists at
2576 * all. */
2577 eReturn = eDeleted;
2578 }
2579 #endif
2580
2581 else
2582 {
2583 #if ( configNUMBER_OF_CORES == 1 )
2584 {
2585 /* If the task is not in any other state, it must be in the
2586 * Ready (including pending ready) state. */
2587 eReturn = eReady;
2588 }
2589 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2590 {
2591 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2592 {
2593 /* Is it actively running on a core? */
2594 eReturn = eRunning;
2595 }
2596 else
2597 {
2598 /* If the task is not in any other state, it must be in the
2599 * Ready (including pending ready) state. */
2600 eReturn = eReady;
2601 }
2602 }
2603 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2604 }
2605 }
2606
2607 traceRETURN_eTaskGetState( eReturn );
2608
2609 return eReturn;
2610 }
2611
2612 #endif /* INCLUDE_eTaskGetState */
2613 /*-----------------------------------------------------------*/
2614
2615 #if ( INCLUDE_uxTaskPriorityGet == 1 )
2616
uxTaskPriorityGet(const TaskHandle_t xTask)2617 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
2618 {
2619 TCB_t const * pxTCB;
2620 UBaseType_t uxReturn;
2621
2622 traceENTER_uxTaskPriorityGet( xTask );
2623
2624 taskENTER_CRITICAL();
2625 {
2626 /* If null is passed in here then it is the priority of the task
2627 * that called uxTaskPriorityGet() that is being queried. */
2628 pxTCB = prvGetTCBFromHandle( xTask );
2629 uxReturn = pxTCB->uxPriority;
2630 }
2631 taskEXIT_CRITICAL();
2632
2633 traceRETURN_uxTaskPriorityGet( uxReturn );
2634
2635 return uxReturn;
2636 }
2637
2638 #endif /* INCLUDE_uxTaskPriorityGet */
2639 /*-----------------------------------------------------------*/
2640
2641 #if ( INCLUDE_uxTaskPriorityGet == 1 )
2642
uxTaskPriorityGetFromISR(const TaskHandle_t xTask)2643 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
2644 {
2645 TCB_t const * pxTCB;
2646 UBaseType_t uxReturn;
2647 UBaseType_t uxSavedInterruptStatus;
2648
2649 traceENTER_uxTaskPriorityGetFromISR( xTask );
2650
2651 /* RTOS ports that support interrupt nesting have the concept of a
2652 * maximum system call (or maximum API call) interrupt priority.
2653 * Interrupts that are above the maximum system call priority are keep
2654 * permanently enabled, even when the RTOS kernel is in a critical section,
2655 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
2656 * is defined in FreeRTOSConfig.h then
2657 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2658 * failure if a FreeRTOS API function is called from an interrupt that has
2659 * been assigned a priority above the configured maximum system call
2660 * priority. Only FreeRTOS functions that end in FromISR can be called
2661 * from interrupts that have been assigned a priority at or (logically)
2662 * below the maximum system call interrupt priority. FreeRTOS maintains a
2663 * separate interrupt safe API to ensure interrupt entry is as fast and as
2664 * simple as possible. More information (albeit Cortex-M specific) is
2665 * provided on the following link:
2666 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2667 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2668
2669 /* MISRA Ref 4.7.1 [Return value shall be checked] */
2670 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
2671 /* coverity[misra_c_2012_directive_4_7_violation] */
2672 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
2673 {
2674 /* If null is passed in here then it is the priority of the calling
2675 * task that is being queried. */
2676 pxTCB = prvGetTCBFromHandle( xTask );
2677 uxReturn = pxTCB->uxPriority;
2678 }
2679 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2680
2681 traceRETURN_uxTaskPriorityGetFromISR( uxReturn );
2682
2683 return uxReturn;
2684 }
2685
2686 #endif /* INCLUDE_uxTaskPriorityGet */
2687 /*-----------------------------------------------------------*/
2688
2689 #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
2690
uxTaskBasePriorityGet(const TaskHandle_t xTask)2691 UBaseType_t uxTaskBasePriorityGet( const TaskHandle_t xTask )
2692 {
2693 TCB_t const * pxTCB;
2694 UBaseType_t uxReturn;
2695
2696 traceENTER_uxTaskBasePriorityGet( xTask );
2697
2698 taskENTER_CRITICAL();
2699 {
2700 /* If null is passed in here then it is the base priority of the task
2701 * that called uxTaskBasePriorityGet() that is being queried. */
2702 pxTCB = prvGetTCBFromHandle( xTask );
2703 uxReturn = pxTCB->uxBasePriority;
2704 }
2705 taskEXIT_CRITICAL();
2706
2707 traceRETURN_uxTaskBasePriorityGet( uxReturn );
2708
2709 return uxReturn;
2710 }
2711
2712 #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
2713 /*-----------------------------------------------------------*/
2714
2715 #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
2716
uxTaskBasePriorityGetFromISR(const TaskHandle_t xTask)2717 UBaseType_t uxTaskBasePriorityGetFromISR( const TaskHandle_t xTask )
2718 {
2719 TCB_t const * pxTCB;
2720 UBaseType_t uxReturn;
2721 UBaseType_t uxSavedInterruptStatus;
2722
2723 traceENTER_uxTaskBasePriorityGetFromISR( xTask );
2724
2725 /* RTOS ports that support interrupt nesting have the concept of a
2726 * maximum system call (or maximum API call) interrupt priority.
2727 * Interrupts that are above the maximum system call priority are keep
2728 * permanently enabled, even when the RTOS kernel is in a critical section,
2729 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
2730 * is defined in FreeRTOSConfig.h then
2731 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2732 * failure if a FreeRTOS API function is called from an interrupt that has
2733 * been assigned a priority above the configured maximum system call
2734 * priority. Only FreeRTOS functions that end in FromISR can be called
2735 * from interrupts that have been assigned a priority at or (logically)
2736 * below the maximum system call interrupt priority. FreeRTOS maintains a
2737 * separate interrupt safe API to ensure interrupt entry is as fast and as
2738 * simple as possible. More information (albeit Cortex-M specific) is
2739 * provided on the following link:
2740 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2741 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2742
2743 /* MISRA Ref 4.7.1 [Return value shall be checked] */
2744 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
2745 /* coverity[misra_c_2012_directive_4_7_violation] */
2746 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
2747 {
2748 /* If null is passed in here then it is the base priority of the calling
2749 * task that is being queried. */
2750 pxTCB = prvGetTCBFromHandle( xTask );
2751 uxReturn = pxTCB->uxBasePriority;
2752 }
2753 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2754
2755 traceRETURN_uxTaskBasePriorityGetFromISR( uxReturn );
2756
2757 return uxReturn;
2758 }
2759
2760 #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
2761 /*-----------------------------------------------------------*/
2762
2763 #if ( INCLUDE_vTaskPrioritySet == 1 )
2764
vTaskPrioritySet(TaskHandle_t xTask,UBaseType_t uxNewPriority)2765 void vTaskPrioritySet( TaskHandle_t xTask,
2766 UBaseType_t uxNewPriority )
2767 {
2768 TCB_t * pxTCB;
2769 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
2770 BaseType_t xYieldRequired = pdFALSE;
2771
2772 #if ( configNUMBER_OF_CORES > 1 )
2773 BaseType_t xYieldForTask = pdFALSE;
2774 #endif
2775
2776 traceENTER_vTaskPrioritySet( xTask, uxNewPriority );
2777
2778 configASSERT( uxNewPriority < configMAX_PRIORITIES );
2779
2780 /* Ensure the new priority is valid. */
2781 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
2782 {
2783 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
2784 }
2785 else
2786 {
2787 mtCOVERAGE_TEST_MARKER();
2788 }
2789
2790 taskENTER_CRITICAL();
2791 {
2792 /* If null is passed in here then it is the priority of the calling
2793 * task that is being changed. */
2794 pxTCB = prvGetTCBFromHandle( xTask );
2795
2796 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
2797
2798 #if ( configUSE_MUTEXES == 1 )
2799 {
2800 uxCurrentBasePriority = pxTCB->uxBasePriority;
2801 }
2802 #else
2803 {
2804 uxCurrentBasePriority = pxTCB->uxPriority;
2805 }
2806 #endif
2807
2808 if( uxCurrentBasePriority != uxNewPriority )
2809 {
2810 /* The priority change may have readied a task of higher
2811 * priority than a running task. */
2812 if( uxNewPriority > uxCurrentBasePriority )
2813 {
2814 #if ( configNUMBER_OF_CORES == 1 )
2815 {
2816 if( pxTCB != pxCurrentTCB )
2817 {
2818 /* The priority of a task other than the currently
2819 * running task is being raised. Is the priority being
2820 * raised above that of the running task? */
2821 if( uxNewPriority > pxCurrentTCB->uxPriority )
2822 {
2823 xYieldRequired = pdTRUE;
2824 }
2825 else
2826 {
2827 mtCOVERAGE_TEST_MARKER();
2828 }
2829 }
2830 else
2831 {
2832 /* The priority of the running task is being raised,
2833 * but the running task must already be the highest
2834 * priority task able to run so no yield is required. */
2835 }
2836 }
2837 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2838 {
2839 /* The priority of a task is being raised so
2840 * perform a yield for this task later. */
2841 xYieldForTask = pdTRUE;
2842 }
2843 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2844 }
2845 else if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2846 {
2847 /* Setting the priority of a running task down means
2848 * there may now be another task of higher priority that
2849 * is ready to execute. */
2850 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
2851 if( pxTCB->xPreemptionDisable == pdFALSE )
2852 #endif
2853 {
2854 xYieldRequired = pdTRUE;
2855 }
2856 }
2857 else
2858 {
2859 /* Setting the priority of any other task down does not
2860 * require a yield as the running task must be above the
2861 * new priority of the task being modified. */
2862 }
2863
2864 /* Remember the ready list the task might be referenced from
2865 * before its uxPriority member is changed so the
2866 * taskRESET_READY_PRIORITY() macro can function correctly. */
2867 uxPriorityUsedOnEntry = pxTCB->uxPriority;
2868
2869 #if ( configUSE_MUTEXES == 1 )
2870 {
2871 /* Only change the priority being used if the task is not
2872 * currently using an inherited priority or the new priority
2873 * is bigger than the inherited priority. */
2874 if( ( pxTCB->uxBasePriority == pxTCB->uxPriority ) || ( uxNewPriority > pxTCB->uxPriority ) )
2875 {
2876 pxTCB->uxPriority = uxNewPriority;
2877 }
2878 else
2879 {
2880 mtCOVERAGE_TEST_MARKER();
2881 }
2882
2883 /* The base priority gets set whatever. */
2884 pxTCB->uxBasePriority = uxNewPriority;
2885 }
2886 #else /* if ( configUSE_MUTEXES == 1 ) */
2887 {
2888 pxTCB->uxPriority = uxNewPriority;
2889 }
2890 #endif /* if ( configUSE_MUTEXES == 1 ) */
2891
2892 /* Only reset the event list item value if the value is not
2893 * being used for anything else. */
2894 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0U ) )
2895 {
2896 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) );
2897 }
2898 else
2899 {
2900 mtCOVERAGE_TEST_MARKER();
2901 }
2902
2903 /* If the task is in the blocked or suspended list we need do
2904 * nothing more than change its priority variable. However, if
2905 * the task is in a ready list it needs to be removed and placed
2906 * in the list appropriate to its new priority. */
2907 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
2908 {
2909 /* The task is currently in its ready list - remove before
2910 * adding it to its new ready list. As we are in a critical
2911 * section we can do this even if the scheduler is suspended. */
2912 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
2913 {
2914 /* It is known that the task is in its ready list so
2915 * there is no need to check again and the port level
2916 * reset macro can be called directly. */
2917 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
2918 }
2919 else
2920 {
2921 mtCOVERAGE_TEST_MARKER();
2922 }
2923
2924 prvAddTaskToReadyList( pxTCB );
2925 }
2926 else
2927 {
2928 #if ( configNUMBER_OF_CORES == 1 )
2929 {
2930 mtCOVERAGE_TEST_MARKER();
2931 }
2932 #else
2933 {
2934 /* It's possible that xYieldForTask was already set to pdTRUE because
2935 * its priority is being raised. However, since it is not in a ready list
2936 * we don't actually need to yield for it. */
2937 xYieldForTask = pdFALSE;
2938 }
2939 #endif
2940 }
2941
2942 if( xYieldRequired != pdFALSE )
2943 {
2944 /* The running task priority is set down. Request the task to yield. */
2945 taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB );
2946 }
2947 else
2948 {
2949 #if ( configNUMBER_OF_CORES > 1 )
2950 if( xYieldForTask != pdFALSE )
2951 {
2952 /* The priority of the task is being raised. If a running
2953 * task has priority lower than this task, it should yield
2954 * for this task. */
2955 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
2956 }
2957 else
2958 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
2959 {
2960 mtCOVERAGE_TEST_MARKER();
2961 }
2962 }
2963
2964 /* Remove compiler warning about unused variables when the port
2965 * optimised task selection is not being used. */
2966 ( void ) uxPriorityUsedOnEntry;
2967 }
2968 }
2969 taskEXIT_CRITICAL();
2970
2971 traceRETURN_vTaskPrioritySet();
2972 }
2973
2974 #endif /* INCLUDE_vTaskPrioritySet */
2975 /*-----------------------------------------------------------*/
2976
2977 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
vTaskCoreAffinitySet(const TaskHandle_t xTask,UBaseType_t uxCoreAffinityMask)2978 void vTaskCoreAffinitySet( const TaskHandle_t xTask,
2979 UBaseType_t uxCoreAffinityMask )
2980 {
2981 TCB_t * pxTCB;
2982 BaseType_t xCoreID;
2983 UBaseType_t uxPrevCoreAffinityMask;
2984
2985 #if ( configUSE_PREEMPTION == 1 )
2986 UBaseType_t uxPrevNotAllowedCores;
2987 #endif
2988
2989 traceENTER_vTaskCoreAffinitySet( xTask, uxCoreAffinityMask );
2990
2991 taskENTER_CRITICAL();
2992 {
2993 pxTCB = prvGetTCBFromHandle( xTask );
2994
2995 uxPrevCoreAffinityMask = pxTCB->uxCoreAffinityMask;
2996 pxTCB->uxCoreAffinityMask = uxCoreAffinityMask;
2997
2998 if( xSchedulerRunning != pdFALSE )
2999 {
3000 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3001 {
3002 xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
3003
3004 /* If the task can no longer run on the core it was running,
3005 * request the core to yield. */
3006 if( ( uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) == 0U )
3007 {
3008 prvYieldCore( xCoreID );
3009 }
3010 }
3011 else
3012 {
3013 #if ( configUSE_PREEMPTION == 1 )
3014 {
3015 /* Calculate the cores on which this task was not allowed to
3016 * run previously. */
3017 uxPrevNotAllowedCores = ( ~uxPrevCoreAffinityMask ) & ( ( 1U << configNUMBER_OF_CORES ) - 1U );
3018
3019 /* Does the new core mask enables this task to run on any of the
3020 * previously not allowed cores? If yes, check if this task can be
3021 * scheduled on any of those cores. */
3022 if( ( uxPrevNotAllowedCores & uxCoreAffinityMask ) != 0U )
3023 {
3024 prvYieldForTask( pxTCB );
3025 }
3026 }
3027 #else /* #if( configUSE_PREEMPTION == 1 ) */
3028 {
3029 mtCOVERAGE_TEST_MARKER();
3030 }
3031 #endif /* #if( configUSE_PREEMPTION == 1 ) */
3032 }
3033 }
3034 }
3035 taskEXIT_CRITICAL();
3036
3037 traceRETURN_vTaskCoreAffinitySet();
3038 }
3039 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
3040 /*-----------------------------------------------------------*/
3041
3042 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
vTaskCoreAffinityGet(ConstTaskHandle_t xTask)3043 UBaseType_t vTaskCoreAffinityGet( ConstTaskHandle_t xTask )
3044 {
3045 const TCB_t * pxTCB;
3046 UBaseType_t uxCoreAffinityMask;
3047
3048 traceENTER_vTaskCoreAffinityGet( xTask );
3049
3050 taskENTER_CRITICAL();
3051 {
3052 pxTCB = prvGetTCBFromHandle( xTask );
3053 uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
3054 }
3055 taskEXIT_CRITICAL();
3056
3057 traceRETURN_vTaskCoreAffinityGet( uxCoreAffinityMask );
3058
3059 return uxCoreAffinityMask;
3060 }
3061 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
3062
3063 /*-----------------------------------------------------------*/
3064
3065 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
3066
vTaskPreemptionDisable(const TaskHandle_t xTask)3067 void vTaskPreemptionDisable( const TaskHandle_t xTask )
3068 {
3069 TCB_t * pxTCB;
3070
3071 traceENTER_vTaskPreemptionDisable( xTask );
3072
3073 taskENTER_CRITICAL();
3074 {
3075 pxTCB = prvGetTCBFromHandle( xTask );
3076
3077 pxTCB->xPreemptionDisable = pdTRUE;
3078 }
3079 taskEXIT_CRITICAL();
3080
3081 traceRETURN_vTaskPreemptionDisable();
3082 }
3083
3084 #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
3085 /*-----------------------------------------------------------*/
3086
3087 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
3088
vTaskPreemptionEnable(const TaskHandle_t xTask)3089 void vTaskPreemptionEnable( const TaskHandle_t xTask )
3090 {
3091 TCB_t * pxTCB;
3092 BaseType_t xCoreID;
3093
3094 traceENTER_vTaskPreemptionEnable( xTask );
3095
3096 taskENTER_CRITICAL();
3097 {
3098 pxTCB = prvGetTCBFromHandle( xTask );
3099
3100 pxTCB->xPreemptionDisable = pdFALSE;
3101
3102 if( xSchedulerRunning != pdFALSE )
3103 {
3104 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3105 {
3106 xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
3107 prvYieldCore( xCoreID );
3108 }
3109 }
3110 }
3111 taskEXIT_CRITICAL();
3112
3113 traceRETURN_vTaskPreemptionEnable();
3114 }
3115
3116 #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
3117 /*-----------------------------------------------------------*/
3118
3119 #if ( INCLUDE_vTaskSuspend == 1 )
3120
vTaskSuspend(TaskHandle_t xTaskToSuspend)3121 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
3122 {
3123 TCB_t * pxTCB;
3124
3125 traceENTER_vTaskSuspend( xTaskToSuspend );
3126
3127 taskENTER_CRITICAL();
3128 {
3129 /* If null is passed in here then it is the running task that is
3130 * being suspended. */
3131 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
3132
3133 traceTASK_SUSPEND( pxTCB );
3134
3135 /* Remove task from the ready/delayed list and place in the
3136 * suspended list. */
3137 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
3138 {
3139 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
3140 }
3141 else
3142 {
3143 mtCOVERAGE_TEST_MARKER();
3144 }
3145
3146 /* Is the task waiting on an event also? */
3147 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
3148 {
3149 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
3150 }
3151 else
3152 {
3153 mtCOVERAGE_TEST_MARKER();
3154 }
3155
3156 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
3157
3158 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
3159 {
3160 BaseType_t x;
3161
3162 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
3163 {
3164 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
3165 {
3166 /* The task was blocked to wait for a notification, but is
3167 * now suspended, so no notification was received. */
3168 pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
3169 }
3170 }
3171 }
3172 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3173
3174 /* In the case of SMP, it is possible that the task being suspended
3175 * is running on another core. We must evict the task before
3176 * exiting the critical section to ensure that the task cannot
3177 * take an action which puts it back on ready/state/event list,
3178 * thereby nullifying the suspend operation. Once evicted, the
3179 * task won't be scheduled before it is resumed as it will no longer
3180 * be on the ready list. */
3181 #if ( configNUMBER_OF_CORES > 1 )
3182 {
3183 if( xSchedulerRunning != pdFALSE )
3184 {
3185 /* Reset the next expected unblock time in case it referred to the
3186 * task that is now in the Suspended state. */
3187 prvResetNextTaskUnblockTime();
3188
3189 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3190 {
3191 if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() )
3192 {
3193 /* The current task has just been suspended. */
3194 configASSERT( uxSchedulerSuspended == 0 );
3195 vTaskYieldWithinAPI();
3196 }
3197 else
3198 {
3199 prvYieldCore( pxTCB->xTaskRunState );
3200 }
3201 }
3202 else
3203 {
3204 mtCOVERAGE_TEST_MARKER();
3205 }
3206 }
3207 else
3208 {
3209 mtCOVERAGE_TEST_MARKER();
3210 }
3211 }
3212 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
3213 }
3214 taskEXIT_CRITICAL();
3215
3216 #if ( configNUMBER_OF_CORES == 1 )
3217 {
3218 UBaseType_t uxCurrentListLength;
3219
3220 if( xSchedulerRunning != pdFALSE )
3221 {
3222 /* Reset the next expected unblock time in case it referred to the
3223 * task that is now in the Suspended state. */
3224 taskENTER_CRITICAL();
3225 {
3226 prvResetNextTaskUnblockTime();
3227 }
3228 taskEXIT_CRITICAL();
3229 }
3230 else
3231 {
3232 mtCOVERAGE_TEST_MARKER();
3233 }
3234
3235 if( pxTCB == pxCurrentTCB )
3236 {
3237 if( xSchedulerRunning != pdFALSE )
3238 {
3239 /* The current task has just been suspended. */
3240 configASSERT( uxSchedulerSuspended == 0 );
3241 portYIELD_WITHIN_API();
3242 }
3243 else
3244 {
3245 /* The scheduler is not running, but the task that was pointed
3246 * to by pxCurrentTCB has just been suspended and pxCurrentTCB
3247 * must be adjusted to point to a different task. */
3248
3249 /* Use a temp variable as a distinct sequence point for reading
3250 * volatile variables prior to a comparison to ensure compliance
3251 * with MISRA C 2012 Rule 13.2. */
3252 uxCurrentListLength = listCURRENT_LIST_LENGTH( &xSuspendedTaskList );
3253
3254 if( uxCurrentListLength == uxCurrentNumberOfTasks )
3255 {
3256 /* No other tasks are ready, so set pxCurrentTCB back to
3257 * NULL so when the next task is created pxCurrentTCB will
3258 * be set to point to it no matter what its relative priority
3259 * is. */
3260 pxCurrentTCB = NULL;
3261 }
3262 else
3263 {
3264 vTaskSwitchContext();
3265 }
3266 }
3267 }
3268 else
3269 {
3270 mtCOVERAGE_TEST_MARKER();
3271 }
3272 }
3273 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3274
3275 traceRETURN_vTaskSuspend();
3276 }
3277
3278 #endif /* INCLUDE_vTaskSuspend */
3279 /*-----------------------------------------------------------*/
3280
3281 #if ( INCLUDE_vTaskSuspend == 1 )
3282
prvTaskIsTaskSuspended(const TaskHandle_t xTask)3283 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
3284 {
3285 BaseType_t xReturn = pdFALSE;
3286 const TCB_t * const pxTCB = xTask;
3287
3288 /* Accesses xPendingReadyList so must be called from a critical
3289 * section. */
3290
3291 /* It does not make sense to check if the calling task is suspended. */
3292 configASSERT( xTask );
3293
3294 /* Is the task being resumed actually in the suspended list? */
3295 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
3296 {
3297 /* Has the task already been resumed from within an ISR? */
3298 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
3299 {
3300 /* Is it in the suspended list because it is in the Suspended
3301 * state, or because it is blocked with no timeout? */
3302 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE )
3303 {
3304 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
3305 {
3306 BaseType_t x;
3307
3308 /* The task does not appear on the event list item of
3309 * and of the RTOS objects, but could still be in the
3310 * blocked state if it is waiting on its notification
3311 * rather than waiting on an object. If not, is
3312 * suspended. */
3313 xReturn = pdTRUE;
3314
3315 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
3316 {
3317 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
3318 {
3319 xReturn = pdFALSE;
3320 break;
3321 }
3322 }
3323 }
3324 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3325 {
3326 xReturn = pdTRUE;
3327 }
3328 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3329 }
3330 else
3331 {
3332 mtCOVERAGE_TEST_MARKER();
3333 }
3334 }
3335 else
3336 {
3337 mtCOVERAGE_TEST_MARKER();
3338 }
3339 }
3340 else
3341 {
3342 mtCOVERAGE_TEST_MARKER();
3343 }
3344
3345 return xReturn;
3346 }
3347
3348 #endif /* INCLUDE_vTaskSuspend */
3349 /*-----------------------------------------------------------*/
3350
3351 #if ( INCLUDE_vTaskSuspend == 1 )
3352
vTaskResume(TaskHandle_t xTaskToResume)3353 void vTaskResume( TaskHandle_t xTaskToResume )
3354 {
3355 TCB_t * const pxTCB = xTaskToResume;
3356
3357 traceENTER_vTaskResume( xTaskToResume );
3358
3359 /* It does not make sense to resume the calling task. */
3360 configASSERT( xTaskToResume );
3361
3362 #if ( configNUMBER_OF_CORES == 1 )
3363
3364 /* The parameter cannot be NULL as it is impossible to resume the
3365 * currently executing task. */
3366 if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
3367 #else
3368
3369 /* The parameter cannot be NULL as it is impossible to resume the
3370 * currently executing task. It is also impossible to resume a task
3371 * that is actively running on another core but it is not safe
3372 * to check their run state here. Therefore, we get into a critical
3373 * section and check if the task is actually suspended or not. */
3374 if( pxTCB != NULL )
3375 #endif
3376 {
3377 taskENTER_CRITICAL();
3378 {
3379 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
3380 {
3381 traceTASK_RESUME( pxTCB );
3382
3383 /* The ready list can be accessed even if the scheduler is
3384 * suspended because this is inside a critical section. */
3385 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
3386 prvAddTaskToReadyList( pxTCB );
3387
3388 /* This yield may not cause the task just resumed to run,
3389 * but will leave the lists in the correct state for the
3390 * next yield. */
3391 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
3392 }
3393 else
3394 {
3395 mtCOVERAGE_TEST_MARKER();
3396 }
3397 }
3398 taskEXIT_CRITICAL();
3399 }
3400 else
3401 {
3402 mtCOVERAGE_TEST_MARKER();
3403 }
3404
3405 traceRETURN_vTaskResume();
3406 }
3407
3408 #endif /* INCLUDE_vTaskSuspend */
3409
3410 /*-----------------------------------------------------------*/
3411
3412 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
3413
xTaskResumeFromISR(TaskHandle_t xTaskToResume)3414 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
3415 {
3416 BaseType_t xYieldRequired = pdFALSE;
3417 TCB_t * const pxTCB = xTaskToResume;
3418 UBaseType_t uxSavedInterruptStatus;
3419
3420 traceENTER_xTaskResumeFromISR( xTaskToResume );
3421
3422 configASSERT( xTaskToResume );
3423
3424 /* RTOS ports that support interrupt nesting have the concept of a
3425 * maximum system call (or maximum API call) interrupt priority.
3426 * Interrupts that are above the maximum system call priority are keep
3427 * permanently enabled, even when the RTOS kernel is in a critical section,
3428 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
3429 * is defined in FreeRTOSConfig.h then
3430 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
3431 * failure if a FreeRTOS API function is called from an interrupt that has
3432 * been assigned a priority above the configured maximum system call
3433 * priority. Only FreeRTOS functions that end in FromISR can be called
3434 * from interrupts that have been assigned a priority at or (logically)
3435 * below the maximum system call interrupt priority. FreeRTOS maintains a
3436 * separate interrupt safe API to ensure interrupt entry is as fast and as
3437 * simple as possible. More information (albeit Cortex-M specific) is
3438 * provided on the following link:
3439 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
3440 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
3441
3442 /* MISRA Ref 4.7.1 [Return value shall be checked] */
3443 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
3444 /* coverity[misra_c_2012_directive_4_7_violation] */
3445 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
3446 {
3447 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
3448 {
3449 traceTASK_RESUME_FROM_ISR( pxTCB );
3450
3451 /* Check the ready lists can be accessed. */
3452 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
3453 {
3454 #if ( configNUMBER_OF_CORES == 1 )
3455 {
3456 /* Ready lists can be accessed so move the task from the
3457 * suspended list to the ready list directly. */
3458 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
3459 {
3460 xYieldRequired = pdTRUE;
3461
3462 /* Mark that a yield is pending in case the user is not
3463 * using the return value to initiate a context switch
3464 * from the ISR using the port specific portYIELD_FROM_ISR(). */
3465 xYieldPendings[ 0 ] = pdTRUE;
3466 }
3467 else
3468 {
3469 mtCOVERAGE_TEST_MARKER();
3470 }
3471 }
3472 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3473
3474 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
3475 prvAddTaskToReadyList( pxTCB );
3476 }
3477 else
3478 {
3479 /* The delayed or ready lists cannot be accessed so the task
3480 * is held in the pending ready list until the scheduler is
3481 * unsuspended. */
3482 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
3483 }
3484
3485 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) )
3486 {
3487 prvYieldForTask( pxTCB );
3488
3489 if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
3490 {
3491 xYieldRequired = pdTRUE;
3492 }
3493 }
3494 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) ) */
3495 }
3496 else
3497 {
3498 mtCOVERAGE_TEST_MARKER();
3499 }
3500 }
3501 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
3502
3503 traceRETURN_xTaskResumeFromISR( xYieldRequired );
3504
3505 return xYieldRequired;
3506 }
3507
3508 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
3509 /*-----------------------------------------------------------*/
3510
prvCreateIdleTasks(void)3511 static BaseType_t prvCreateIdleTasks( void )
3512 {
3513 BaseType_t xReturn = pdPASS;
3514 BaseType_t xCoreID;
3515 char cIdleName[ configMAX_TASK_NAME_LEN ];
3516 TaskFunction_t pxIdleTaskFunction = NULL;
3517 BaseType_t xIdleTaskNameIndex;
3518
3519 for( xIdleTaskNameIndex = ( BaseType_t ) 0; xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN; xIdleTaskNameIndex++ )
3520 {
3521 cIdleName[ xIdleTaskNameIndex ] = configIDLE_TASK_NAME[ xIdleTaskNameIndex ];
3522
3523 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
3524 * configMAX_TASK_NAME_LEN characters just in case the memory after the
3525 * string is not accessible (extremely unlikely). */
3526 if( cIdleName[ xIdleTaskNameIndex ] == ( char ) 0x00 )
3527 {
3528 break;
3529 }
3530 else
3531 {
3532 mtCOVERAGE_TEST_MARKER();
3533 }
3534 }
3535
3536 /* Add each idle task at the lowest priority. */
3537 for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
3538 {
3539 #if ( configNUMBER_OF_CORES == 1 )
3540 {
3541 pxIdleTaskFunction = prvIdleTask;
3542 }
3543 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3544 {
3545 /* In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks
3546 * are also created to ensure that each core has an idle task to
3547 * run when no other task is available to run. */
3548 if( xCoreID == 0 )
3549 {
3550 pxIdleTaskFunction = prvIdleTask;
3551 }
3552 else
3553 {
3554 pxIdleTaskFunction = prvPassiveIdleTask;
3555 }
3556 }
3557 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3558
3559 /* Update the idle task name with suffix to differentiate the idle tasks.
3560 * This function is not required in single core FreeRTOS since there is
3561 * only one idle task. */
3562 #if ( configNUMBER_OF_CORES > 1 )
3563 {
3564 /* Append the idle task number to the end of the name if there is space. */
3565 if( xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN )
3566 {
3567 cIdleName[ xIdleTaskNameIndex ] = ( char ) ( xCoreID + '0' );
3568
3569 /* And append a null character if there is space. */
3570 if( ( xIdleTaskNameIndex + 1 ) < ( BaseType_t ) configMAX_TASK_NAME_LEN )
3571 {
3572 cIdleName[ xIdleTaskNameIndex + 1 ] = '\0';
3573 }
3574 else
3575 {
3576 mtCOVERAGE_TEST_MARKER();
3577 }
3578 }
3579 else
3580 {
3581 mtCOVERAGE_TEST_MARKER();
3582 }
3583 }
3584 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
3585
3586 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
3587 {
3588 StaticTask_t * pxIdleTaskTCBBuffer = NULL;
3589 StackType_t * pxIdleTaskStackBuffer = NULL;
3590 configSTACK_DEPTH_TYPE uxIdleTaskStackSize;
3591
3592 /* The Idle task is created using user provided RAM - obtain the
3593 * address of the RAM then create the idle task. */
3594 #if ( configNUMBER_OF_CORES == 1 )
3595 {
3596 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize );
3597 }
3598 #else
3599 {
3600 if( xCoreID == 0 )
3601 {
3602 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize );
3603 }
3604 else
3605 {
3606 vApplicationGetPassiveIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize, ( BaseType_t ) ( xCoreID - 1 ) );
3607 }
3608 }
3609 #endif /* if ( configNUMBER_OF_CORES == 1 ) */
3610 xIdleTaskHandles[ xCoreID ] = xTaskCreateStatic( pxIdleTaskFunction,
3611 cIdleName,
3612 uxIdleTaskStackSize,
3613 ( void * ) NULL,
3614 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
3615 pxIdleTaskStackBuffer,
3616 pxIdleTaskTCBBuffer );
3617
3618 if( xIdleTaskHandles[ xCoreID ] != NULL )
3619 {
3620 xReturn = pdPASS;
3621 }
3622 else
3623 {
3624 xReturn = pdFAIL;
3625 }
3626 }
3627 #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
3628 {
3629 /* The Idle task is being created using dynamically allocated RAM. */
3630 xReturn = xTaskCreate( pxIdleTaskFunction,
3631 cIdleName,
3632 configMINIMAL_STACK_SIZE,
3633 ( void * ) NULL,
3634 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
3635 &xIdleTaskHandles[ xCoreID ] );
3636 }
3637 #endif /* configSUPPORT_STATIC_ALLOCATION */
3638
3639 /* Break the loop if any of the idle task is failed to be created. */
3640 if( xReturn == pdFAIL )
3641 {
3642 break;
3643 }
3644 else
3645 {
3646 #if ( configNUMBER_OF_CORES == 1 )
3647 {
3648 mtCOVERAGE_TEST_MARKER();
3649 }
3650 #else
3651 {
3652 /* Assign idle task to each core before SMP scheduler is running. */
3653 xIdleTaskHandles[ xCoreID ]->xTaskRunState = xCoreID;
3654 pxCurrentTCBs[ xCoreID ] = xIdleTaskHandles[ xCoreID ];
3655 }
3656 #endif
3657 }
3658 }
3659
3660 return xReturn;
3661 }
3662
3663 /*-----------------------------------------------------------*/
3664
vTaskStartScheduler(void)3665 void vTaskStartScheduler( void )
3666 {
3667 BaseType_t xReturn;
3668
3669 traceENTER_vTaskStartScheduler();
3670
3671 #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
3672 {
3673 /* Sanity check that the UBaseType_t must have greater than or equal to
3674 * the number of bits as confNUMBER_OF_CORES. */
3675 configASSERT( ( sizeof( UBaseType_t ) * taskBITS_PER_BYTE ) >= configNUMBER_OF_CORES );
3676 }
3677 #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
3678
3679 xReturn = prvCreateIdleTasks();
3680
3681 #if ( configUSE_TIMERS == 1 )
3682 {
3683 if( xReturn == pdPASS )
3684 {
3685 xReturn = xTimerCreateTimerTask();
3686 }
3687 else
3688 {
3689 mtCOVERAGE_TEST_MARKER();
3690 }
3691 }
3692 #endif /* configUSE_TIMERS */
3693
3694 if( xReturn == pdPASS )
3695 {
3696 /* freertos_tasks_c_additions_init() should only be called if the user
3697 * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
3698 * the only macro called by the function. */
3699 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
3700 {
3701 freertos_tasks_c_additions_init();
3702 }
3703 #endif
3704
3705 /* Interrupts are turned off here, to ensure a tick does not occur
3706 * before or during the call to xPortStartScheduler(). The stacks of
3707 * the created tasks contain a status word with interrupts switched on
3708 * so interrupts will automatically get re-enabled when the first task
3709 * starts to run. */
3710 portDISABLE_INTERRUPTS();
3711
3712 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
3713 {
3714 /* Switch C-Runtime's TLS Block to point to the TLS
3715 * block specific to the task that will run first. */
3716 configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
3717 }
3718 #endif
3719
3720 xNextTaskUnblockTime = portMAX_DELAY;
3721 xSchedulerRunning = pdTRUE;
3722 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
3723
3724 /* If configGENERATE_RUN_TIME_STATS is defined then the following
3725 * macro must be defined to configure the timer/counter used to generate
3726 * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
3727 * is set to 0 and the following line fails to build then ensure you do not
3728 * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
3729 * FreeRTOSConfig.h file. */
3730 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
3731
3732 traceTASK_SWITCHED_IN();
3733
3734 /* Setting up the timer tick is hardware specific and thus in the
3735 * portable interface. */
3736
3737 /* The return value for xPortStartScheduler is not required
3738 * hence using a void datatype. */
3739 ( void ) xPortStartScheduler();
3740
3741 /* In most cases, xPortStartScheduler() will not return. If it
3742 * returns pdTRUE then there was not enough heap memory available
3743 * to create either the Idle or the Timer task. If it returned
3744 * pdFALSE, then the application called xTaskEndScheduler().
3745 * Most ports don't implement xTaskEndScheduler() as there is
3746 * nothing to return to. */
3747 }
3748 else
3749 {
3750 /* This line will only be reached if the kernel could not be started,
3751 * because there was not enough FreeRTOS heap to create the idle task
3752 * or the timer task. */
3753 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
3754 }
3755
3756 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
3757 * meaning xIdleTaskHandles are not used anywhere else. */
3758 ( void ) xIdleTaskHandles;
3759
3760 /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
3761 * from getting optimized out as it is no longer used by the kernel. */
3762 ( void ) uxTopUsedPriority;
3763
3764 traceRETURN_vTaskStartScheduler();
3765 }
3766 /*-----------------------------------------------------------*/
3767
vTaskEndScheduler(void)3768 void vTaskEndScheduler( void )
3769 {
3770 traceENTER_vTaskEndScheduler();
3771
3772 #if ( INCLUDE_vTaskDelete == 1 )
3773 {
3774 BaseType_t xCoreID;
3775
3776 #if ( configUSE_TIMERS == 1 )
3777 {
3778 /* Delete the timer task created by the kernel. */
3779 vTaskDelete( xTimerGetTimerDaemonTaskHandle() );
3780 }
3781 #endif /* #if ( configUSE_TIMERS == 1 ) */
3782
3783 /* Delete Idle tasks created by the kernel.*/
3784 for( xCoreID = 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
3785 {
3786 vTaskDelete( xIdleTaskHandles[ xCoreID ] );
3787 }
3788
3789 /* Idle task is responsible for reclaiming the resources of the tasks in
3790 * xTasksWaitingTermination list. Since the idle task is now deleted and
3791 * no longer going to run, we need to reclaim resources of all the tasks
3792 * in the xTasksWaitingTermination list. */
3793 prvCheckTasksWaitingTermination();
3794 }
3795 #endif /* #if ( INCLUDE_vTaskDelete == 1 ) */
3796
3797 /* Stop the scheduler interrupts and call the portable scheduler end
3798 * routine so the original ISRs can be restored if necessary. The port
3799 * layer must ensure interrupts enable bit is left in the correct state. */
3800 portDISABLE_INTERRUPTS();
3801 xSchedulerRunning = pdFALSE;
3802
3803 /* This function must be called from a task and the application is
3804 * responsible for deleting that task after the scheduler is stopped. */
3805 vPortEndScheduler();
3806
3807 traceRETURN_vTaskEndScheduler();
3808 }
3809 /*----------------------------------------------------------*/
3810
vTaskSuspendAll(void)3811 void vTaskSuspendAll( void )
3812 {
3813 traceENTER_vTaskSuspendAll();
3814
3815 #if ( configNUMBER_OF_CORES == 1 )
3816 {
3817 /* A critical section is not required as the variable is of type
3818 * BaseType_t. Please read Richard Barry's reply in the following link to a
3819 * post in the FreeRTOS support forum before reporting this as a bug! -
3820 * https://goo.gl/wu4acr */
3821
3822 /* portSOFTWARE_BARRIER() is only implemented for emulated/simulated ports that
3823 * do not otherwise exhibit real time behaviour. */
3824 portSOFTWARE_BARRIER();
3825
3826 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
3827 * is used to allow calls to vTaskSuspendAll() to nest. */
3828 uxSchedulerSuspended = ( UBaseType_t ) ( uxSchedulerSuspended + 1U );
3829
3830 /* Enforces ordering for ports and optimised compilers that may otherwise place
3831 * the above increment elsewhere. */
3832 portMEMORY_BARRIER();
3833 }
3834 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3835 {
3836 UBaseType_t ulState;
3837
3838 /* This must only be called from within a task. */
3839 portASSERT_IF_IN_ISR();
3840
3841 if( xSchedulerRunning != pdFALSE )
3842 {
3843 /* Writes to uxSchedulerSuspended must be protected by both the task AND ISR locks.
3844 * We must disable interrupts before we grab the locks in the event that this task is
3845 * interrupted and switches context before incrementing uxSchedulerSuspended.
3846 * It is safe to re-enable interrupts after releasing the ISR lock and incrementing
3847 * uxSchedulerSuspended since that will prevent context switches. */
3848 ulState = portSET_INTERRUPT_MASK();
3849
3850 /* This must never be called from inside a critical section. */
3851 configASSERT( portGET_CRITICAL_NESTING_COUNT() == 0 );
3852
3853 /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
3854 * do not otherwise exhibit real time behaviour. */
3855 portSOFTWARE_BARRIER();
3856
3857 portGET_TASK_LOCK();
3858
3859 /* uxSchedulerSuspended is increased after prvCheckForRunStateChange. The
3860 * purpose is to prevent altering the variable when fromISR APIs are readying
3861 * it. */
3862 if( uxSchedulerSuspended == 0U )
3863 {
3864 prvCheckForRunStateChange();
3865 }
3866 else
3867 {
3868 mtCOVERAGE_TEST_MARKER();
3869 }
3870
3871 portGET_ISR_LOCK();
3872
3873 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
3874 * is used to allow calls to vTaskSuspendAll() to nest. */
3875 ++uxSchedulerSuspended;
3876 portRELEASE_ISR_LOCK();
3877
3878 portCLEAR_INTERRUPT_MASK( ulState );
3879 }
3880 else
3881 {
3882 mtCOVERAGE_TEST_MARKER();
3883 }
3884 }
3885 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3886
3887 traceRETURN_vTaskSuspendAll();
3888 }
3889
3890 /*----------------------------------------------------------*/
3891
3892 #if ( configUSE_TICKLESS_IDLE != 0 )
3893
prvGetExpectedIdleTime(void)3894 static TickType_t prvGetExpectedIdleTime( void )
3895 {
3896 TickType_t xReturn;
3897 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
3898
3899 /* uxHigherPriorityReadyTasks takes care of the case where
3900 * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
3901 * task that are in the Ready state, even though the idle task is
3902 * running. */
3903 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
3904 {
3905 if( uxTopReadyPriority > tskIDLE_PRIORITY )
3906 {
3907 uxHigherPriorityReadyTasks = pdTRUE;
3908 }
3909 }
3910 #else
3911 {
3912 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
3913
3914 /* When port optimised task selection is used the uxTopReadyPriority
3915 * variable is used as a bit map. If bits other than the least
3916 * significant bit are set then there are tasks that have a priority
3917 * above the idle priority that are in the Ready state. This takes
3918 * care of the case where the co-operative scheduler is in use. */
3919 if( uxTopReadyPriority > uxLeastSignificantBit )
3920 {
3921 uxHigherPriorityReadyTasks = pdTRUE;
3922 }
3923 }
3924 #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
3925
3926 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
3927 {
3928 xReturn = 0;
3929 }
3930 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1U )
3931 {
3932 /* There are other idle priority tasks in the ready state. If
3933 * time slicing is used then the very next tick interrupt must be
3934 * processed. */
3935 xReturn = 0;
3936 }
3937 else if( uxHigherPriorityReadyTasks != pdFALSE )
3938 {
3939 /* There are tasks in the Ready state that have a priority above the
3940 * idle priority. This path can only be reached if
3941 * configUSE_PREEMPTION is 0. */
3942 xReturn = 0;
3943 }
3944 else
3945 {
3946 xReturn = xNextTaskUnblockTime;
3947 xReturn -= xTickCount;
3948 }
3949
3950 return xReturn;
3951 }
3952
3953 #endif /* configUSE_TICKLESS_IDLE */
3954 /*----------------------------------------------------------*/
3955
xTaskResumeAll(void)3956 BaseType_t xTaskResumeAll( void )
3957 {
3958 TCB_t * pxTCB = NULL;
3959 BaseType_t xAlreadyYielded = pdFALSE;
3960
3961 traceENTER_xTaskResumeAll();
3962
3963 #if ( configNUMBER_OF_CORES > 1 )
3964 if( xSchedulerRunning != pdFALSE )
3965 #endif
3966 {
3967 /* It is possible that an ISR caused a task to be removed from an event
3968 * list while the scheduler was suspended. If this was the case then the
3969 * removed task will have been added to the xPendingReadyList. Once the
3970 * scheduler has been resumed it is safe to move all the pending ready
3971 * tasks from this list into their appropriate ready list. */
3972 taskENTER_CRITICAL();
3973 {
3974 BaseType_t xCoreID;
3975 xCoreID = ( BaseType_t ) portGET_CORE_ID();
3976
3977 /* If uxSchedulerSuspended is zero then this function does not match a
3978 * previous call to vTaskSuspendAll(). */
3979 configASSERT( uxSchedulerSuspended != 0U );
3980
3981 uxSchedulerSuspended = ( UBaseType_t ) ( uxSchedulerSuspended - 1U );
3982 portRELEASE_TASK_LOCK();
3983
3984 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
3985 {
3986 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
3987 {
3988 /* Move any readied tasks from the pending list into the
3989 * appropriate ready list. */
3990 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
3991 {
3992 /* MISRA Ref 11.5.3 [Void pointer assignment] */
3993 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
3994 /* coverity[misra_c_2012_rule_11_5_violation] */
3995 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) );
3996 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
3997 portMEMORY_BARRIER();
3998 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
3999 prvAddTaskToReadyList( pxTCB );
4000
4001 #if ( configNUMBER_OF_CORES == 1 )
4002 {
4003 /* If the moved task has a priority higher than the current
4004 * task then a yield must be performed. */
4005 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4006 {
4007 xYieldPendings[ xCoreID ] = pdTRUE;
4008 }
4009 else
4010 {
4011 mtCOVERAGE_TEST_MARKER();
4012 }
4013 }
4014 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4015 {
4016 /* All appropriate tasks yield at the moment a task is added to xPendingReadyList.
4017 * If the current core yielded then vTaskSwitchContext() has already been called
4018 * which sets xYieldPendings for the current core to pdTRUE. */
4019 }
4020 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4021 }
4022
4023 if( pxTCB != NULL )
4024 {
4025 /* A task was unblocked while the scheduler was suspended,
4026 * which may have prevented the next unblock time from being
4027 * re-calculated, in which case re-calculate it now. Mainly
4028 * important for low power tickless implementations, where
4029 * this can prevent an unnecessary exit from low power
4030 * state. */
4031 prvResetNextTaskUnblockTime();
4032 }
4033
4034 /* If any ticks occurred while the scheduler was suspended then
4035 * they should be processed now. This ensures the tick count does
4036 * not slip, and that any delayed tasks are resumed at the correct
4037 * time.
4038 *
4039 * It should be safe to call xTaskIncrementTick here from any core
4040 * since we are in a critical section and xTaskIncrementTick itself
4041 * protects itself within a critical section. Suspending the scheduler
4042 * from any core causes xTaskIncrementTick to increment uxPendedCounts. */
4043 {
4044 TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
4045
4046 if( xPendedCounts > ( TickType_t ) 0U )
4047 {
4048 do
4049 {
4050 if( xTaskIncrementTick() != pdFALSE )
4051 {
4052 /* Other cores are interrupted from
4053 * within xTaskIncrementTick(). */
4054 xYieldPendings[ xCoreID ] = pdTRUE;
4055 }
4056 else
4057 {
4058 mtCOVERAGE_TEST_MARKER();
4059 }
4060
4061 --xPendedCounts;
4062 } while( xPendedCounts > ( TickType_t ) 0U );
4063
4064 xPendedTicks = 0;
4065 }
4066 else
4067 {
4068 mtCOVERAGE_TEST_MARKER();
4069 }
4070 }
4071
4072 if( xYieldPendings[ xCoreID ] != pdFALSE )
4073 {
4074 #if ( configUSE_PREEMPTION != 0 )
4075 {
4076 xAlreadyYielded = pdTRUE;
4077 }
4078 #endif /* #if ( configUSE_PREEMPTION != 0 ) */
4079
4080 #if ( configNUMBER_OF_CORES == 1 )
4081 {
4082 taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxCurrentTCB );
4083 }
4084 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4085 }
4086 else
4087 {
4088 mtCOVERAGE_TEST_MARKER();
4089 }
4090 }
4091 }
4092 else
4093 {
4094 mtCOVERAGE_TEST_MARKER();
4095 }
4096 }
4097 taskEXIT_CRITICAL();
4098 }
4099
4100 traceRETURN_xTaskResumeAll( xAlreadyYielded );
4101
4102 return xAlreadyYielded;
4103 }
4104 /*-----------------------------------------------------------*/
4105
xTaskGetTickCount(void)4106 TickType_t xTaskGetTickCount( void )
4107 {
4108 TickType_t xTicks;
4109
4110 traceENTER_xTaskGetTickCount();
4111
4112 /* Critical section required if running on a 16 bit processor. */
4113 portTICK_TYPE_ENTER_CRITICAL();
4114 {
4115 xTicks = xTickCount;
4116 }
4117 portTICK_TYPE_EXIT_CRITICAL();
4118
4119 traceRETURN_xTaskGetTickCount( xTicks );
4120
4121 return xTicks;
4122 }
4123 /*-----------------------------------------------------------*/
4124
xTaskGetTickCountFromISR(void)4125 TickType_t xTaskGetTickCountFromISR( void )
4126 {
4127 TickType_t xReturn;
4128 UBaseType_t uxSavedInterruptStatus;
4129
4130 traceENTER_xTaskGetTickCountFromISR();
4131
4132 /* RTOS ports that support interrupt nesting have the concept of a maximum
4133 * system call (or maximum API call) interrupt priority. Interrupts that are
4134 * above the maximum system call priority are kept permanently enabled, even
4135 * when the RTOS kernel is in a critical section, but cannot make any calls to
4136 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
4137 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
4138 * failure if a FreeRTOS API function is called from an interrupt that has been
4139 * assigned a priority above the configured maximum system call priority.
4140 * Only FreeRTOS functions that end in FromISR can be called from interrupts
4141 * that have been assigned a priority at or (logically) below the maximum
4142 * system call interrupt priority. FreeRTOS maintains a separate interrupt
4143 * safe API to ensure interrupt entry is as fast and as simple as possible.
4144 * More information (albeit Cortex-M specific) is provided on the following
4145 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
4146 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
4147
4148 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
4149 {
4150 xReturn = xTickCount;
4151 }
4152 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
4153
4154 traceRETURN_xTaskGetTickCountFromISR( xReturn );
4155
4156 return xReturn;
4157 }
4158 /*-----------------------------------------------------------*/
4159
uxTaskGetNumberOfTasks(void)4160 UBaseType_t uxTaskGetNumberOfTasks( void )
4161 {
4162 traceENTER_uxTaskGetNumberOfTasks();
4163
4164 /* A critical section is not required because the variables are of type
4165 * BaseType_t. */
4166 traceRETURN_uxTaskGetNumberOfTasks( uxCurrentNumberOfTasks );
4167
4168 return uxCurrentNumberOfTasks;
4169 }
4170 /*-----------------------------------------------------------*/
4171
pcTaskGetName(TaskHandle_t xTaskToQuery)4172 char * pcTaskGetName( TaskHandle_t xTaskToQuery )
4173 {
4174 TCB_t * pxTCB;
4175
4176 traceENTER_pcTaskGetName( xTaskToQuery );
4177
4178 /* If null is passed in here then the name of the calling task is being
4179 * queried. */
4180 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
4181 configASSERT( pxTCB );
4182
4183 traceRETURN_pcTaskGetName( &( pxTCB->pcTaskName[ 0 ] ) );
4184
4185 return &( pxTCB->pcTaskName[ 0 ] );
4186 }
4187 /*-----------------------------------------------------------*/
4188
4189 #if ( INCLUDE_xTaskGetHandle == 1 )
prvSearchForNameWithinSingleList(List_t * pxList,const char pcNameToQuery[])4190 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
4191 const char pcNameToQuery[] )
4192 {
4193 TCB_t * pxReturn = NULL;
4194 TCB_t * pxTCB = NULL;
4195 UBaseType_t x;
4196 char cNextChar;
4197 BaseType_t xBreakLoop;
4198 const ListItem_t * pxEndMarker = listGET_END_MARKER( pxList );
4199 ListItem_t * pxIterator;
4200
4201 /* This function is called with the scheduler suspended. */
4202
4203 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
4204 {
4205 for( pxIterator = listGET_HEAD_ENTRY( pxList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
4206 {
4207 /* MISRA Ref 11.5.3 [Void pointer assignment] */
4208 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4209 /* coverity[misra_c_2012_rule_11_5_violation] */
4210 pxTCB = listGET_LIST_ITEM_OWNER( pxIterator );
4211
4212 /* Check each character in the name looking for a match or
4213 * mismatch. */
4214 xBreakLoop = pdFALSE;
4215
4216 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
4217 {
4218 cNextChar = pxTCB->pcTaskName[ x ];
4219
4220 if( cNextChar != pcNameToQuery[ x ] )
4221 {
4222 /* Characters didn't match. */
4223 xBreakLoop = pdTRUE;
4224 }
4225 else if( cNextChar == ( char ) 0x00 )
4226 {
4227 /* Both strings terminated, a match must have been
4228 * found. */
4229 pxReturn = pxTCB;
4230 xBreakLoop = pdTRUE;
4231 }
4232 else
4233 {
4234 mtCOVERAGE_TEST_MARKER();
4235 }
4236
4237 if( xBreakLoop != pdFALSE )
4238 {
4239 break;
4240 }
4241 }
4242
4243 if( pxReturn != NULL )
4244 {
4245 /* The handle has been found. */
4246 break;
4247 }
4248 }
4249 }
4250 else
4251 {
4252 mtCOVERAGE_TEST_MARKER();
4253 }
4254
4255 return pxReturn;
4256 }
4257
4258 #endif /* INCLUDE_xTaskGetHandle */
4259 /*-----------------------------------------------------------*/
4260
4261 #if ( INCLUDE_xTaskGetHandle == 1 )
4262
xTaskGetHandle(const char * pcNameToQuery)4263 TaskHandle_t xTaskGetHandle( const char * pcNameToQuery )
4264 {
4265 UBaseType_t uxQueue = configMAX_PRIORITIES;
4266 TCB_t * pxTCB;
4267
4268 traceENTER_xTaskGetHandle( pcNameToQuery );
4269
4270 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
4271 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
4272
4273 vTaskSuspendAll();
4274 {
4275 /* Search the ready lists. */
4276 do
4277 {
4278 uxQueue--;
4279 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
4280
4281 if( pxTCB != NULL )
4282 {
4283 /* Found the handle. */
4284 break;
4285 }
4286 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
4287
4288 /* Search the delayed lists. */
4289 if( pxTCB == NULL )
4290 {
4291 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
4292 }
4293
4294 if( pxTCB == NULL )
4295 {
4296 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
4297 }
4298
4299 #if ( INCLUDE_vTaskSuspend == 1 )
4300 {
4301 if( pxTCB == NULL )
4302 {
4303 /* Search the suspended list. */
4304 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
4305 }
4306 }
4307 #endif
4308
4309 #if ( INCLUDE_vTaskDelete == 1 )
4310 {
4311 if( pxTCB == NULL )
4312 {
4313 /* Search the deleted list. */
4314 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
4315 }
4316 }
4317 #endif
4318 }
4319 ( void ) xTaskResumeAll();
4320
4321 traceRETURN_xTaskGetHandle( pxTCB );
4322
4323 return pxTCB;
4324 }
4325
4326 #endif /* INCLUDE_xTaskGetHandle */
4327 /*-----------------------------------------------------------*/
4328
4329 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
4330
xTaskGetStaticBuffers(TaskHandle_t xTask,StackType_t ** ppuxStackBuffer,StaticTask_t ** ppxTaskBuffer)4331 BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask,
4332 StackType_t ** ppuxStackBuffer,
4333 StaticTask_t ** ppxTaskBuffer )
4334 {
4335 BaseType_t xReturn;
4336 TCB_t * pxTCB;
4337
4338 traceENTER_xTaskGetStaticBuffers( xTask, ppuxStackBuffer, ppxTaskBuffer );
4339
4340 configASSERT( ppuxStackBuffer != NULL );
4341 configASSERT( ppxTaskBuffer != NULL );
4342
4343 pxTCB = prvGetTCBFromHandle( xTask );
4344
4345 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 )
4346 {
4347 if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB )
4348 {
4349 *ppuxStackBuffer = pxTCB->pxStack;
4350 /* MISRA Ref 11.3.1 [Misaligned access] */
4351 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
4352 /* coverity[misra_c_2012_rule_11_3_violation] */
4353 *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
4354 xReturn = pdTRUE;
4355 }
4356 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
4357 {
4358 *ppuxStackBuffer = pxTCB->pxStack;
4359 *ppxTaskBuffer = NULL;
4360 xReturn = pdTRUE;
4361 }
4362 else
4363 {
4364 xReturn = pdFALSE;
4365 }
4366 }
4367 #else /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
4368 {
4369 *ppuxStackBuffer = pxTCB->pxStack;
4370 *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
4371 xReturn = pdTRUE;
4372 }
4373 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
4374
4375 traceRETURN_xTaskGetStaticBuffers( xReturn );
4376
4377 return xReturn;
4378 }
4379
4380 #endif /* configSUPPORT_STATIC_ALLOCATION */
4381 /*-----------------------------------------------------------*/
4382
4383 #if ( configUSE_TRACE_FACILITY == 1 )
4384
uxTaskGetSystemState(TaskStatus_t * const pxTaskStatusArray,const UBaseType_t uxArraySize,configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime)4385 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
4386 const UBaseType_t uxArraySize,
4387 configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime )
4388 {
4389 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
4390
4391 traceENTER_uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, pulTotalRunTime );
4392
4393 vTaskSuspendAll();
4394 {
4395 /* Is there a space in the array for each task in the system? */
4396 if( uxArraySize >= uxCurrentNumberOfTasks )
4397 {
4398 /* Fill in an TaskStatus_t structure with information on each
4399 * task in the Ready state. */
4400 do
4401 {
4402 uxQueue--;
4403 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ) );
4404 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
4405
4406 /* Fill in an TaskStatus_t structure with information on each
4407 * task in the Blocked state. */
4408 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ) );
4409 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ) );
4410
4411 #if ( INCLUDE_vTaskDelete == 1 )
4412 {
4413 /* Fill in an TaskStatus_t structure with information on
4414 * each task that has been deleted but not yet cleaned up. */
4415 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ) );
4416 }
4417 #endif
4418
4419 #if ( INCLUDE_vTaskSuspend == 1 )
4420 {
4421 /* Fill in an TaskStatus_t structure with information on
4422 * each task in the Suspended state. */
4423 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ) );
4424 }
4425 #endif
4426
4427 #if ( configGENERATE_RUN_TIME_STATS == 1 )
4428 {
4429 if( pulTotalRunTime != NULL )
4430 {
4431 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
4432 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
4433 #else
4434 *pulTotalRunTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
4435 #endif
4436 }
4437 }
4438 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
4439 {
4440 if( pulTotalRunTime != NULL )
4441 {
4442 *pulTotalRunTime = 0;
4443 }
4444 }
4445 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
4446 }
4447 else
4448 {
4449 mtCOVERAGE_TEST_MARKER();
4450 }
4451 }
4452 ( void ) xTaskResumeAll();
4453
4454 traceRETURN_uxTaskGetSystemState( uxTask );
4455
4456 return uxTask;
4457 }
4458
4459 #endif /* configUSE_TRACE_FACILITY */
4460 /*----------------------------------------------------------*/
4461
4462 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
4463
4464 #if ( configNUMBER_OF_CORES == 1 )
xTaskGetIdleTaskHandle(void)4465 TaskHandle_t xTaskGetIdleTaskHandle( void )
4466 {
4467 traceENTER_xTaskGetIdleTaskHandle();
4468
4469 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
4470 * started, then xIdleTaskHandles will be NULL. */
4471 configASSERT( ( xIdleTaskHandles[ 0 ] != NULL ) );
4472
4473 traceRETURN_xTaskGetIdleTaskHandle( xIdleTaskHandles[ 0 ] );
4474
4475 return xIdleTaskHandles[ 0 ];
4476 }
4477 #endif /* if ( configNUMBER_OF_CORES == 1 ) */
4478
xTaskGetIdleTaskHandleForCore(BaseType_t xCoreID)4479 TaskHandle_t xTaskGetIdleTaskHandleForCore( BaseType_t xCoreID )
4480 {
4481 traceENTER_xTaskGetIdleTaskHandleForCore( xCoreID );
4482
4483 /* Ensure the core ID is valid. */
4484 configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE );
4485
4486 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
4487 * started, then xIdleTaskHandles will be NULL. */
4488 configASSERT( ( xIdleTaskHandles[ xCoreID ] != NULL ) );
4489
4490 traceRETURN_xTaskGetIdleTaskHandleForCore( xIdleTaskHandles[ xCoreID ] );
4491
4492 return xIdleTaskHandles[ xCoreID ];
4493 }
4494
4495 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
4496 /*----------------------------------------------------------*/
4497
4498 /* This conditional compilation should use inequality to 0, not equality to 1.
4499 * This is to ensure vTaskStepTick() is available when user defined low power mode
4500 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
4501 * 1. */
4502 #if ( configUSE_TICKLESS_IDLE != 0 )
4503
vTaskStepTick(TickType_t xTicksToJump)4504 void vTaskStepTick( TickType_t xTicksToJump )
4505 {
4506 TickType_t xUpdatedTickCount;
4507
4508 traceENTER_vTaskStepTick( xTicksToJump );
4509
4510 /* Correct the tick count value after a period during which the tick
4511 * was suppressed. Note this does *not* call the tick hook function for
4512 * each stepped tick. */
4513 xUpdatedTickCount = xTickCount + xTicksToJump;
4514 configASSERT( xUpdatedTickCount <= xNextTaskUnblockTime );
4515
4516 if( xUpdatedTickCount == xNextTaskUnblockTime )
4517 {
4518 /* Arrange for xTickCount to reach xNextTaskUnblockTime in
4519 * xTaskIncrementTick() when the scheduler resumes. This ensures
4520 * that any delayed tasks are resumed at the correct time. */
4521 configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
4522 configASSERT( xTicksToJump != ( TickType_t ) 0 );
4523
4524 /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
4525 taskENTER_CRITICAL();
4526 {
4527 xPendedTicks++;
4528 }
4529 taskEXIT_CRITICAL();
4530 xTicksToJump--;
4531 }
4532 else
4533 {
4534 mtCOVERAGE_TEST_MARKER();
4535 }
4536
4537 xTickCount += xTicksToJump;
4538
4539 traceINCREASE_TICK_COUNT( xTicksToJump );
4540 traceRETURN_vTaskStepTick();
4541 }
4542
4543 #endif /* configUSE_TICKLESS_IDLE */
4544 /*----------------------------------------------------------*/
4545
xTaskCatchUpTicks(TickType_t xTicksToCatchUp)4546 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
4547 {
4548 BaseType_t xYieldOccurred;
4549
4550 traceENTER_xTaskCatchUpTicks( xTicksToCatchUp );
4551
4552 /* Must not be called with the scheduler suspended as the implementation
4553 * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
4554 configASSERT( uxSchedulerSuspended == ( UBaseType_t ) 0U );
4555
4556 /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
4557 * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
4558 vTaskSuspendAll();
4559
4560 /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
4561 taskENTER_CRITICAL();
4562 {
4563 xPendedTicks += xTicksToCatchUp;
4564 }
4565 taskEXIT_CRITICAL();
4566 xYieldOccurred = xTaskResumeAll();
4567
4568 traceRETURN_xTaskCatchUpTicks( xYieldOccurred );
4569
4570 return xYieldOccurred;
4571 }
4572 /*----------------------------------------------------------*/
4573
4574 #if ( INCLUDE_xTaskAbortDelay == 1 )
4575
xTaskAbortDelay(TaskHandle_t xTask)4576 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
4577 {
4578 TCB_t * pxTCB = xTask;
4579 BaseType_t xReturn;
4580
4581 traceENTER_xTaskAbortDelay( xTask );
4582
4583 configASSERT( pxTCB );
4584
4585 vTaskSuspendAll();
4586 {
4587 /* A task can only be prematurely removed from the Blocked state if
4588 * it is actually in the Blocked state. */
4589 if( eTaskGetState( xTask ) == eBlocked )
4590 {
4591 xReturn = pdPASS;
4592
4593 /* Remove the reference to the task from the blocked list. An
4594 * interrupt won't touch the xStateListItem because the
4595 * scheduler is suspended. */
4596 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
4597
4598 /* Is the task waiting on an event also? If so remove it from
4599 * the event list too. Interrupts can touch the event list item,
4600 * even though the scheduler is suspended, so a critical section
4601 * is used. */
4602 taskENTER_CRITICAL();
4603 {
4604 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
4605 {
4606 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
4607
4608 /* This lets the task know it was forcibly removed from the
4609 * blocked state so it should not re-evaluate its block time and
4610 * then block again. */
4611 pxTCB->ucDelayAborted = ( uint8_t ) pdTRUE;
4612 }
4613 else
4614 {
4615 mtCOVERAGE_TEST_MARKER();
4616 }
4617 }
4618 taskEXIT_CRITICAL();
4619
4620 /* Place the unblocked task into the appropriate ready list. */
4621 prvAddTaskToReadyList( pxTCB );
4622
4623 /* A task being unblocked cannot cause an immediate context
4624 * switch if preemption is turned off. */
4625 #if ( configUSE_PREEMPTION == 1 )
4626 {
4627 #if ( configNUMBER_OF_CORES == 1 )
4628 {
4629 /* Preemption is on, but a context switch should only be
4630 * performed if the unblocked task has a priority that is
4631 * higher than the currently executing task. */
4632 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4633 {
4634 /* Pend the yield to be performed when the scheduler
4635 * is unsuspended. */
4636 xYieldPendings[ 0 ] = pdTRUE;
4637 }
4638 else
4639 {
4640 mtCOVERAGE_TEST_MARKER();
4641 }
4642 }
4643 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4644 {
4645 taskENTER_CRITICAL();
4646 {
4647 prvYieldForTask( pxTCB );
4648 }
4649 taskEXIT_CRITICAL();
4650 }
4651 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4652 }
4653 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4654 }
4655 else
4656 {
4657 xReturn = pdFAIL;
4658 }
4659 }
4660 ( void ) xTaskResumeAll();
4661
4662 traceRETURN_xTaskAbortDelay( xReturn );
4663
4664 return xReturn;
4665 }
4666
4667 #endif /* INCLUDE_xTaskAbortDelay */
4668 /*----------------------------------------------------------*/
4669
xTaskIncrementTick(void)4670 BaseType_t xTaskIncrementTick( void )
4671 {
4672 TCB_t * pxTCB;
4673 TickType_t xItemValue;
4674 BaseType_t xSwitchRequired = pdFALSE;
4675
4676 #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 )
4677 BaseType_t xYieldRequiredForCore[ configNUMBER_OF_CORES ] = { pdFALSE };
4678 #endif /* #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
4679
4680 traceENTER_xTaskIncrementTick();
4681
4682 /* Called by the portable layer each time a tick interrupt occurs.
4683 * Increments the tick then checks to see if the new tick value will cause any
4684 * tasks to be unblocked. */
4685 traceTASK_INCREMENT_TICK( xTickCount );
4686
4687 /* Tick increment should occur on every kernel timer event. Core 0 has the
4688 * responsibility to increment the tick, or increment the pended ticks if the
4689 * scheduler is suspended. If pended ticks is greater than zero, the core that
4690 * calls xTaskResumeAll has the responsibility to increment the tick. */
4691 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
4692 {
4693 /* Minor optimisation. The tick count cannot change in this
4694 * block. */
4695 const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
4696
4697 /* Increment the RTOS tick, switching the delayed and overflowed
4698 * delayed lists if it wraps to 0. */
4699 xTickCount = xConstTickCount;
4700
4701 if( xConstTickCount == ( TickType_t ) 0U )
4702 {
4703 taskSWITCH_DELAYED_LISTS();
4704 }
4705 else
4706 {
4707 mtCOVERAGE_TEST_MARKER();
4708 }
4709
4710 /* See if this tick has made a timeout expire. Tasks are stored in
4711 * the queue in the order of their wake time - meaning once one task
4712 * has been found whose block time has not expired there is no need to
4713 * look any further down the list. */
4714 if( xConstTickCount >= xNextTaskUnblockTime )
4715 {
4716 for( ; ; )
4717 {
4718 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
4719 {
4720 /* The delayed list is empty. Set xNextTaskUnblockTime
4721 * to the maximum possible value so it is extremely
4722 * unlikely that the
4723 * if( xTickCount >= xNextTaskUnblockTime ) test will pass
4724 * next time through. */
4725 xNextTaskUnblockTime = portMAX_DELAY;
4726 break;
4727 }
4728 else
4729 {
4730 /* The delayed list is not empty, get the value of the
4731 * item at the head of the delayed list. This is the time
4732 * at which the task at the head of the delayed list must
4733 * be removed from the Blocked state. */
4734 /* MISRA Ref 11.5.3 [Void pointer assignment] */
4735 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4736 /* coverity[misra_c_2012_rule_11_5_violation] */
4737 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
4738 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
4739
4740 if( xConstTickCount < xItemValue )
4741 {
4742 /* It is not time to unblock this item yet, but the
4743 * item value is the time at which the task at the head
4744 * of the blocked list must be removed from the Blocked
4745 * state - so record the item value in
4746 * xNextTaskUnblockTime. */
4747 xNextTaskUnblockTime = xItemValue;
4748 break;
4749 }
4750 else
4751 {
4752 mtCOVERAGE_TEST_MARKER();
4753 }
4754
4755 /* It is time to remove the item from the Blocked state. */
4756 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
4757
4758 /* Is the task waiting on an event also? If so remove
4759 * it from the event list. */
4760 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
4761 {
4762 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
4763 }
4764 else
4765 {
4766 mtCOVERAGE_TEST_MARKER();
4767 }
4768
4769 /* Place the unblocked task into the appropriate ready
4770 * list. */
4771 prvAddTaskToReadyList( pxTCB );
4772
4773 /* A task being unblocked cannot cause an immediate
4774 * context switch if preemption is turned off. */
4775 #if ( configUSE_PREEMPTION == 1 )
4776 {
4777 #if ( configNUMBER_OF_CORES == 1 )
4778 {
4779 /* Preemption is on, but a context switch should
4780 * only be performed if the unblocked task's
4781 * priority is higher than the currently executing
4782 * task.
4783 * The case of equal priority tasks sharing
4784 * processing time (which happens when both
4785 * preemption and time slicing are on) is
4786 * handled below.*/
4787 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4788 {
4789 xSwitchRequired = pdTRUE;
4790 }
4791 else
4792 {
4793 mtCOVERAGE_TEST_MARKER();
4794 }
4795 }
4796 #else /* #if( configNUMBER_OF_CORES == 1 ) */
4797 {
4798 prvYieldForTask( pxTCB );
4799 }
4800 #endif /* #if( configNUMBER_OF_CORES == 1 ) */
4801 }
4802 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4803 }
4804 }
4805 }
4806
4807 /* Tasks of equal priority to the currently running task will share
4808 * processing time (time slice) if preemption is on, and the application
4809 * writer has not explicitly turned time slicing off. */
4810 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
4811 {
4812 #if ( configNUMBER_OF_CORES == 1 )
4813 {
4814 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > 1U )
4815 {
4816 xSwitchRequired = pdTRUE;
4817 }
4818 else
4819 {
4820 mtCOVERAGE_TEST_MARKER();
4821 }
4822 }
4823 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4824 {
4825 BaseType_t xCoreID;
4826
4827 for( xCoreID = 0; xCoreID < ( ( BaseType_t ) configNUMBER_OF_CORES ); xCoreID++ )
4828 {
4829 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ) ) > 1U )
4830 {
4831 xYieldRequiredForCore[ xCoreID ] = pdTRUE;
4832 }
4833 else
4834 {
4835 mtCOVERAGE_TEST_MARKER();
4836 }
4837 }
4838 }
4839 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4840 }
4841 #endif /* #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
4842
4843 #if ( configUSE_TICK_HOOK == 1 )
4844 {
4845 /* Guard against the tick hook being called when the pended tick
4846 * count is being unwound (when the scheduler is being unlocked). */
4847 if( xPendedTicks == ( TickType_t ) 0 )
4848 {
4849 vApplicationTickHook();
4850 }
4851 else
4852 {
4853 mtCOVERAGE_TEST_MARKER();
4854 }
4855 }
4856 #endif /* configUSE_TICK_HOOK */
4857
4858 #if ( configUSE_PREEMPTION == 1 )
4859 {
4860 #if ( configNUMBER_OF_CORES == 1 )
4861 {
4862 /* For single core the core ID is always 0. */
4863 if( xYieldPendings[ 0 ] != pdFALSE )
4864 {
4865 xSwitchRequired = pdTRUE;
4866 }
4867 else
4868 {
4869 mtCOVERAGE_TEST_MARKER();
4870 }
4871 }
4872 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4873 {
4874 BaseType_t xCoreID, xCurrentCoreID;
4875 xCurrentCoreID = ( BaseType_t ) portGET_CORE_ID();
4876
4877 for( xCoreID = 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
4878 {
4879 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
4880 if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
4881 #endif
4882 {
4883 if( ( xYieldRequiredForCore[ xCoreID ] != pdFALSE ) || ( xYieldPendings[ xCoreID ] != pdFALSE ) )
4884 {
4885 if( xCoreID == xCurrentCoreID )
4886 {
4887 xSwitchRequired = pdTRUE;
4888 }
4889 else
4890 {
4891 prvYieldCore( xCoreID );
4892 }
4893 }
4894 else
4895 {
4896 mtCOVERAGE_TEST_MARKER();
4897 }
4898 }
4899 }
4900 }
4901 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4902 }
4903 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4904 }
4905 else
4906 {
4907 xPendedTicks += 1U;
4908
4909 /* The tick hook gets called at regular intervals, even if the
4910 * scheduler is locked. */
4911 #if ( configUSE_TICK_HOOK == 1 )
4912 {
4913 vApplicationTickHook();
4914 }
4915 #endif
4916 }
4917
4918 traceRETURN_xTaskIncrementTick( xSwitchRequired );
4919
4920 return xSwitchRequired;
4921 }
4922 /*-----------------------------------------------------------*/
4923
4924 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
4925
vTaskSetApplicationTaskTag(TaskHandle_t xTask,TaskHookFunction_t pxHookFunction)4926 void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
4927 TaskHookFunction_t pxHookFunction )
4928 {
4929 TCB_t * xTCB;
4930
4931 traceENTER_vTaskSetApplicationTaskTag( xTask, pxHookFunction );
4932
4933 /* If xTask is NULL then it is the task hook of the calling task that is
4934 * getting set. */
4935 if( xTask == NULL )
4936 {
4937 xTCB = ( TCB_t * ) pxCurrentTCB;
4938 }
4939 else
4940 {
4941 xTCB = xTask;
4942 }
4943
4944 /* Save the hook function in the TCB. A critical section is required as
4945 * the value can be accessed from an interrupt. */
4946 taskENTER_CRITICAL();
4947 {
4948 xTCB->pxTaskTag = pxHookFunction;
4949 }
4950 taskEXIT_CRITICAL();
4951
4952 traceRETURN_vTaskSetApplicationTaskTag();
4953 }
4954
4955 #endif /* configUSE_APPLICATION_TASK_TAG */
4956 /*-----------------------------------------------------------*/
4957
4958 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
4959
xTaskGetApplicationTaskTag(TaskHandle_t xTask)4960 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
4961 {
4962 TCB_t * pxTCB;
4963 TaskHookFunction_t xReturn;
4964
4965 traceENTER_xTaskGetApplicationTaskTag( xTask );
4966
4967 /* If xTask is NULL then set the calling task's hook. */
4968 pxTCB = prvGetTCBFromHandle( xTask );
4969
4970 /* Save the hook function in the TCB. A critical section is required as
4971 * the value can be accessed from an interrupt. */
4972 taskENTER_CRITICAL();
4973 {
4974 xReturn = pxTCB->pxTaskTag;
4975 }
4976 taskEXIT_CRITICAL();
4977
4978 traceRETURN_xTaskGetApplicationTaskTag( xReturn );
4979
4980 return xReturn;
4981 }
4982
4983 #endif /* configUSE_APPLICATION_TASK_TAG */
4984 /*-----------------------------------------------------------*/
4985
4986 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
4987
xTaskGetApplicationTaskTagFromISR(TaskHandle_t xTask)4988 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
4989 {
4990 TCB_t * pxTCB;
4991 TaskHookFunction_t xReturn;
4992 UBaseType_t uxSavedInterruptStatus;
4993
4994 traceENTER_xTaskGetApplicationTaskTagFromISR( xTask );
4995
4996 /* If xTask is NULL then set the calling task's hook. */
4997 pxTCB = prvGetTCBFromHandle( xTask );
4998
4999 /* Save the hook function in the TCB. A critical section is required as
5000 * the value can be accessed from an interrupt. */
5001 /* MISRA Ref 4.7.1 [Return value shall be checked] */
5002 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
5003 /* coverity[misra_c_2012_directive_4_7_violation] */
5004 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
5005 {
5006 xReturn = pxTCB->pxTaskTag;
5007 }
5008 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
5009
5010 traceRETURN_xTaskGetApplicationTaskTagFromISR( xReturn );
5011
5012 return xReturn;
5013 }
5014
5015 #endif /* configUSE_APPLICATION_TASK_TAG */
5016 /*-----------------------------------------------------------*/
5017
5018 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
5019
xTaskCallApplicationTaskHook(TaskHandle_t xTask,void * pvParameter)5020 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
5021 void * pvParameter )
5022 {
5023 TCB_t * xTCB;
5024 BaseType_t xReturn;
5025
5026 traceENTER_xTaskCallApplicationTaskHook( xTask, pvParameter );
5027
5028 /* If xTask is NULL then we are calling our own task hook. */
5029 if( xTask == NULL )
5030 {
5031 xTCB = pxCurrentTCB;
5032 }
5033 else
5034 {
5035 xTCB = xTask;
5036 }
5037
5038 if( xTCB->pxTaskTag != NULL )
5039 {
5040 xReturn = xTCB->pxTaskTag( pvParameter );
5041 }
5042 else
5043 {
5044 xReturn = pdFAIL;
5045 }
5046
5047 traceRETURN_xTaskCallApplicationTaskHook( xReturn );
5048
5049 return xReturn;
5050 }
5051
5052 #endif /* configUSE_APPLICATION_TASK_TAG */
5053 /*-----------------------------------------------------------*/
5054
5055 #if ( configNUMBER_OF_CORES == 1 )
vTaskSwitchContext(void)5056 void vTaskSwitchContext( void )
5057 {
5058 traceENTER_vTaskSwitchContext();
5059
5060 if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
5061 {
5062 /* The scheduler is currently suspended - do not allow a context
5063 * switch. */
5064 xYieldPendings[ 0 ] = pdTRUE;
5065 }
5066 else
5067 {
5068 xYieldPendings[ 0 ] = pdFALSE;
5069 traceTASK_SWITCHED_OUT();
5070
5071 #if ( configGENERATE_RUN_TIME_STATS == 1 )
5072 {
5073 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
5074 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ 0 ] );
5075 #else
5076 ulTotalRunTime[ 0 ] = portGET_RUN_TIME_COUNTER_VALUE();
5077 #endif
5078
5079 /* Add the amount of time the task has been running to the
5080 * accumulated time so far. The time the task started running was
5081 * stored in ulTaskSwitchedInTime. Note that there is no overflow
5082 * protection here so count values are only valid until the timer
5083 * overflows. The guard against negative values is to protect
5084 * against suspect run time stat counter implementations - which
5085 * are provided by the application, not the kernel. */
5086 if( ulTotalRunTime[ 0 ] > ulTaskSwitchedInTime[ 0 ] )
5087 {
5088 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime[ 0 ] - ulTaskSwitchedInTime[ 0 ] );
5089 }
5090 else
5091 {
5092 mtCOVERAGE_TEST_MARKER();
5093 }
5094
5095 ulTaskSwitchedInTime[ 0 ] = ulTotalRunTime[ 0 ];
5096 }
5097 #endif /* configGENERATE_RUN_TIME_STATS */
5098
5099 /* Check for stack overflow, if configured. */
5100 taskCHECK_FOR_STACK_OVERFLOW();
5101
5102 /* Before the currently running task is switched out, save its errno. */
5103 #if ( configUSE_POSIX_ERRNO == 1 )
5104 {
5105 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
5106 }
5107 #endif
5108
5109 /* Select a new task to run using either the generic C or port
5110 * optimised asm code. */
5111 /* MISRA Ref 11.5.3 [Void pointer assignment] */
5112 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5113 /* coverity[misra_c_2012_rule_11_5_violation] */
5114 taskSELECT_HIGHEST_PRIORITY_TASK();
5115 traceTASK_SWITCHED_IN();
5116
5117 /* Macro to inject port specific behaviour immediately after
5118 * switching tasks, such as setting an end of stack watchpoint
5119 * or reconfiguring the MPU. */
5120 portTASK_SWITCH_HOOK( pxCurrentTCB );
5121
5122 /* After the new task is switched in, update the global errno. */
5123 #if ( configUSE_POSIX_ERRNO == 1 )
5124 {
5125 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
5126 }
5127 #endif
5128
5129 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
5130 {
5131 /* Switch C-Runtime's TLS Block to point to the TLS
5132 * Block specific to this task. */
5133 configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
5134 }
5135 #endif
5136 }
5137
5138 traceRETURN_vTaskSwitchContext();
5139 }
5140 #else /* if ( configNUMBER_OF_CORES == 1 ) */
vTaskSwitchContext(BaseType_t xCoreID)5141 void vTaskSwitchContext( BaseType_t xCoreID )
5142 {
5143 traceENTER_vTaskSwitchContext();
5144
5145 /* Acquire both locks:
5146 * - The ISR lock protects the ready list from simultaneous access by
5147 * both other ISRs and tasks.
5148 * - We also take the task lock to pause here in case another core has
5149 * suspended the scheduler. We don't want to simply set xYieldPending
5150 * and move on if another core suspended the scheduler. We should only
5151 * do that if the current core has suspended the scheduler. */
5152
5153 portGET_TASK_LOCK(); /* Must always acquire the task lock first. */
5154 portGET_ISR_LOCK();
5155 {
5156 /* vTaskSwitchContext() must never be called from within a critical section.
5157 * This is not necessarily true for single core FreeRTOS, but it is for this
5158 * SMP port. */
5159 configASSERT( portGET_CRITICAL_NESTING_COUNT() == 0 );
5160
5161 if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
5162 {
5163 /* The scheduler is currently suspended - do not allow a context
5164 * switch. */
5165 xYieldPendings[ xCoreID ] = pdTRUE;
5166 }
5167 else
5168 {
5169 xYieldPendings[ xCoreID ] = pdFALSE;
5170 traceTASK_SWITCHED_OUT();
5171
5172 #if ( configGENERATE_RUN_TIME_STATS == 1 )
5173 {
5174 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
5175 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ xCoreID ] );
5176 #else
5177 ulTotalRunTime[ xCoreID ] = portGET_RUN_TIME_COUNTER_VALUE();
5178 #endif
5179
5180 /* Add the amount of time the task has been running to the
5181 * accumulated time so far. The time the task started running was
5182 * stored in ulTaskSwitchedInTime. Note that there is no overflow
5183 * protection here so count values are only valid until the timer
5184 * overflows. The guard against negative values is to protect
5185 * against suspect run time stat counter implementations - which
5186 * are provided by the application, not the kernel. */
5187 if( ulTotalRunTime[ xCoreID ] > ulTaskSwitchedInTime[ xCoreID ] )
5188 {
5189 pxCurrentTCBs[ xCoreID ]->ulRunTimeCounter += ( ulTotalRunTime[ xCoreID ] - ulTaskSwitchedInTime[ xCoreID ] );
5190 }
5191 else
5192 {
5193 mtCOVERAGE_TEST_MARKER();
5194 }
5195
5196 ulTaskSwitchedInTime[ xCoreID ] = ulTotalRunTime[ xCoreID ];
5197 }
5198 #endif /* configGENERATE_RUN_TIME_STATS */
5199
5200 /* Check for stack overflow, if configured. */
5201 taskCHECK_FOR_STACK_OVERFLOW();
5202
5203 /* Before the currently running task is switched out, save its errno. */
5204 #if ( configUSE_POSIX_ERRNO == 1 )
5205 {
5206 pxCurrentTCBs[ xCoreID ]->iTaskErrno = FreeRTOS_errno;
5207 }
5208 #endif
5209
5210 /* Select a new task to run. */
5211 taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID );
5212 traceTASK_SWITCHED_IN();
5213
5214 /* Macro to inject port specific behaviour immediately after
5215 * switching tasks, such as setting an end of stack watchpoint
5216 * or reconfiguring the MPU. */
5217 portTASK_SWITCH_HOOK( pxCurrentTCBs[ portGET_CORE_ID() ] );
5218
5219 /* After the new task is switched in, update the global errno. */
5220 #if ( configUSE_POSIX_ERRNO == 1 )
5221 {
5222 FreeRTOS_errno = pxCurrentTCBs[ xCoreID ]->iTaskErrno;
5223 }
5224 #endif
5225
5226 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
5227 {
5228 /* Switch C-Runtime's TLS Block to point to the TLS
5229 * Block specific to this task. */
5230 configSET_TLS_BLOCK( pxCurrentTCBs[ xCoreID ]->xTLSBlock );
5231 }
5232 #endif
5233 }
5234 }
5235 portRELEASE_ISR_LOCK();
5236 portRELEASE_TASK_LOCK();
5237
5238 traceRETURN_vTaskSwitchContext();
5239 }
5240 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
5241 /*-----------------------------------------------------------*/
5242
vTaskPlaceOnEventList(List_t * const pxEventList,const TickType_t xTicksToWait)5243 void vTaskPlaceOnEventList( List_t * const pxEventList,
5244 const TickType_t xTicksToWait )
5245 {
5246 traceENTER_vTaskPlaceOnEventList( pxEventList, xTicksToWait );
5247
5248 configASSERT( pxEventList );
5249
5250 /* THIS FUNCTION MUST BE CALLED WITH THE
5251 * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
5252
5253 /* Place the event list item of the TCB in the appropriate event list.
5254 * This is placed in the list in priority order so the highest priority task
5255 * is the first to be woken by the event.
5256 *
5257 * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
5258 * Normally, the xItemValue of a TCB's ListItem_t members is:
5259 * xItemValue = ( configMAX_PRIORITIES - uxPriority )
5260 * Therefore, the event list is sorted in descending priority order.
5261 *
5262 * The queue that contains the event list is locked, preventing
5263 * simultaneous access from interrupts. */
5264 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5265
5266 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
5267
5268 traceRETURN_vTaskPlaceOnEventList();
5269 }
5270 /*-----------------------------------------------------------*/
5271
vTaskPlaceOnUnorderedEventList(List_t * pxEventList,const TickType_t xItemValue,const TickType_t xTicksToWait)5272 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
5273 const TickType_t xItemValue,
5274 const TickType_t xTicksToWait )
5275 {
5276 traceENTER_vTaskPlaceOnUnorderedEventList( pxEventList, xItemValue, xTicksToWait );
5277
5278 configASSERT( pxEventList );
5279
5280 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
5281 * the event groups implementation. */
5282 configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
5283
5284 /* Store the item value in the event list item. It is safe to access the
5285 * event list item here as interrupts won't access the event list item of a
5286 * task that is not in the Blocked state. */
5287 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
5288
5289 /* Place the event list item of the TCB at the end of the appropriate event
5290 * list. It is safe to access the event list here because it is part of an
5291 * event group implementation - and interrupts don't access event groups
5292 * directly (instead they access them indirectly by pending function calls to
5293 * the task level). */
5294 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5295
5296 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
5297
5298 traceRETURN_vTaskPlaceOnUnorderedEventList();
5299 }
5300 /*-----------------------------------------------------------*/
5301
5302 #if ( configUSE_TIMERS == 1 )
5303
vTaskPlaceOnEventListRestricted(List_t * const pxEventList,TickType_t xTicksToWait,const BaseType_t xWaitIndefinitely)5304 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
5305 TickType_t xTicksToWait,
5306 const BaseType_t xWaitIndefinitely )
5307 {
5308 traceENTER_vTaskPlaceOnEventListRestricted( pxEventList, xTicksToWait, xWaitIndefinitely );
5309
5310 configASSERT( pxEventList );
5311
5312 /* This function should not be called by application code hence the
5313 * 'Restricted' in its name. It is not part of the public API. It is
5314 * designed for use by kernel code, and has special calling requirements -
5315 * it should be called with the scheduler suspended. */
5316
5317
5318 /* Place the event list item of the TCB in the appropriate event list.
5319 * In this case it is assume that this is the only task that is going to
5320 * be waiting on this event list, so the faster vListInsertEnd() function
5321 * can be used in place of vListInsert. */
5322 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5323
5324 /* If the task should block indefinitely then set the block time to a
5325 * value that will be recognised as an indefinite delay inside the
5326 * prvAddCurrentTaskToDelayedList() function. */
5327 if( xWaitIndefinitely != pdFALSE )
5328 {
5329 xTicksToWait = portMAX_DELAY;
5330 }
5331
5332 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
5333 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
5334
5335 traceRETURN_vTaskPlaceOnEventListRestricted();
5336 }
5337
5338 #endif /* configUSE_TIMERS */
5339 /*-----------------------------------------------------------*/
5340
xTaskRemoveFromEventList(const List_t * const pxEventList)5341 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
5342 {
5343 TCB_t * pxUnblockedTCB;
5344 BaseType_t xReturn;
5345
5346 traceENTER_xTaskRemoveFromEventList( pxEventList );
5347
5348 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
5349 * called from a critical section within an ISR. */
5350
5351 /* The event list is sorted in priority order, so the first in the list can
5352 * be removed as it is known to be the highest priority. Remove the TCB from
5353 * the delayed list, and add it to the ready list.
5354 *
5355 * If an event is for a queue that is locked then this function will never
5356 * get called - the lock count on the queue will get modified instead. This
5357 * means exclusive access to the event list is guaranteed here.
5358 *
5359 * This function assumes that a check has already been made to ensure that
5360 * pxEventList is not empty. */
5361 /* MISRA Ref 11.5.3 [Void pointer assignment] */
5362 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5363 /* coverity[misra_c_2012_rule_11_5_violation] */
5364 pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
5365 configASSERT( pxUnblockedTCB );
5366 listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
5367
5368 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
5369 {
5370 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
5371 prvAddTaskToReadyList( pxUnblockedTCB );
5372
5373 #if ( configUSE_TICKLESS_IDLE != 0 )
5374 {
5375 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
5376 * might be set to the blocked task's time out time. If the task is
5377 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
5378 * normally left unchanged, because it is automatically reset to a new
5379 * value when the tick count equals xNextTaskUnblockTime. However if
5380 * tickless idling is used it might be more important to enter sleep mode
5381 * at the earliest possible time - so reset xNextTaskUnblockTime here to
5382 * ensure it is updated at the earliest possible time. */
5383 prvResetNextTaskUnblockTime();
5384 }
5385 #endif
5386 }
5387 else
5388 {
5389 /* The delayed and ready lists cannot be accessed, so hold this task
5390 * pending until the scheduler is resumed. */
5391 listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
5392 }
5393
5394 #if ( configNUMBER_OF_CORES == 1 )
5395 {
5396 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
5397 {
5398 /* Return true if the task removed from the event list has a higher
5399 * priority than the calling task. This allows the calling task to know if
5400 * it should force a context switch now. */
5401 xReturn = pdTRUE;
5402
5403 /* Mark that a yield is pending in case the user is not using the
5404 * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
5405 xYieldPendings[ 0 ] = pdTRUE;
5406 }
5407 else
5408 {
5409 xReturn = pdFALSE;
5410 }
5411 }
5412 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
5413 {
5414 xReturn = pdFALSE;
5415
5416 #if ( configUSE_PREEMPTION == 1 )
5417 {
5418 prvYieldForTask( pxUnblockedTCB );
5419
5420 if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
5421 {
5422 xReturn = pdTRUE;
5423 }
5424 }
5425 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
5426 }
5427 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
5428
5429 traceRETURN_xTaskRemoveFromEventList( xReturn );
5430 return xReturn;
5431 }
5432 /*-----------------------------------------------------------*/
5433
vTaskRemoveFromUnorderedEventList(ListItem_t * pxEventListItem,const TickType_t xItemValue)5434 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
5435 const TickType_t xItemValue )
5436 {
5437 TCB_t * pxUnblockedTCB;
5438
5439 traceENTER_vTaskRemoveFromUnorderedEventList( pxEventListItem, xItemValue );
5440
5441 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
5442 * the event flags implementation. */
5443 configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
5444
5445 /* Store the new item value in the event list. */
5446 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
5447
5448 /* Remove the event list form the event flag. Interrupts do not access
5449 * event flags. */
5450 /* MISRA Ref 11.5.3 [Void pointer assignment] */
5451 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5452 /* coverity[misra_c_2012_rule_11_5_violation] */
5453 pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem );
5454 configASSERT( pxUnblockedTCB );
5455 listREMOVE_ITEM( pxEventListItem );
5456
5457 #if ( configUSE_TICKLESS_IDLE != 0 )
5458 {
5459 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
5460 * might be set to the blocked task's time out time. If the task is
5461 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
5462 * normally left unchanged, because it is automatically reset to a new
5463 * value when the tick count equals xNextTaskUnblockTime. However if
5464 * tickless idling is used it might be more important to enter sleep mode
5465 * at the earliest possible time - so reset xNextTaskUnblockTime here to
5466 * ensure it is updated at the earliest possible time. */
5467 prvResetNextTaskUnblockTime();
5468 }
5469 #endif
5470
5471 /* Remove the task from the delayed list and add it to the ready list. The
5472 * scheduler is suspended so interrupts will not be accessing the ready
5473 * lists. */
5474 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
5475 prvAddTaskToReadyList( pxUnblockedTCB );
5476
5477 #if ( configNUMBER_OF_CORES == 1 )
5478 {
5479 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
5480 {
5481 /* The unblocked task has a priority above that of the calling task, so
5482 * a context switch is required. This function is called with the
5483 * scheduler suspended so xYieldPending is set so the context switch
5484 * occurs immediately that the scheduler is resumed (unsuspended). */
5485 xYieldPendings[ 0 ] = pdTRUE;
5486 }
5487 }
5488 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
5489 {
5490 #if ( configUSE_PREEMPTION == 1 )
5491 {
5492 taskENTER_CRITICAL();
5493 {
5494 prvYieldForTask( pxUnblockedTCB );
5495 }
5496 taskEXIT_CRITICAL();
5497 }
5498 #endif
5499 }
5500 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
5501
5502 traceRETURN_vTaskRemoveFromUnorderedEventList();
5503 }
5504 /*-----------------------------------------------------------*/
5505
vTaskSetTimeOutState(TimeOut_t * const pxTimeOut)5506 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
5507 {
5508 traceENTER_vTaskSetTimeOutState( pxTimeOut );
5509
5510 configASSERT( pxTimeOut );
5511 taskENTER_CRITICAL();
5512 {
5513 pxTimeOut->xOverflowCount = xNumOfOverflows;
5514 pxTimeOut->xTimeOnEntering = xTickCount;
5515 }
5516 taskEXIT_CRITICAL();
5517
5518 traceRETURN_vTaskSetTimeOutState();
5519 }
5520 /*-----------------------------------------------------------*/
5521
vTaskInternalSetTimeOutState(TimeOut_t * const pxTimeOut)5522 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
5523 {
5524 traceENTER_vTaskInternalSetTimeOutState( pxTimeOut );
5525
5526 /* For internal use only as it does not use a critical section. */
5527 pxTimeOut->xOverflowCount = xNumOfOverflows;
5528 pxTimeOut->xTimeOnEntering = xTickCount;
5529
5530 traceRETURN_vTaskInternalSetTimeOutState();
5531 }
5532 /*-----------------------------------------------------------*/
5533
xTaskCheckForTimeOut(TimeOut_t * const pxTimeOut,TickType_t * const pxTicksToWait)5534 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
5535 TickType_t * const pxTicksToWait )
5536 {
5537 BaseType_t xReturn;
5538
5539 traceENTER_xTaskCheckForTimeOut( pxTimeOut, pxTicksToWait );
5540
5541 configASSERT( pxTimeOut );
5542 configASSERT( pxTicksToWait );
5543
5544 taskENTER_CRITICAL();
5545 {
5546 /* Minor optimisation. The tick count cannot change in this block. */
5547 const TickType_t xConstTickCount = xTickCount;
5548 const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
5549
5550 #if ( INCLUDE_xTaskAbortDelay == 1 )
5551 if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
5552 {
5553 /* The delay was aborted, which is not the same as a time out,
5554 * but has the same result. */
5555 pxCurrentTCB->ucDelayAborted = ( uint8_t ) pdFALSE;
5556 xReturn = pdTRUE;
5557 }
5558 else
5559 #endif
5560
5561 #if ( INCLUDE_vTaskSuspend == 1 )
5562 if( *pxTicksToWait == portMAX_DELAY )
5563 {
5564 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
5565 * specified is the maximum block time then the task should block
5566 * indefinitely, and therefore never time out. */
5567 xReturn = pdFALSE;
5568 }
5569 else
5570 #endif
5571
5572 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) )
5573 {
5574 /* The tick count is greater than the time at which
5575 * vTaskSetTimeout() was called, but has also overflowed since
5576 * vTaskSetTimeOut() was called. It must have wrapped all the way
5577 * around and gone past again. This passed since vTaskSetTimeout()
5578 * was called. */
5579 xReturn = pdTRUE;
5580 *pxTicksToWait = ( TickType_t ) 0;
5581 }
5582 else if( xElapsedTime < *pxTicksToWait )
5583 {
5584 /* Not a genuine timeout. Adjust parameters for time remaining. */
5585 *pxTicksToWait -= xElapsedTime;
5586 vTaskInternalSetTimeOutState( pxTimeOut );
5587 xReturn = pdFALSE;
5588 }
5589 else
5590 {
5591 *pxTicksToWait = ( TickType_t ) 0;
5592 xReturn = pdTRUE;
5593 }
5594 }
5595 taskEXIT_CRITICAL();
5596
5597 traceRETURN_xTaskCheckForTimeOut( xReturn );
5598
5599 return xReturn;
5600 }
5601 /*-----------------------------------------------------------*/
5602
vTaskMissedYield(void)5603 void vTaskMissedYield( void )
5604 {
5605 traceENTER_vTaskMissedYield();
5606
5607 /* Must be called from within a critical section. */
5608 xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
5609
5610 traceRETURN_vTaskMissedYield();
5611 }
5612 /*-----------------------------------------------------------*/
5613
5614 #if ( configUSE_TRACE_FACILITY == 1 )
5615
uxTaskGetTaskNumber(TaskHandle_t xTask)5616 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
5617 {
5618 UBaseType_t uxReturn;
5619 TCB_t const * pxTCB;
5620
5621 traceENTER_uxTaskGetTaskNumber( xTask );
5622
5623 if( xTask != NULL )
5624 {
5625 pxTCB = xTask;
5626 uxReturn = pxTCB->uxTaskNumber;
5627 }
5628 else
5629 {
5630 uxReturn = 0U;
5631 }
5632
5633 traceRETURN_uxTaskGetTaskNumber( uxReturn );
5634
5635 return uxReturn;
5636 }
5637
5638 #endif /* configUSE_TRACE_FACILITY */
5639 /*-----------------------------------------------------------*/
5640
5641 #if ( configUSE_TRACE_FACILITY == 1 )
5642
vTaskSetTaskNumber(TaskHandle_t xTask,const UBaseType_t uxHandle)5643 void vTaskSetTaskNumber( TaskHandle_t xTask,
5644 const UBaseType_t uxHandle )
5645 {
5646 TCB_t * pxTCB;
5647
5648 traceENTER_vTaskSetTaskNumber( xTask, uxHandle );
5649
5650 if( xTask != NULL )
5651 {
5652 pxTCB = xTask;
5653 pxTCB->uxTaskNumber = uxHandle;
5654 }
5655
5656 traceRETURN_vTaskSetTaskNumber();
5657 }
5658
5659 #endif /* configUSE_TRACE_FACILITY */
5660 /*-----------------------------------------------------------*/
5661
5662 /*
5663 * -----------------------------------------------------------
5664 * The passive idle task.
5665 * ----------------------------------------------------------
5666 *
5667 * The passive idle task is used for all the additional cores in a SMP
5668 * system. There must be only 1 active idle task and the rest are passive
5669 * idle tasks.
5670 *
5671 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
5672 * language extensions. The equivalent prototype for this function is:
5673 *
5674 * void prvPassiveIdleTask( void *pvParameters );
5675 */
5676
5677 #if ( configNUMBER_OF_CORES > 1 )
portTASK_FUNCTION(prvPassiveIdleTask,pvParameters)5678 static portTASK_FUNCTION( prvPassiveIdleTask, pvParameters )
5679 {
5680 ( void ) pvParameters;
5681
5682 taskYIELD();
5683
5684 for( ; configCONTROL_INFINITE_LOOP(); )
5685 {
5686 #if ( configUSE_PREEMPTION == 0 )
5687 {
5688 /* If we are not using preemption we keep forcing a task switch to
5689 * see if any other task has become available. If we are using
5690 * preemption we don't need to do this as any task becoming available
5691 * will automatically get the processor anyway. */
5692 taskYIELD();
5693 }
5694 #endif /* configUSE_PREEMPTION */
5695
5696 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
5697 {
5698 /* When using preemption tasks of equal priority will be
5699 * timesliced. If a task that is sharing the idle priority is ready
5700 * to run then the idle task should yield before the end of the
5701 * timeslice.
5702 *
5703 * A critical region is not required here as we are just reading from
5704 * the list, and an occasional incorrect value will not matter. If
5705 * the ready list at the idle priority contains one more task than the
5706 * number of idle tasks, which is equal to the configured numbers of cores
5707 * then a task other than the idle task is ready to execute. */
5708 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
5709 {
5710 taskYIELD();
5711 }
5712 else
5713 {
5714 mtCOVERAGE_TEST_MARKER();
5715 }
5716 }
5717 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
5718
5719 #if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
5720 {
5721 /* Call the user defined function from within the idle task. This
5722 * allows the application designer to add background functionality
5723 * without the overhead of a separate task.
5724 *
5725 * This hook is intended to manage core activity such as disabling cores that go idle.
5726 *
5727 * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
5728 * CALL A FUNCTION THAT MIGHT BLOCK. */
5729 vApplicationPassiveIdleHook();
5730 }
5731 #endif /* configUSE_PASSIVE_IDLE_HOOK */
5732 }
5733 }
5734 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
5735
5736 /*
5737 * -----------------------------------------------------------
5738 * The idle task.
5739 * ----------------------------------------------------------
5740 *
5741 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
5742 * language extensions. The equivalent prototype for this function is:
5743 *
5744 * void prvIdleTask( void *pvParameters );
5745 *
5746 */
5747
portTASK_FUNCTION(prvIdleTask,pvParameters)5748 static portTASK_FUNCTION( prvIdleTask, pvParameters )
5749 {
5750 /* Stop warnings. */
5751 ( void ) pvParameters;
5752
5753 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
5754 * SCHEDULER IS STARTED. **/
5755
5756 /* In case a task that has a secure context deletes itself, in which case
5757 * the idle task is responsible for deleting the task's secure context, if
5758 * any. */
5759 portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
5760
5761 #if ( configNUMBER_OF_CORES > 1 )
5762 {
5763 /* SMP all cores start up in the idle task. This initial yield gets the application
5764 * tasks started. */
5765 taskYIELD();
5766 }
5767 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
5768
5769 for( ; configCONTROL_INFINITE_LOOP(); )
5770 {
5771 /* See if any tasks have deleted themselves - if so then the idle task
5772 * is responsible for freeing the deleted task's TCB and stack. */
5773 prvCheckTasksWaitingTermination();
5774
5775 #if ( configUSE_PREEMPTION == 0 )
5776 {
5777 /* If we are not using preemption we keep forcing a task switch to
5778 * see if any other task has become available. If we are using
5779 * preemption we don't need to do this as any task becoming available
5780 * will automatically get the processor anyway. */
5781 taskYIELD();
5782 }
5783 #endif /* configUSE_PREEMPTION */
5784
5785 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
5786 {
5787 /* When using preemption tasks of equal priority will be
5788 * timesliced. If a task that is sharing the idle priority is ready
5789 * to run then the idle task should yield before the end of the
5790 * timeslice.
5791 *
5792 * A critical region is not required here as we are just reading from
5793 * the list, and an occasional incorrect value will not matter. If
5794 * the ready list at the idle priority contains one more task than the
5795 * number of idle tasks, which is equal to the configured numbers of cores
5796 * then a task other than the idle task is ready to execute. */
5797 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
5798 {
5799 taskYIELD();
5800 }
5801 else
5802 {
5803 mtCOVERAGE_TEST_MARKER();
5804 }
5805 }
5806 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
5807
5808 #if ( configUSE_IDLE_HOOK == 1 )
5809 {
5810 /* Call the user defined function from within the idle task. */
5811 vApplicationIdleHook();
5812 }
5813 #endif /* configUSE_IDLE_HOOK */
5814
5815 /* This conditional compilation should use inequality to 0, not equality
5816 * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
5817 * user defined low power mode implementations require
5818 * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
5819 #if ( configUSE_TICKLESS_IDLE != 0 )
5820 {
5821 TickType_t xExpectedIdleTime;
5822
5823 /* It is not desirable to suspend then resume the scheduler on
5824 * each iteration of the idle task. Therefore, a preliminary
5825 * test of the expected idle time is performed without the
5826 * scheduler suspended. The result here is not necessarily
5827 * valid. */
5828 xExpectedIdleTime = prvGetExpectedIdleTime();
5829
5830 if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
5831 {
5832 vTaskSuspendAll();
5833 {
5834 /* Now the scheduler is suspended, the expected idle
5835 * time can be sampled again, and this time its value can
5836 * be used. */
5837 configASSERT( xNextTaskUnblockTime >= xTickCount );
5838 xExpectedIdleTime = prvGetExpectedIdleTime();
5839
5840 /* Define the following macro to set xExpectedIdleTime to 0
5841 * if the application does not want
5842 * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
5843 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
5844
5845 if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
5846 {
5847 traceLOW_POWER_IDLE_BEGIN();
5848 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
5849 traceLOW_POWER_IDLE_END();
5850 }
5851 else
5852 {
5853 mtCOVERAGE_TEST_MARKER();
5854 }
5855 }
5856 ( void ) xTaskResumeAll();
5857 }
5858 else
5859 {
5860 mtCOVERAGE_TEST_MARKER();
5861 }
5862 }
5863 #endif /* configUSE_TICKLESS_IDLE */
5864
5865 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) )
5866 {
5867 /* Call the user defined function from within the idle task. This
5868 * allows the application designer to add background functionality
5869 * without the overhead of a separate task.
5870 *
5871 * This hook is intended to manage core activity such as disabling cores that go idle.
5872 *
5873 * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
5874 * CALL A FUNCTION THAT MIGHT BLOCK. */
5875 vApplicationPassiveIdleHook();
5876 }
5877 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) ) */
5878 }
5879 }
5880 /*-----------------------------------------------------------*/
5881
5882 #if ( configUSE_TICKLESS_IDLE != 0 )
5883
eTaskConfirmSleepModeStatus(void)5884 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
5885 {
5886 #if ( INCLUDE_vTaskSuspend == 1 )
5887 /* The idle task exists in addition to the application tasks. */
5888 const UBaseType_t uxNonApplicationTasks = configNUMBER_OF_CORES;
5889 #endif /* INCLUDE_vTaskSuspend */
5890
5891 eSleepModeStatus eReturn = eStandardSleep;
5892
5893 traceENTER_eTaskConfirmSleepModeStatus();
5894
5895 /* This function must be called from a critical section. */
5896
5897 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0U )
5898 {
5899 /* A task was made ready while the scheduler was suspended. */
5900 eReturn = eAbortSleep;
5901 }
5902 else if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
5903 {
5904 /* A yield was pended while the scheduler was suspended. */
5905 eReturn = eAbortSleep;
5906 }
5907 else if( xPendedTicks != 0U )
5908 {
5909 /* A tick interrupt has already occurred but was held pending
5910 * because the scheduler is suspended. */
5911 eReturn = eAbortSleep;
5912 }
5913
5914 #if ( INCLUDE_vTaskSuspend == 1 )
5915 else if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
5916 {
5917 /* If all the tasks are in the suspended list (which might mean they
5918 * have an infinite block time rather than actually being suspended)
5919 * then it is safe to turn all clocks off and just wait for external
5920 * interrupts. */
5921 eReturn = eNoTasksWaitingTimeout;
5922 }
5923 #endif /* INCLUDE_vTaskSuspend */
5924 else
5925 {
5926 mtCOVERAGE_TEST_MARKER();
5927 }
5928
5929 traceRETURN_eTaskConfirmSleepModeStatus( eReturn );
5930
5931 return eReturn;
5932 }
5933
5934 #endif /* configUSE_TICKLESS_IDLE */
5935 /*-----------------------------------------------------------*/
5936
5937 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
5938
vTaskSetThreadLocalStoragePointer(TaskHandle_t xTaskToSet,BaseType_t xIndex,void * pvValue)5939 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
5940 BaseType_t xIndex,
5941 void * pvValue )
5942 {
5943 TCB_t * pxTCB;
5944
5945 traceENTER_vTaskSetThreadLocalStoragePointer( xTaskToSet, xIndex, pvValue );
5946
5947 if( ( xIndex >= 0 ) &&
5948 ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
5949 {
5950 pxTCB = prvGetTCBFromHandle( xTaskToSet );
5951 configASSERT( pxTCB != NULL );
5952 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
5953 }
5954
5955 traceRETURN_vTaskSetThreadLocalStoragePointer();
5956 }
5957
5958 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
5959 /*-----------------------------------------------------------*/
5960
5961 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
5962
pvTaskGetThreadLocalStoragePointer(TaskHandle_t xTaskToQuery,BaseType_t xIndex)5963 void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
5964 BaseType_t xIndex )
5965 {
5966 void * pvReturn = NULL;
5967 TCB_t * pxTCB;
5968
5969 traceENTER_pvTaskGetThreadLocalStoragePointer( xTaskToQuery, xIndex );
5970
5971 if( ( xIndex >= 0 ) &&
5972 ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
5973 {
5974 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
5975 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
5976 }
5977 else
5978 {
5979 pvReturn = NULL;
5980 }
5981
5982 traceRETURN_pvTaskGetThreadLocalStoragePointer( pvReturn );
5983
5984 return pvReturn;
5985 }
5986
5987 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
5988 /*-----------------------------------------------------------*/
5989
5990 #if ( portUSING_MPU_WRAPPERS == 1 )
5991
vTaskAllocateMPURegions(TaskHandle_t xTaskToModify,const MemoryRegion_t * const pxRegions)5992 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
5993 const MemoryRegion_t * const pxRegions )
5994 {
5995 TCB_t * pxTCB;
5996
5997 traceENTER_vTaskAllocateMPURegions( xTaskToModify, pxRegions );
5998
5999 /* If null is passed in here then we are modifying the MPU settings of
6000 * the calling task. */
6001 pxTCB = prvGetTCBFromHandle( xTaskToModify );
6002
6003 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), pxRegions, NULL, 0 );
6004
6005 traceRETURN_vTaskAllocateMPURegions();
6006 }
6007
6008 #endif /* portUSING_MPU_WRAPPERS */
6009 /*-----------------------------------------------------------*/
6010
prvInitialiseTaskLists(void)6011 static void prvInitialiseTaskLists( void )
6012 {
6013 UBaseType_t uxPriority;
6014
6015 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
6016 {
6017 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
6018 }
6019
6020 vListInitialise( &xDelayedTaskList1 );
6021 vListInitialise( &xDelayedTaskList2 );
6022 vListInitialise( &xPendingReadyList );
6023
6024 #if ( INCLUDE_vTaskDelete == 1 )
6025 {
6026 vListInitialise( &xTasksWaitingTermination );
6027 }
6028 #endif /* INCLUDE_vTaskDelete */
6029
6030 #if ( INCLUDE_vTaskSuspend == 1 )
6031 {
6032 vListInitialise( &xSuspendedTaskList );
6033 }
6034 #endif /* INCLUDE_vTaskSuspend */
6035
6036 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
6037 * using list2. */
6038 pxDelayedTaskList = &xDelayedTaskList1;
6039 pxOverflowDelayedTaskList = &xDelayedTaskList2;
6040 }
6041 /*-----------------------------------------------------------*/
6042
prvCheckTasksWaitingTermination(void)6043 static void prvCheckTasksWaitingTermination( void )
6044 {
6045 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
6046
6047 #if ( INCLUDE_vTaskDelete == 1 )
6048 {
6049 TCB_t * pxTCB;
6050
6051 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
6052 * being called too often in the idle task. */
6053 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
6054 {
6055 #if ( configNUMBER_OF_CORES == 1 )
6056 {
6057 taskENTER_CRITICAL();
6058 {
6059 {
6060 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6061 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6062 /* coverity[misra_c_2012_rule_11_5_violation] */
6063 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
6064 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
6065 --uxCurrentNumberOfTasks;
6066 --uxDeletedTasksWaitingCleanUp;
6067 }
6068 }
6069 taskEXIT_CRITICAL();
6070
6071 prvDeleteTCB( pxTCB );
6072 }
6073 #else /* #if( configNUMBER_OF_CORES == 1 ) */
6074 {
6075 pxTCB = NULL;
6076
6077 taskENTER_CRITICAL();
6078 {
6079 /* For SMP, multiple idles can be running simultaneously
6080 * and we need to check that other idles did not cleanup while we were
6081 * waiting to enter the critical section. */
6082 if( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
6083 {
6084 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6085 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6086 /* coverity[misra_c_2012_rule_11_5_violation] */
6087 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
6088
6089 if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
6090 {
6091 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
6092 --uxCurrentNumberOfTasks;
6093 --uxDeletedTasksWaitingCleanUp;
6094 }
6095 else
6096 {
6097 /* The TCB to be deleted still has not yet been switched out
6098 * by the scheduler, so we will just exit this loop early and
6099 * try again next time. */
6100 taskEXIT_CRITICAL();
6101 break;
6102 }
6103 }
6104 }
6105 taskEXIT_CRITICAL();
6106
6107 if( pxTCB != NULL )
6108 {
6109 prvDeleteTCB( pxTCB );
6110 }
6111 }
6112 #endif /* #if( configNUMBER_OF_CORES == 1 ) */
6113 }
6114 }
6115 #endif /* INCLUDE_vTaskDelete */
6116 }
6117 /*-----------------------------------------------------------*/
6118
6119 #if ( configUSE_TRACE_FACILITY == 1 )
6120
vTaskGetInfo(TaskHandle_t xTask,TaskStatus_t * pxTaskStatus,BaseType_t xGetFreeStackSpace,eTaskState eState)6121 void vTaskGetInfo( TaskHandle_t xTask,
6122 TaskStatus_t * pxTaskStatus,
6123 BaseType_t xGetFreeStackSpace,
6124 eTaskState eState )
6125 {
6126 TCB_t * pxTCB;
6127
6128 traceENTER_vTaskGetInfo( xTask, pxTaskStatus, xGetFreeStackSpace, eState );
6129
6130 /* xTask is NULL then get the state of the calling task. */
6131 pxTCB = prvGetTCBFromHandle( xTask );
6132
6133 pxTaskStatus->xHandle = pxTCB;
6134 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
6135 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
6136 pxTaskStatus->pxStackBase = pxTCB->pxStack;
6137 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
6138 pxTaskStatus->pxTopOfStack = ( StackType_t * ) pxTCB->pxTopOfStack;
6139 pxTaskStatus->pxEndOfStack = pxTCB->pxEndOfStack;
6140 #endif
6141 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
6142
6143 #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
6144 {
6145 pxTaskStatus->uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
6146 }
6147 #endif
6148
6149 #if ( configUSE_MUTEXES == 1 )
6150 {
6151 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
6152 }
6153 #else
6154 {
6155 pxTaskStatus->uxBasePriority = 0;
6156 }
6157 #endif
6158
6159 #if ( configGENERATE_RUN_TIME_STATS == 1 )
6160 {
6161 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
6162 }
6163 #else
6164 {
6165 pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
6166 }
6167 #endif
6168
6169 /* Obtaining the task state is a little fiddly, so is only done if the
6170 * value of eState passed into this function is eInvalid - otherwise the
6171 * state is just set to whatever is passed in. */
6172 if( eState != eInvalid )
6173 {
6174 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6175 {
6176 pxTaskStatus->eCurrentState = eRunning;
6177 }
6178 else
6179 {
6180 pxTaskStatus->eCurrentState = eState;
6181
6182 #if ( INCLUDE_vTaskSuspend == 1 )
6183 {
6184 /* If the task is in the suspended list then there is a
6185 * chance it is actually just blocked indefinitely - so really
6186 * it should be reported as being in the Blocked state. */
6187 if( eState == eSuspended )
6188 {
6189 vTaskSuspendAll();
6190 {
6191 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
6192 {
6193 pxTaskStatus->eCurrentState = eBlocked;
6194 }
6195 else
6196 {
6197 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
6198 {
6199 BaseType_t x;
6200
6201 /* The task does not appear on the event list item of
6202 * and of the RTOS objects, but could still be in the
6203 * blocked state if it is waiting on its notification
6204 * rather than waiting on an object. If not, is
6205 * suspended. */
6206 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
6207 {
6208 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
6209 {
6210 pxTaskStatus->eCurrentState = eBlocked;
6211 break;
6212 }
6213 }
6214 }
6215 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
6216 }
6217 }
6218 ( void ) xTaskResumeAll();
6219 }
6220 }
6221 #endif /* INCLUDE_vTaskSuspend */
6222
6223 /* Tasks can be in pending ready list and other state list at the
6224 * same time. These tasks are in ready state no matter what state
6225 * list the task is in. */
6226 taskENTER_CRITICAL();
6227 {
6228 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) != pdFALSE )
6229 {
6230 pxTaskStatus->eCurrentState = eReady;
6231 }
6232 }
6233 taskEXIT_CRITICAL();
6234 }
6235 }
6236 else
6237 {
6238 pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
6239 }
6240
6241 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
6242 * parameter is provided to allow it to be skipped. */
6243 if( xGetFreeStackSpace != pdFALSE )
6244 {
6245 #if ( portSTACK_GROWTH > 0 )
6246 {
6247 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
6248 }
6249 #else
6250 {
6251 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
6252 }
6253 #endif
6254 }
6255 else
6256 {
6257 pxTaskStatus->usStackHighWaterMark = 0;
6258 }
6259
6260 traceRETURN_vTaskGetInfo();
6261 }
6262
6263 #endif /* configUSE_TRACE_FACILITY */
6264 /*-----------------------------------------------------------*/
6265
6266 #if ( configUSE_TRACE_FACILITY == 1 )
6267
prvListTasksWithinSingleList(TaskStatus_t * pxTaskStatusArray,List_t * pxList,eTaskState eState)6268 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
6269 List_t * pxList,
6270 eTaskState eState )
6271 {
6272 UBaseType_t uxTask = 0;
6273 const ListItem_t * pxEndMarker = listGET_END_MARKER( pxList );
6274 ListItem_t * pxIterator;
6275 TCB_t * pxTCB = NULL;
6276
6277 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
6278 {
6279 /* Populate an TaskStatus_t structure within the
6280 * pxTaskStatusArray array for each task that is referenced from
6281 * pxList. See the definition of TaskStatus_t in task.h for the
6282 * meaning of each TaskStatus_t structure member. */
6283 for( pxIterator = listGET_HEAD_ENTRY( pxList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
6284 {
6285 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6286 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6287 /* coverity[misra_c_2012_rule_11_5_violation] */
6288 pxTCB = listGET_LIST_ITEM_OWNER( pxIterator );
6289
6290 vTaskGetInfo( ( TaskHandle_t ) pxTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
6291 uxTask++;
6292 }
6293 }
6294 else
6295 {
6296 mtCOVERAGE_TEST_MARKER();
6297 }
6298
6299 return uxTask;
6300 }
6301
6302 #endif /* configUSE_TRACE_FACILITY */
6303 /*-----------------------------------------------------------*/
6304
6305 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
6306
prvTaskCheckFreeStackSpace(const uint8_t * pucStackByte)6307 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
6308 {
6309 configSTACK_DEPTH_TYPE uxCount = 0U;
6310
6311 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
6312 {
6313 pucStackByte -= portSTACK_GROWTH;
6314 uxCount++;
6315 }
6316
6317 uxCount /= ( configSTACK_DEPTH_TYPE ) sizeof( StackType_t );
6318
6319 return uxCount;
6320 }
6321
6322 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
6323 /*-----------------------------------------------------------*/
6324
6325 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
6326
6327 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
6328 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
6329 * user to determine the return type. It gets around the problem of the value
6330 * overflowing on 8-bit types without breaking backward compatibility for
6331 * applications that expect an 8-bit return type. */
uxTaskGetStackHighWaterMark2(TaskHandle_t xTask)6332 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
6333 {
6334 TCB_t * pxTCB;
6335 uint8_t * pucEndOfStack;
6336 configSTACK_DEPTH_TYPE uxReturn;
6337
6338 traceENTER_uxTaskGetStackHighWaterMark2( xTask );
6339
6340 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
6341 * the same except for their return type. Using configSTACK_DEPTH_TYPE
6342 * allows the user to determine the return type. It gets around the
6343 * problem of the value overflowing on 8-bit types without breaking
6344 * backward compatibility for applications that expect an 8-bit return
6345 * type. */
6346
6347 pxTCB = prvGetTCBFromHandle( xTask );
6348
6349 #if portSTACK_GROWTH < 0
6350 {
6351 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
6352 }
6353 #else
6354 {
6355 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
6356 }
6357 #endif
6358
6359 uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
6360
6361 traceRETURN_uxTaskGetStackHighWaterMark2( uxReturn );
6362
6363 return uxReturn;
6364 }
6365
6366 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
6367 /*-----------------------------------------------------------*/
6368
6369 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
6370
uxTaskGetStackHighWaterMark(TaskHandle_t xTask)6371 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
6372 {
6373 TCB_t * pxTCB;
6374 uint8_t * pucEndOfStack;
6375 UBaseType_t uxReturn;
6376
6377 traceENTER_uxTaskGetStackHighWaterMark( xTask );
6378
6379 pxTCB = prvGetTCBFromHandle( xTask );
6380
6381 #if portSTACK_GROWTH < 0
6382 {
6383 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
6384 }
6385 #else
6386 {
6387 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
6388 }
6389 #endif
6390
6391 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
6392
6393 traceRETURN_uxTaskGetStackHighWaterMark( uxReturn );
6394
6395 return uxReturn;
6396 }
6397
6398 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
6399 /*-----------------------------------------------------------*/
6400
6401 #if ( INCLUDE_vTaskDelete == 1 )
6402
prvDeleteTCB(TCB_t * pxTCB)6403 static void prvDeleteTCB( TCB_t * pxTCB )
6404 {
6405 /* This call is required specifically for the TriCore port. It must be
6406 * above the vPortFree() calls. The call is also used by ports/demos that
6407 * want to allocate and clean RAM statically. */
6408 portCLEAN_UP_TCB( pxTCB );
6409
6410 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
6411 {
6412 /* Free up the memory allocated for the task's TLS Block. */
6413 configDEINIT_TLS_BLOCK( pxTCB->xTLSBlock );
6414 }
6415 #endif
6416
6417 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
6418 {
6419 /* The task can only have been allocated dynamically - free both
6420 * the stack and TCB. */
6421 vPortFreeStack( pxTCB->pxStack );
6422 vPortFree( pxTCB );
6423 }
6424 #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
6425 {
6426 /* The task could have been allocated statically or dynamically, so
6427 * check what was statically allocated before trying to free the
6428 * memory. */
6429 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
6430 {
6431 /* Both the stack and TCB were allocated dynamically, so both
6432 * must be freed. */
6433 vPortFreeStack( pxTCB->pxStack );
6434 vPortFree( pxTCB );
6435 }
6436 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
6437 {
6438 /* Only the stack was statically allocated, so the TCB is the
6439 * only memory that must be freed. */
6440 vPortFree( pxTCB );
6441 }
6442 else
6443 {
6444 /* Neither the stack nor the TCB were allocated dynamically, so
6445 * nothing needs to be freed. */
6446 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
6447 mtCOVERAGE_TEST_MARKER();
6448 }
6449 }
6450 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
6451 }
6452
6453 #endif /* INCLUDE_vTaskDelete */
6454 /*-----------------------------------------------------------*/
6455
prvResetNextTaskUnblockTime(void)6456 static void prvResetNextTaskUnblockTime( void )
6457 {
6458 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
6459 {
6460 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
6461 * the maximum possible value so it is extremely unlikely that the
6462 * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
6463 * there is an item in the delayed list. */
6464 xNextTaskUnblockTime = portMAX_DELAY;
6465 }
6466 else
6467 {
6468 /* The new current delayed list is not empty, get the value of
6469 * the item at the head of the delayed list. This is the time at
6470 * which the task at the head of the delayed list should be removed
6471 * from the Blocked state. */
6472 xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
6473 }
6474 }
6475 /*-----------------------------------------------------------*/
6476
6477 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) || ( configNUMBER_OF_CORES > 1 )
6478
6479 #if ( configNUMBER_OF_CORES == 1 )
xTaskGetCurrentTaskHandle(void)6480 TaskHandle_t xTaskGetCurrentTaskHandle( void )
6481 {
6482 TaskHandle_t xReturn;
6483
6484 traceENTER_xTaskGetCurrentTaskHandle();
6485
6486 /* A critical section is not required as this is not called from
6487 * an interrupt and the current TCB will always be the same for any
6488 * individual execution thread. */
6489 xReturn = pxCurrentTCB;
6490
6491 traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
6492
6493 return xReturn;
6494 }
6495 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
xTaskGetCurrentTaskHandle(void)6496 TaskHandle_t xTaskGetCurrentTaskHandle( void )
6497 {
6498 TaskHandle_t xReturn;
6499 UBaseType_t uxSavedInterruptStatus;
6500
6501 traceENTER_xTaskGetCurrentTaskHandle();
6502
6503 uxSavedInterruptStatus = portSET_INTERRUPT_MASK();
6504 {
6505 xReturn = pxCurrentTCBs[ portGET_CORE_ID() ];
6506 }
6507 portCLEAR_INTERRUPT_MASK( uxSavedInterruptStatus );
6508
6509 traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
6510
6511 return xReturn;
6512 }
6513 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
6514
xTaskGetCurrentTaskHandleForCore(BaseType_t xCoreID)6515 TaskHandle_t xTaskGetCurrentTaskHandleForCore( BaseType_t xCoreID )
6516 {
6517 TaskHandle_t xReturn = NULL;
6518
6519 traceENTER_xTaskGetCurrentTaskHandleForCore( xCoreID );
6520
6521 if( taskVALID_CORE_ID( xCoreID ) != pdFALSE )
6522 {
6523 #if ( configNUMBER_OF_CORES == 1 )
6524 xReturn = pxCurrentTCB;
6525 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
6526 xReturn = pxCurrentTCBs[ xCoreID ];
6527 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
6528 }
6529
6530 traceRETURN_xTaskGetCurrentTaskHandleForCore( xReturn );
6531
6532 return xReturn;
6533 }
6534
6535 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
6536 /*-----------------------------------------------------------*/
6537
6538 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
6539
xTaskGetSchedulerState(void)6540 BaseType_t xTaskGetSchedulerState( void )
6541 {
6542 BaseType_t xReturn;
6543
6544 traceENTER_xTaskGetSchedulerState();
6545
6546 if( xSchedulerRunning == pdFALSE )
6547 {
6548 xReturn = taskSCHEDULER_NOT_STARTED;
6549 }
6550 else
6551 {
6552 #if ( configNUMBER_OF_CORES > 1 )
6553 taskENTER_CRITICAL();
6554 #endif
6555 {
6556 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
6557 {
6558 xReturn = taskSCHEDULER_RUNNING;
6559 }
6560 else
6561 {
6562 xReturn = taskSCHEDULER_SUSPENDED;
6563 }
6564 }
6565 #if ( configNUMBER_OF_CORES > 1 )
6566 taskEXIT_CRITICAL();
6567 #endif
6568 }
6569
6570 traceRETURN_xTaskGetSchedulerState( xReturn );
6571
6572 return xReturn;
6573 }
6574
6575 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
6576 /*-----------------------------------------------------------*/
6577
6578 #if ( configUSE_MUTEXES == 1 )
6579
xTaskPriorityInherit(TaskHandle_t const pxMutexHolder)6580 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
6581 {
6582 TCB_t * const pxMutexHolderTCB = pxMutexHolder;
6583 BaseType_t xReturn = pdFALSE;
6584
6585 traceENTER_xTaskPriorityInherit( pxMutexHolder );
6586
6587 /* If the mutex is taken by an interrupt, the mutex holder is NULL. Priority
6588 * inheritance is not applied in this scenario. */
6589 if( pxMutexHolder != NULL )
6590 {
6591 /* If the holder of the mutex has a priority below the priority of
6592 * the task attempting to obtain the mutex then it will temporarily
6593 * inherit the priority of the task attempting to obtain the mutex. */
6594 if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
6595 {
6596 /* Adjust the mutex holder state to account for its new
6597 * priority. Only reset the event list item value if the value is
6598 * not being used for anything else. */
6599 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0U ) )
6600 {
6601 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority );
6602 }
6603 else
6604 {
6605 mtCOVERAGE_TEST_MARKER();
6606 }
6607
6608 /* If the task being modified is in the ready state it will need
6609 * to be moved into a new list. */
6610 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
6611 {
6612 if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6613 {
6614 /* It is known that the task is in its ready list so
6615 * there is no need to check again and the port level
6616 * reset macro can be called directly. */
6617 portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
6618 }
6619 else
6620 {
6621 mtCOVERAGE_TEST_MARKER();
6622 }
6623
6624 /* Inherit the priority before being moved into the new list. */
6625 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
6626 prvAddTaskToReadyList( pxMutexHolderTCB );
6627 #if ( configNUMBER_OF_CORES > 1 )
6628 {
6629 /* The priority of the task is raised. Yield for this task
6630 * if it is not running. */
6631 if( taskTASK_IS_RUNNING( pxMutexHolderTCB ) != pdTRUE )
6632 {
6633 prvYieldForTask( pxMutexHolderTCB );
6634 }
6635 }
6636 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6637 }
6638 else
6639 {
6640 /* Just inherit the priority. */
6641 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
6642 }
6643
6644 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
6645
6646 /* Inheritance occurred. */
6647 xReturn = pdTRUE;
6648 }
6649 else
6650 {
6651 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
6652 {
6653 /* The base priority of the mutex holder is lower than the
6654 * priority of the task attempting to take the mutex, but the
6655 * current priority of the mutex holder is not lower than the
6656 * priority of the task attempting to take the mutex.
6657 * Therefore the mutex holder must have already inherited a
6658 * priority, but inheritance would have occurred if that had
6659 * not been the case. */
6660 xReturn = pdTRUE;
6661 }
6662 else
6663 {
6664 mtCOVERAGE_TEST_MARKER();
6665 }
6666 }
6667 }
6668 else
6669 {
6670 mtCOVERAGE_TEST_MARKER();
6671 }
6672
6673 traceRETURN_xTaskPriorityInherit( xReturn );
6674
6675 return xReturn;
6676 }
6677
6678 #endif /* configUSE_MUTEXES */
6679 /*-----------------------------------------------------------*/
6680
6681 #if ( configUSE_MUTEXES == 1 )
6682
xTaskPriorityDisinherit(TaskHandle_t const pxMutexHolder)6683 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
6684 {
6685 TCB_t * const pxTCB = pxMutexHolder;
6686 BaseType_t xReturn = pdFALSE;
6687
6688 traceENTER_xTaskPriorityDisinherit( pxMutexHolder );
6689
6690 if( pxMutexHolder != NULL )
6691 {
6692 /* A task can only have an inherited priority if it holds the mutex.
6693 * If the mutex is held by a task then it cannot be given from an
6694 * interrupt, and if a mutex is given by the holding task then it must
6695 * be the running state task. */
6696 configASSERT( pxTCB == pxCurrentTCB );
6697 configASSERT( pxTCB->uxMutexesHeld );
6698 ( pxTCB->uxMutexesHeld )--;
6699
6700 /* Has the holder of the mutex inherited the priority of another
6701 * task? */
6702 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
6703 {
6704 /* Only disinherit if no other mutexes are held. */
6705 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
6706 {
6707 /* A task can only have an inherited priority if it holds
6708 * the mutex. If the mutex is held by a task then it cannot be
6709 * given from an interrupt, and if a mutex is given by the
6710 * holding task then it must be the running state task. Remove
6711 * the holding task from the ready list. */
6712 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6713 {
6714 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
6715 }
6716 else
6717 {
6718 mtCOVERAGE_TEST_MARKER();
6719 }
6720
6721 /* Disinherit the priority before adding the task into the
6722 * new ready list. */
6723 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
6724 pxTCB->uxPriority = pxTCB->uxBasePriority;
6725
6726 /* Reset the event list item value. It cannot be in use for
6727 * any other purpose if this task is running, and it must be
6728 * running to give back the mutex. */
6729 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority );
6730 prvAddTaskToReadyList( pxTCB );
6731 #if ( configNUMBER_OF_CORES > 1 )
6732 {
6733 /* The priority of the task is dropped. Yield the core on
6734 * which the task is running. */
6735 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6736 {
6737 prvYieldCore( pxTCB->xTaskRunState );
6738 }
6739 }
6740 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6741
6742 /* Return true to indicate that a context switch is required.
6743 * This is only actually required in the corner case whereby
6744 * multiple mutexes were held and the mutexes were given back
6745 * in an order different to that in which they were taken.
6746 * If a context switch did not occur when the first mutex was
6747 * returned, even if a task was waiting on it, then a context
6748 * switch should occur when the last mutex is returned whether
6749 * a task is waiting on it or not. */
6750 xReturn = pdTRUE;
6751 }
6752 else
6753 {
6754 mtCOVERAGE_TEST_MARKER();
6755 }
6756 }
6757 else
6758 {
6759 mtCOVERAGE_TEST_MARKER();
6760 }
6761 }
6762 else
6763 {
6764 mtCOVERAGE_TEST_MARKER();
6765 }
6766
6767 traceRETURN_xTaskPriorityDisinherit( xReturn );
6768
6769 return xReturn;
6770 }
6771
6772 #endif /* configUSE_MUTEXES */
6773 /*-----------------------------------------------------------*/
6774
6775 #if ( configUSE_MUTEXES == 1 )
6776
vTaskPriorityDisinheritAfterTimeout(TaskHandle_t const pxMutexHolder,UBaseType_t uxHighestPriorityWaitingTask)6777 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
6778 UBaseType_t uxHighestPriorityWaitingTask )
6779 {
6780 TCB_t * const pxTCB = pxMutexHolder;
6781 UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
6782 const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
6783
6784 traceENTER_vTaskPriorityDisinheritAfterTimeout( pxMutexHolder, uxHighestPriorityWaitingTask );
6785
6786 if( pxMutexHolder != NULL )
6787 {
6788 /* If pxMutexHolder is not NULL then the holder must hold at least
6789 * one mutex. */
6790 configASSERT( pxTCB->uxMutexesHeld );
6791
6792 /* Determine the priority to which the priority of the task that
6793 * holds the mutex should be set. This will be the greater of the
6794 * holding task's base priority and the priority of the highest
6795 * priority task that is waiting to obtain the mutex. */
6796 if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
6797 {
6798 uxPriorityToUse = uxHighestPriorityWaitingTask;
6799 }
6800 else
6801 {
6802 uxPriorityToUse = pxTCB->uxBasePriority;
6803 }
6804
6805 /* Does the priority need to change? */
6806 if( pxTCB->uxPriority != uxPriorityToUse )
6807 {
6808 /* Only disinherit if no other mutexes are held. This is a
6809 * simplification in the priority inheritance implementation. If
6810 * the task that holds the mutex is also holding other mutexes then
6811 * the other mutexes may have caused the priority inheritance. */
6812 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
6813 {
6814 /* If a task has timed out because it already holds the
6815 * mutex it was trying to obtain then it cannot of inherited
6816 * its own priority. */
6817 configASSERT( pxTCB != pxCurrentTCB );
6818
6819 /* Disinherit the priority, remembering the previous
6820 * priority to facilitate determining the subject task's
6821 * state. */
6822 traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
6823 uxPriorityUsedOnEntry = pxTCB->uxPriority;
6824 pxTCB->uxPriority = uxPriorityToUse;
6825
6826 /* Only reset the event list item value if the value is not
6827 * being used for anything else. */
6828 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0U ) )
6829 {
6830 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse );
6831 }
6832 else
6833 {
6834 mtCOVERAGE_TEST_MARKER();
6835 }
6836
6837 /* If the running task is not the task that holds the mutex
6838 * then the task that holds the mutex could be in either the
6839 * Ready, Blocked or Suspended states. Only remove the task
6840 * from its current state list if it is in the Ready state as
6841 * the task's priority is going to change and there is one
6842 * Ready list per priority. */
6843 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
6844 {
6845 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6846 {
6847 /* It is known that the task is in its ready list so
6848 * there is no need to check again and the port level
6849 * reset macro can be called directly. */
6850 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
6851 }
6852 else
6853 {
6854 mtCOVERAGE_TEST_MARKER();
6855 }
6856
6857 prvAddTaskToReadyList( pxTCB );
6858 #if ( configNUMBER_OF_CORES > 1 )
6859 {
6860 /* The priority of the task is dropped. Yield the core on
6861 * which the task is running. */
6862 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6863 {
6864 prvYieldCore( pxTCB->xTaskRunState );
6865 }
6866 }
6867 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6868 }
6869 else
6870 {
6871 mtCOVERAGE_TEST_MARKER();
6872 }
6873 }
6874 else
6875 {
6876 mtCOVERAGE_TEST_MARKER();
6877 }
6878 }
6879 else
6880 {
6881 mtCOVERAGE_TEST_MARKER();
6882 }
6883 }
6884 else
6885 {
6886 mtCOVERAGE_TEST_MARKER();
6887 }
6888
6889 traceRETURN_vTaskPriorityDisinheritAfterTimeout();
6890 }
6891
6892 #endif /* configUSE_MUTEXES */
6893 /*-----------------------------------------------------------*/
6894
6895 #if ( configNUMBER_OF_CORES > 1 )
6896
6897 /* If not in a critical section then yield immediately.
6898 * Otherwise set xYieldPendings to true to wait to
6899 * yield until exiting the critical section.
6900 */
vTaskYieldWithinAPI(void)6901 void vTaskYieldWithinAPI( void )
6902 {
6903 traceENTER_vTaskYieldWithinAPI();
6904
6905 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
6906 {
6907 portYIELD();
6908 }
6909 else
6910 {
6911 xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
6912 }
6913
6914 traceRETURN_vTaskYieldWithinAPI();
6915 }
6916 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
6917
6918 /*-----------------------------------------------------------*/
6919
6920 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
6921
vTaskEnterCritical(void)6922 void vTaskEnterCritical( void )
6923 {
6924 traceENTER_vTaskEnterCritical();
6925
6926 portDISABLE_INTERRUPTS();
6927
6928 if( xSchedulerRunning != pdFALSE )
6929 {
6930 ( pxCurrentTCB->uxCriticalNesting )++;
6931
6932 /* This is not the interrupt safe version of the enter critical
6933 * function so assert() if it is being called from an interrupt
6934 * context. Only API functions that end in "FromISR" can be used in an
6935 * interrupt. Only assert if the critical nesting count is 1 to
6936 * protect against recursive calls if the assert function also uses a
6937 * critical section. */
6938 if( pxCurrentTCB->uxCriticalNesting == 1U )
6939 {
6940 portASSERT_IF_IN_ISR();
6941 }
6942 }
6943 else
6944 {
6945 mtCOVERAGE_TEST_MARKER();
6946 }
6947
6948 traceRETURN_vTaskEnterCritical();
6949 }
6950
6951 #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
6952 /*-----------------------------------------------------------*/
6953
6954 #if ( configNUMBER_OF_CORES > 1 )
6955
vTaskEnterCritical(void)6956 void vTaskEnterCritical( void )
6957 {
6958 traceENTER_vTaskEnterCritical();
6959
6960 portDISABLE_INTERRUPTS();
6961
6962 if( xSchedulerRunning != pdFALSE )
6963 {
6964 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
6965 {
6966 portGET_TASK_LOCK();
6967 portGET_ISR_LOCK();
6968 }
6969
6970 portINCREMENT_CRITICAL_NESTING_COUNT();
6971
6972 /* This is not the interrupt safe version of the enter critical
6973 * function so assert() if it is being called from an interrupt
6974 * context. Only API functions that end in "FromISR" can be used in an
6975 * interrupt. Only assert if the critical nesting count is 1 to
6976 * protect against recursive calls if the assert function also uses a
6977 * critical section. */
6978 if( portGET_CRITICAL_NESTING_COUNT() == 1U )
6979 {
6980 portASSERT_IF_IN_ISR();
6981
6982 if( uxSchedulerSuspended == 0U )
6983 {
6984 /* The only time there would be a problem is if this is called
6985 * before a context switch and vTaskExitCritical() is called
6986 * after pxCurrentTCB changes. Therefore this should not be
6987 * used within vTaskSwitchContext(). */
6988 prvCheckForRunStateChange();
6989 }
6990 }
6991 }
6992 else
6993 {
6994 mtCOVERAGE_TEST_MARKER();
6995 }
6996
6997 traceRETURN_vTaskEnterCritical();
6998 }
6999
7000 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7001
7002 /*-----------------------------------------------------------*/
7003
7004 #if ( configNUMBER_OF_CORES > 1 )
7005
vTaskEnterCriticalFromISR(void)7006 UBaseType_t vTaskEnterCriticalFromISR( void )
7007 {
7008 UBaseType_t uxSavedInterruptStatus = 0;
7009
7010 traceENTER_vTaskEnterCriticalFromISR();
7011
7012 if( xSchedulerRunning != pdFALSE )
7013 {
7014 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
7015
7016 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7017 {
7018 portGET_ISR_LOCK();
7019 }
7020
7021 portINCREMENT_CRITICAL_NESTING_COUNT();
7022 }
7023 else
7024 {
7025 mtCOVERAGE_TEST_MARKER();
7026 }
7027
7028 traceRETURN_vTaskEnterCriticalFromISR( uxSavedInterruptStatus );
7029
7030 return uxSavedInterruptStatus;
7031 }
7032
7033 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7034 /*-----------------------------------------------------------*/
7035
7036 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
7037
vTaskExitCritical(void)7038 void vTaskExitCritical( void )
7039 {
7040 traceENTER_vTaskExitCritical();
7041
7042 if( xSchedulerRunning != pdFALSE )
7043 {
7044 /* If pxCurrentTCB->uxCriticalNesting is zero then this function
7045 * does not match a previous call to vTaskEnterCritical(). */
7046 configASSERT( pxCurrentTCB->uxCriticalNesting > 0U );
7047
7048 /* This function should not be called in ISR. Use vTaskExitCriticalFromISR
7049 * to exit critical section from ISR. */
7050 portASSERT_IF_IN_ISR();
7051
7052 if( pxCurrentTCB->uxCriticalNesting > 0U )
7053 {
7054 ( pxCurrentTCB->uxCriticalNesting )--;
7055
7056 if( pxCurrentTCB->uxCriticalNesting == 0U )
7057 {
7058 portENABLE_INTERRUPTS();
7059 }
7060 else
7061 {
7062 mtCOVERAGE_TEST_MARKER();
7063 }
7064 }
7065 else
7066 {
7067 mtCOVERAGE_TEST_MARKER();
7068 }
7069 }
7070 else
7071 {
7072 mtCOVERAGE_TEST_MARKER();
7073 }
7074
7075 traceRETURN_vTaskExitCritical();
7076 }
7077
7078 #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
7079 /*-----------------------------------------------------------*/
7080
7081 #if ( configNUMBER_OF_CORES > 1 )
7082
vTaskExitCritical(void)7083 void vTaskExitCritical( void )
7084 {
7085 traceENTER_vTaskExitCritical();
7086
7087 if( xSchedulerRunning != pdFALSE )
7088 {
7089 /* If critical nesting count is zero then this function
7090 * does not match a previous call to vTaskEnterCritical(). */
7091 configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
7092
7093 /* This function should not be called in ISR. Use vTaskExitCriticalFromISR
7094 * to exit critical section from ISR. */
7095 portASSERT_IF_IN_ISR();
7096
7097 if( portGET_CRITICAL_NESTING_COUNT() > 0U )
7098 {
7099 portDECREMENT_CRITICAL_NESTING_COUNT();
7100
7101 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7102 {
7103 BaseType_t xYieldCurrentTask;
7104
7105 /* Get the xYieldPending stats inside the critical section. */
7106 xYieldCurrentTask = xYieldPendings[ portGET_CORE_ID() ];
7107
7108 portRELEASE_ISR_LOCK();
7109 portRELEASE_TASK_LOCK();
7110 portENABLE_INTERRUPTS();
7111
7112 /* When a task yields in a critical section it just sets
7113 * xYieldPending to true. So now that we have exited the
7114 * critical section check if xYieldPending is true, and
7115 * if so yield. */
7116 if( xYieldCurrentTask != pdFALSE )
7117 {
7118 portYIELD();
7119 }
7120 }
7121 else
7122 {
7123 mtCOVERAGE_TEST_MARKER();
7124 }
7125 }
7126 else
7127 {
7128 mtCOVERAGE_TEST_MARKER();
7129 }
7130 }
7131 else
7132 {
7133 mtCOVERAGE_TEST_MARKER();
7134 }
7135
7136 traceRETURN_vTaskExitCritical();
7137 }
7138
7139 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7140 /*-----------------------------------------------------------*/
7141
7142 #if ( configNUMBER_OF_CORES > 1 )
7143
vTaskExitCriticalFromISR(UBaseType_t uxSavedInterruptStatus)7144 void vTaskExitCriticalFromISR( UBaseType_t uxSavedInterruptStatus )
7145 {
7146 traceENTER_vTaskExitCriticalFromISR( uxSavedInterruptStatus );
7147
7148 if( xSchedulerRunning != pdFALSE )
7149 {
7150 /* If critical nesting count is zero then this function
7151 * does not match a previous call to vTaskEnterCritical(). */
7152 configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
7153
7154 if( portGET_CRITICAL_NESTING_COUNT() > 0U )
7155 {
7156 portDECREMENT_CRITICAL_NESTING_COUNT();
7157
7158 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7159 {
7160 portRELEASE_ISR_LOCK();
7161 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
7162 }
7163 else
7164 {
7165 mtCOVERAGE_TEST_MARKER();
7166 }
7167 }
7168 else
7169 {
7170 mtCOVERAGE_TEST_MARKER();
7171 }
7172 }
7173 else
7174 {
7175 mtCOVERAGE_TEST_MARKER();
7176 }
7177
7178 traceRETURN_vTaskExitCriticalFromISR();
7179 }
7180
7181 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7182 /*-----------------------------------------------------------*/
7183
7184 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
7185
prvWriteNameToBuffer(char * pcBuffer,const char * pcTaskName)7186 static char * prvWriteNameToBuffer( char * pcBuffer,
7187 const char * pcTaskName )
7188 {
7189 size_t x;
7190
7191 /* Start by copying the entire string. */
7192 ( void ) strcpy( pcBuffer, pcTaskName );
7193
7194 /* Pad the end of the string with spaces to ensure columns line up when
7195 * printed out. */
7196 for( x = strlen( pcBuffer ); x < ( size_t ) ( ( size_t ) configMAX_TASK_NAME_LEN - 1U ); x++ )
7197 {
7198 pcBuffer[ x ] = ' ';
7199 }
7200
7201 /* Terminate. */
7202 pcBuffer[ x ] = ( char ) 0x00;
7203
7204 /* Return the new end of string. */
7205 return &( pcBuffer[ x ] );
7206 }
7207
7208 #endif /* ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
7209 /*-----------------------------------------------------------*/
7210
7211 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
7212
vTaskListTasks(char * pcWriteBuffer,size_t uxBufferLength)7213 void vTaskListTasks( char * pcWriteBuffer,
7214 size_t uxBufferLength )
7215 {
7216 TaskStatus_t * pxTaskStatusArray;
7217 size_t uxConsumedBufferLength = 0;
7218 size_t uxCharsWrittenBySnprintf;
7219 int iSnprintfReturnValue;
7220 BaseType_t xOutputBufferFull = pdFALSE;
7221 UBaseType_t uxArraySize, x;
7222 char cStatus;
7223
7224 traceENTER_vTaskListTasks( pcWriteBuffer, uxBufferLength );
7225
7226 /*
7227 * PLEASE NOTE:
7228 *
7229 * This function is provided for convenience only, and is used by many
7230 * of the demo applications. Do not consider it to be part of the
7231 * scheduler.
7232 *
7233 * vTaskListTasks() calls uxTaskGetSystemState(), then formats part of the
7234 * uxTaskGetSystemState() output into a human readable table that
7235 * displays task: names, states, priority, stack usage and task number.
7236 * Stack usage specified as the number of unused StackType_t words stack can hold
7237 * on top of stack - not the number of bytes.
7238 *
7239 * vTaskListTasks() has a dependency on the snprintf() C library function that
7240 * might bloat the code size, use a lot of stack, and provide different
7241 * results on different platforms. An alternative, tiny, third party,
7242 * and limited functionality implementation of snprintf() is provided in
7243 * many of the FreeRTOS/Demo sub-directories in a file called
7244 * printf-stdarg.c (note printf-stdarg.c does not provide a full
7245 * snprintf() implementation!).
7246 *
7247 * It is recommended that production systems call uxTaskGetSystemState()
7248 * directly to get access to raw stats data, rather than indirectly
7249 * through a call to vTaskListTasks().
7250 */
7251
7252
7253 /* Make sure the write buffer does not contain a string. */
7254 *pcWriteBuffer = ( char ) 0x00;
7255
7256 /* Take a snapshot of the number of tasks in case it changes while this
7257 * function is executing. */
7258 uxArraySize = uxCurrentNumberOfTasks;
7259
7260 /* Allocate an array index for each task. NOTE! if
7261 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
7262 * equate to NULL. */
7263 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
7264 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
7265 /* coverity[misra_c_2012_rule_11_5_violation] */
7266 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
7267
7268 if( pxTaskStatusArray != NULL )
7269 {
7270 /* Generate the (binary) data. */
7271 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
7272
7273 /* Create a human readable table from the binary data. */
7274 for( x = 0; x < uxArraySize; x++ )
7275 {
7276 switch( pxTaskStatusArray[ x ].eCurrentState )
7277 {
7278 case eRunning:
7279 cStatus = tskRUNNING_CHAR;
7280 break;
7281
7282 case eReady:
7283 cStatus = tskREADY_CHAR;
7284 break;
7285
7286 case eBlocked:
7287 cStatus = tskBLOCKED_CHAR;
7288 break;
7289
7290 case eSuspended:
7291 cStatus = tskSUSPENDED_CHAR;
7292 break;
7293
7294 case eDeleted:
7295 cStatus = tskDELETED_CHAR;
7296 break;
7297
7298 case eInvalid: /* Fall through. */
7299 default: /* Should not get here, but it is included
7300 * to prevent static checking errors. */
7301 cStatus = ( char ) 0x00;
7302 break;
7303 }
7304
7305 /* Is there enough space in the buffer to hold task name? */
7306 if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
7307 {
7308 /* Write the task name to the string, padding with spaces so it
7309 * can be printed in tabular form more easily. */
7310 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
7311 /* Do not count the terminating null character. */
7312 uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
7313
7314 /* Is there space left in the buffer? -1 is done because snprintf
7315 * writes a terminating null character. So we are essentially
7316 * checking if the buffer has space to write at least one non-null
7317 * character. */
7318 if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
7319 {
7320 /* Write the rest of the string. */
7321 #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
7322 /* MISRA Ref 21.6.1 [snprintf for utility] */
7323 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7324 /* coverity[misra_c_2012_rule_21_6_violation] */
7325 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7326 uxBufferLength - uxConsumedBufferLength,
7327 "\t%c\t%u\t%u\t%u\t0x%x\r\n",
7328 cStatus,
7329 ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
7330 ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
7331 ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber,
7332 ( unsigned int ) pxTaskStatusArray[ x ].uxCoreAffinityMask );
7333 #else /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
7334 /* MISRA Ref 21.6.1 [snprintf for utility] */
7335 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7336 /* coverity[misra_c_2012_rule_21_6_violation] */
7337 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7338 uxBufferLength - uxConsumedBufferLength,
7339 "\t%c\t%u\t%u\t%u\r\n",
7340 cStatus,
7341 ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
7342 ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
7343 ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber );
7344 #endif /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
7345 uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
7346
7347 uxConsumedBufferLength += uxCharsWrittenBySnprintf;
7348 pcWriteBuffer += uxCharsWrittenBySnprintf;
7349 }
7350 else
7351 {
7352 xOutputBufferFull = pdTRUE;
7353 }
7354 }
7355 else
7356 {
7357 xOutputBufferFull = pdTRUE;
7358 }
7359
7360 if( xOutputBufferFull == pdTRUE )
7361 {
7362 break;
7363 }
7364 }
7365
7366 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
7367 * is 0 then vPortFree() will be #defined to nothing. */
7368 vPortFree( pxTaskStatusArray );
7369 }
7370 else
7371 {
7372 mtCOVERAGE_TEST_MARKER();
7373 }
7374
7375 traceRETURN_vTaskListTasks();
7376 }
7377
7378 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
7379 /*----------------------------------------------------------*/
7380
7381 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configUSE_TRACE_FACILITY == 1 ) )
7382
vTaskGetRunTimeStatistics(char * pcWriteBuffer,size_t uxBufferLength)7383 void vTaskGetRunTimeStatistics( char * pcWriteBuffer,
7384 size_t uxBufferLength )
7385 {
7386 TaskStatus_t * pxTaskStatusArray;
7387 size_t uxConsumedBufferLength = 0;
7388 size_t uxCharsWrittenBySnprintf;
7389 int iSnprintfReturnValue;
7390 BaseType_t xOutputBufferFull = pdFALSE;
7391 UBaseType_t uxArraySize, x;
7392 configRUN_TIME_COUNTER_TYPE ulTotalTime = 0;
7393 configRUN_TIME_COUNTER_TYPE ulStatsAsPercentage;
7394
7395 traceENTER_vTaskGetRunTimeStatistics( pcWriteBuffer, uxBufferLength );
7396
7397 /*
7398 * PLEASE NOTE:
7399 *
7400 * This function is provided for convenience only, and is used by many
7401 * of the demo applications. Do not consider it to be part of the
7402 * scheduler.
7403 *
7404 * vTaskGetRunTimeStatistics() calls uxTaskGetSystemState(), then formats part
7405 * of the uxTaskGetSystemState() output into a human readable table that
7406 * displays the amount of time each task has spent in the Running state
7407 * in both absolute and percentage terms.
7408 *
7409 * vTaskGetRunTimeStatistics() has a dependency on the snprintf() C library
7410 * function that might bloat the code size, use a lot of stack, and
7411 * provide different results on different platforms. An alternative,
7412 * tiny, third party, and limited functionality implementation of
7413 * snprintf() is provided in many of the FreeRTOS/Demo sub-directories in
7414 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
7415 * a full snprintf() implementation!).
7416 *
7417 * It is recommended that production systems call uxTaskGetSystemState()
7418 * directly to get access to raw stats data, rather than indirectly
7419 * through a call to vTaskGetRunTimeStatistics().
7420 */
7421
7422 /* Make sure the write buffer does not contain a string. */
7423 *pcWriteBuffer = ( char ) 0x00;
7424
7425 /* Take a snapshot of the number of tasks in case it changes while this
7426 * function is executing. */
7427 uxArraySize = uxCurrentNumberOfTasks;
7428
7429 /* Allocate an array index for each task. NOTE! If
7430 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
7431 * equate to NULL. */
7432 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
7433 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
7434 /* coverity[misra_c_2012_rule_11_5_violation] */
7435 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
7436
7437 if( pxTaskStatusArray != NULL )
7438 {
7439 /* Generate the (binary) data. */
7440 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
7441
7442 /* For percentage calculations. */
7443 ulTotalTime /= ( ( configRUN_TIME_COUNTER_TYPE ) 100U );
7444
7445 /* Avoid divide by zero errors. */
7446 if( ulTotalTime > 0U )
7447 {
7448 /* Create a human readable table from the binary data. */
7449 for( x = 0; x < uxArraySize; x++ )
7450 {
7451 /* What percentage of the total run time has the task used?
7452 * This will always be rounded down to the nearest integer.
7453 * ulTotalRunTime has already been divided by 100. */
7454 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
7455
7456 /* Is there enough space in the buffer to hold task name? */
7457 if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
7458 {
7459 /* Write the task name to the string, padding with
7460 * spaces so it can be printed in tabular form more
7461 * easily. */
7462 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
7463 /* Do not count the terminating null character. */
7464 uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
7465
7466 /* Is there space left in the buffer? -1 is done because snprintf
7467 * writes a terminating null character. So we are essentially
7468 * checking if the buffer has space to write at least one non-null
7469 * character. */
7470 if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
7471 {
7472 if( ulStatsAsPercentage > 0U )
7473 {
7474 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
7475 {
7476 /* MISRA Ref 21.6.1 [snprintf for utility] */
7477 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7478 /* coverity[misra_c_2012_rule_21_6_violation] */
7479 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7480 uxBufferLength - uxConsumedBufferLength,
7481 "\t%lu\t\t%lu%%\r\n",
7482 pxTaskStatusArray[ x ].ulRunTimeCounter,
7483 ulStatsAsPercentage );
7484 }
7485 #else /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7486 {
7487 /* sizeof( int ) == sizeof( long ) so a smaller
7488 * printf() library can be used. */
7489 /* MISRA Ref 21.6.1 [snprintf for utility] */
7490 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7491 /* coverity[misra_c_2012_rule_21_6_violation] */
7492 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7493 uxBufferLength - uxConsumedBufferLength,
7494 "\t%u\t\t%u%%\r\n",
7495 ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter,
7496 ( unsigned int ) ulStatsAsPercentage );
7497 }
7498 #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7499 }
7500 else
7501 {
7502 /* If the percentage is zero here then the task has
7503 * consumed less than 1% of the total run time. */
7504 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
7505 {
7506 /* MISRA Ref 21.6.1 [snprintf for utility] */
7507 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7508 /* coverity[misra_c_2012_rule_21_6_violation] */
7509 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7510 uxBufferLength - uxConsumedBufferLength,
7511 "\t%lu\t\t<1%%\r\n",
7512 pxTaskStatusArray[ x ].ulRunTimeCounter );
7513 }
7514 #else
7515 {
7516 /* sizeof( int ) == sizeof( long ) so a smaller
7517 * printf() library can be used. */
7518 /* MISRA Ref 21.6.1 [snprintf for utility] */
7519 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7520 /* coverity[misra_c_2012_rule_21_6_violation] */
7521 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7522 uxBufferLength - uxConsumedBufferLength,
7523 "\t%u\t\t<1%%\r\n",
7524 ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter );
7525 }
7526 #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7527 }
7528
7529 uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
7530 uxConsumedBufferLength += uxCharsWrittenBySnprintf;
7531 pcWriteBuffer += uxCharsWrittenBySnprintf;
7532 }
7533 else
7534 {
7535 xOutputBufferFull = pdTRUE;
7536 }
7537 }
7538 else
7539 {
7540 xOutputBufferFull = pdTRUE;
7541 }
7542
7543 if( xOutputBufferFull == pdTRUE )
7544 {
7545 break;
7546 }
7547 }
7548 }
7549 else
7550 {
7551 mtCOVERAGE_TEST_MARKER();
7552 }
7553
7554 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
7555 * is 0 then vPortFree() will be #defined to nothing. */
7556 vPortFree( pxTaskStatusArray );
7557 }
7558 else
7559 {
7560 mtCOVERAGE_TEST_MARKER();
7561 }
7562
7563 traceRETURN_vTaskGetRunTimeStatistics();
7564 }
7565
7566 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
7567 /*-----------------------------------------------------------*/
7568
uxTaskResetEventItemValue(void)7569 TickType_t uxTaskResetEventItemValue( void )
7570 {
7571 TickType_t uxReturn;
7572
7573 traceENTER_uxTaskResetEventItemValue();
7574
7575 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
7576
7577 /* Reset the event list item to its normal value - so it can be used with
7578 * queues and semaphores. */
7579 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) );
7580
7581 traceRETURN_uxTaskResetEventItemValue( uxReturn );
7582
7583 return uxReturn;
7584 }
7585 /*-----------------------------------------------------------*/
7586
7587 #if ( configUSE_MUTEXES == 1 )
7588
pvTaskIncrementMutexHeldCount(void)7589 TaskHandle_t pvTaskIncrementMutexHeldCount( void )
7590 {
7591 TCB_t * pxTCB;
7592
7593 traceENTER_pvTaskIncrementMutexHeldCount();
7594
7595 pxTCB = pxCurrentTCB;
7596
7597 /* If xSemaphoreCreateMutex() is called before any tasks have been created
7598 * then pxCurrentTCB will be NULL. */
7599 if( pxTCB != NULL )
7600 {
7601 ( pxTCB->uxMutexesHeld )++;
7602 }
7603
7604 traceRETURN_pvTaskIncrementMutexHeldCount( pxTCB );
7605
7606 return pxTCB;
7607 }
7608
7609 #endif /* configUSE_MUTEXES */
7610 /*-----------------------------------------------------------*/
7611
7612 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7613
ulTaskGenericNotifyTake(UBaseType_t uxIndexToWaitOn,BaseType_t xClearCountOnExit,TickType_t xTicksToWait)7614 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWaitOn,
7615 BaseType_t xClearCountOnExit,
7616 TickType_t xTicksToWait )
7617 {
7618 uint32_t ulReturn;
7619 BaseType_t xAlreadyYielded, xShouldBlock = pdFALSE;
7620
7621 traceENTER_ulTaskGenericNotifyTake( uxIndexToWaitOn, xClearCountOnExit, xTicksToWait );
7622
7623 configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7624
7625 /* We suspend the scheduler here as prvAddCurrentTaskToDelayedList is a
7626 * non-deterministic operation. */
7627 vTaskSuspendAll();
7628 {
7629 /* We MUST enter a critical section to atomically check if a notification
7630 * has occurred and set the flag to indicate that we are waiting for
7631 * a notification. If we do not do so, a notification sent from an ISR
7632 * will get lost. */
7633 taskENTER_CRITICAL();
7634 {
7635 /* Only block if the notification count is not already non-zero. */
7636 if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] == 0U )
7637 {
7638 /* Mark this task as waiting for a notification. */
7639 pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
7640
7641 if( xTicksToWait > ( TickType_t ) 0 )
7642 {
7643 xShouldBlock = pdTRUE;
7644 }
7645 else
7646 {
7647 mtCOVERAGE_TEST_MARKER();
7648 }
7649 }
7650 else
7651 {
7652 mtCOVERAGE_TEST_MARKER();
7653 }
7654 }
7655 taskEXIT_CRITICAL();
7656
7657 /* We are now out of the critical section but the scheduler is still
7658 * suspended, so we are safe to do non-deterministic operations such
7659 * as prvAddCurrentTaskToDelayedList. */
7660 if( xShouldBlock == pdTRUE )
7661 {
7662 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWaitOn );
7663 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
7664 }
7665 else
7666 {
7667 mtCOVERAGE_TEST_MARKER();
7668 }
7669 }
7670 xAlreadyYielded = xTaskResumeAll();
7671
7672 /* Force a reschedule if xTaskResumeAll has not already done so. */
7673 if( ( xShouldBlock == pdTRUE ) && ( xAlreadyYielded == pdFALSE ) )
7674 {
7675 taskYIELD_WITHIN_API();
7676 }
7677 else
7678 {
7679 mtCOVERAGE_TEST_MARKER();
7680 }
7681
7682 taskENTER_CRITICAL();
7683 {
7684 traceTASK_NOTIFY_TAKE( uxIndexToWaitOn );
7685 ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
7686
7687 if( ulReturn != 0U )
7688 {
7689 if( xClearCountOnExit != pdFALSE )
7690 {
7691 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ( uint32_t ) 0U;
7692 }
7693 else
7694 {
7695 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ulReturn - ( uint32_t ) 1;
7696 }
7697 }
7698 else
7699 {
7700 mtCOVERAGE_TEST_MARKER();
7701 }
7702
7703 pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
7704 }
7705 taskEXIT_CRITICAL();
7706
7707 traceRETURN_ulTaskGenericNotifyTake( ulReturn );
7708
7709 return ulReturn;
7710 }
7711
7712 #endif /* configUSE_TASK_NOTIFICATIONS */
7713 /*-----------------------------------------------------------*/
7714
7715 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7716
xTaskGenericNotifyWait(UBaseType_t uxIndexToWaitOn,uint32_t ulBitsToClearOnEntry,uint32_t ulBitsToClearOnExit,uint32_t * pulNotificationValue,TickType_t xTicksToWait)7717 BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWaitOn,
7718 uint32_t ulBitsToClearOnEntry,
7719 uint32_t ulBitsToClearOnExit,
7720 uint32_t * pulNotificationValue,
7721 TickType_t xTicksToWait )
7722 {
7723 BaseType_t xReturn, xAlreadyYielded, xShouldBlock = pdFALSE;
7724
7725 traceENTER_xTaskGenericNotifyWait( uxIndexToWaitOn, ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait );
7726
7727 configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7728
7729 /* We suspend the scheduler here as prvAddCurrentTaskToDelayedList is a
7730 * non-deterministic operation. */
7731 vTaskSuspendAll();
7732 {
7733 /* We MUST enter a critical section to atomically check and update the
7734 * task notification value. If we do not do so, a notification from
7735 * an ISR will get lost. */
7736 taskENTER_CRITICAL();
7737 {
7738 /* Only block if a notification is not already pending. */
7739 if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
7740 {
7741 /* Clear bits in the task's notification value as bits may get
7742 * set by the notifying task or interrupt. This can be used
7743 * to clear the value to zero. */
7744 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnEntry;
7745
7746 /* Mark this task as waiting for a notification. */
7747 pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
7748
7749 if( xTicksToWait > ( TickType_t ) 0 )
7750 {
7751 xShouldBlock = pdTRUE;
7752 }
7753 else
7754 {
7755 mtCOVERAGE_TEST_MARKER();
7756 }
7757 }
7758 else
7759 {
7760 mtCOVERAGE_TEST_MARKER();
7761 }
7762 }
7763 taskEXIT_CRITICAL();
7764
7765 /* We are now out of the critical section but the scheduler is still
7766 * suspended, so we are safe to do non-deterministic operations such
7767 * as prvAddCurrentTaskToDelayedList. */
7768 if( xShouldBlock == pdTRUE )
7769 {
7770 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWaitOn );
7771 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
7772 }
7773 else
7774 {
7775 mtCOVERAGE_TEST_MARKER();
7776 }
7777 }
7778 xAlreadyYielded = xTaskResumeAll();
7779
7780 /* Force a reschedule if xTaskResumeAll has not already done so. */
7781 if( ( xShouldBlock == pdTRUE ) && ( xAlreadyYielded == pdFALSE ) )
7782 {
7783 taskYIELD_WITHIN_API();
7784 }
7785 else
7786 {
7787 mtCOVERAGE_TEST_MARKER();
7788 }
7789
7790 taskENTER_CRITICAL();
7791 {
7792 traceTASK_NOTIFY_WAIT( uxIndexToWaitOn );
7793
7794 if( pulNotificationValue != NULL )
7795 {
7796 /* Output the current notification value, which may or may not
7797 * have changed. */
7798 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
7799 }
7800
7801 /* If ucNotifyValue is set then either the task never entered the
7802 * blocked state (because a notification was already pending) or the
7803 * task unblocked because of a notification. Otherwise the task
7804 * unblocked because of a timeout. */
7805 if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
7806 {
7807 /* A notification was not received. */
7808 xReturn = pdFALSE;
7809 }
7810 else
7811 {
7812 /* A notification was already pending or a notification was
7813 * received while the task was waiting. */
7814 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnExit;
7815 xReturn = pdTRUE;
7816 }
7817
7818 pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
7819 }
7820 taskEXIT_CRITICAL();
7821
7822 traceRETURN_xTaskGenericNotifyWait( xReturn );
7823
7824 return xReturn;
7825 }
7826
7827 #endif /* configUSE_TASK_NOTIFICATIONS */
7828 /*-----------------------------------------------------------*/
7829
7830 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7831
xTaskGenericNotify(TaskHandle_t xTaskToNotify,UBaseType_t uxIndexToNotify,uint32_t ulValue,eNotifyAction eAction,uint32_t * pulPreviousNotificationValue)7832 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
7833 UBaseType_t uxIndexToNotify,
7834 uint32_t ulValue,
7835 eNotifyAction eAction,
7836 uint32_t * pulPreviousNotificationValue )
7837 {
7838 TCB_t * pxTCB;
7839 BaseType_t xReturn = pdPASS;
7840 uint8_t ucOriginalNotifyState;
7841
7842 traceENTER_xTaskGenericNotify( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue );
7843
7844 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7845 configASSERT( xTaskToNotify );
7846 pxTCB = xTaskToNotify;
7847
7848 taskENTER_CRITICAL();
7849 {
7850 if( pulPreviousNotificationValue != NULL )
7851 {
7852 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
7853 }
7854
7855 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
7856
7857 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
7858
7859 switch( eAction )
7860 {
7861 case eSetBits:
7862 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
7863 break;
7864
7865 case eIncrement:
7866 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
7867 break;
7868
7869 case eSetValueWithOverwrite:
7870 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
7871 break;
7872
7873 case eSetValueWithoutOverwrite:
7874
7875 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
7876 {
7877 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
7878 }
7879 else
7880 {
7881 /* The value could not be written to the task. */
7882 xReturn = pdFAIL;
7883 }
7884
7885 break;
7886
7887 case eNoAction:
7888
7889 /* The task is being notified without its notify value being
7890 * updated. */
7891 break;
7892
7893 default:
7894
7895 /* Should not get here if all enums are handled.
7896 * Artificially force an assert by testing a value the
7897 * compiler can't assume is const. */
7898 configASSERT( xTickCount == ( TickType_t ) 0 );
7899
7900 break;
7901 }
7902
7903 traceTASK_NOTIFY( uxIndexToNotify );
7904
7905 /* If the task is in the blocked state specifically to wait for a
7906 * notification then unblock it now. */
7907 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
7908 {
7909 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
7910 prvAddTaskToReadyList( pxTCB );
7911
7912 /* The task should not have been on an event list. */
7913 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
7914
7915 #if ( configUSE_TICKLESS_IDLE != 0 )
7916 {
7917 /* If a task is blocked waiting for a notification then
7918 * xNextTaskUnblockTime might be set to the blocked task's time
7919 * out time. If the task is unblocked for a reason other than
7920 * a timeout xNextTaskUnblockTime is normally left unchanged,
7921 * because it will automatically get reset to a new value when
7922 * the tick count equals xNextTaskUnblockTime. However if
7923 * tickless idling is used it might be more important to enter
7924 * sleep mode at the earliest possible time - so reset
7925 * xNextTaskUnblockTime here to ensure it is updated at the
7926 * earliest possible time. */
7927 prvResetNextTaskUnblockTime();
7928 }
7929 #endif
7930
7931 /* Check if the notified task has a priority above the currently
7932 * executing task. */
7933 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
7934 }
7935 else
7936 {
7937 mtCOVERAGE_TEST_MARKER();
7938 }
7939 }
7940 taskEXIT_CRITICAL();
7941
7942 traceRETURN_xTaskGenericNotify( xReturn );
7943
7944 return xReturn;
7945 }
7946
7947 #endif /* configUSE_TASK_NOTIFICATIONS */
7948 /*-----------------------------------------------------------*/
7949
7950 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7951
xTaskGenericNotifyFromISR(TaskHandle_t xTaskToNotify,UBaseType_t uxIndexToNotify,uint32_t ulValue,eNotifyAction eAction,uint32_t * pulPreviousNotificationValue,BaseType_t * pxHigherPriorityTaskWoken)7952 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
7953 UBaseType_t uxIndexToNotify,
7954 uint32_t ulValue,
7955 eNotifyAction eAction,
7956 uint32_t * pulPreviousNotificationValue,
7957 BaseType_t * pxHigherPriorityTaskWoken )
7958 {
7959 TCB_t * pxTCB;
7960 uint8_t ucOriginalNotifyState;
7961 BaseType_t xReturn = pdPASS;
7962 UBaseType_t uxSavedInterruptStatus;
7963
7964 traceENTER_xTaskGenericNotifyFromISR( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken );
7965
7966 configASSERT( xTaskToNotify );
7967 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7968
7969 /* RTOS ports that support interrupt nesting have the concept of a
7970 * maximum system call (or maximum API call) interrupt priority.
7971 * Interrupts that are above the maximum system call priority are keep
7972 * permanently enabled, even when the RTOS kernel is in a critical section,
7973 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
7974 * is defined in FreeRTOSConfig.h then
7975 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
7976 * failure if a FreeRTOS API function is called from an interrupt that has
7977 * been assigned a priority above the configured maximum system call
7978 * priority. Only FreeRTOS functions that end in FromISR can be called
7979 * from interrupts that have been assigned a priority at or (logically)
7980 * below the maximum system call interrupt priority. FreeRTOS maintains a
7981 * separate interrupt safe API to ensure interrupt entry is as fast and as
7982 * simple as possible. More information (albeit Cortex-M specific) is
7983 * provided on the following link:
7984 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
7985 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
7986
7987 pxTCB = xTaskToNotify;
7988
7989 /* MISRA Ref 4.7.1 [Return value shall be checked] */
7990 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
7991 /* coverity[misra_c_2012_directive_4_7_violation] */
7992 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
7993 {
7994 if( pulPreviousNotificationValue != NULL )
7995 {
7996 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
7997 }
7998
7999 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
8000 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
8001
8002 switch( eAction )
8003 {
8004 case eSetBits:
8005 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
8006 break;
8007
8008 case eIncrement:
8009 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
8010 break;
8011
8012 case eSetValueWithOverwrite:
8013 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
8014 break;
8015
8016 case eSetValueWithoutOverwrite:
8017
8018 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
8019 {
8020 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
8021 }
8022 else
8023 {
8024 /* The value could not be written to the task. */
8025 xReturn = pdFAIL;
8026 }
8027
8028 break;
8029
8030 case eNoAction:
8031
8032 /* The task is being notified without its notify value being
8033 * updated. */
8034 break;
8035
8036 default:
8037
8038 /* Should not get here if all enums are handled.
8039 * Artificially force an assert by testing a value the
8040 * compiler can't assume is const. */
8041 configASSERT( xTickCount == ( TickType_t ) 0 );
8042 break;
8043 }
8044
8045 traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
8046
8047 /* If the task is in the blocked state specifically to wait for a
8048 * notification then unblock it now. */
8049 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
8050 {
8051 /* The task should not have been on an event list. */
8052 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
8053
8054 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
8055 {
8056 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
8057 prvAddTaskToReadyList( pxTCB );
8058 }
8059 else
8060 {
8061 /* The delayed and ready lists cannot be accessed, so hold
8062 * this task pending until the scheduler is resumed. */
8063 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
8064 }
8065
8066 #if ( configNUMBER_OF_CORES == 1 )
8067 {
8068 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
8069 {
8070 /* The notified task has a priority above the currently
8071 * executing task so a yield is required. */
8072 if( pxHigherPriorityTaskWoken != NULL )
8073 {
8074 *pxHigherPriorityTaskWoken = pdTRUE;
8075 }
8076
8077 /* Mark that a yield is pending in case the user is not
8078 * using the "xHigherPriorityTaskWoken" parameter to an ISR
8079 * safe FreeRTOS function. */
8080 xYieldPendings[ 0 ] = pdTRUE;
8081 }
8082 else
8083 {
8084 mtCOVERAGE_TEST_MARKER();
8085 }
8086 }
8087 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
8088 {
8089 #if ( configUSE_PREEMPTION == 1 )
8090 {
8091 prvYieldForTask( pxTCB );
8092
8093 if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
8094 {
8095 if( pxHigherPriorityTaskWoken != NULL )
8096 {
8097 *pxHigherPriorityTaskWoken = pdTRUE;
8098 }
8099 }
8100 }
8101 #endif /* if ( configUSE_PREEMPTION == 1 ) */
8102 }
8103 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8104 }
8105 }
8106 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
8107
8108 traceRETURN_xTaskGenericNotifyFromISR( xReturn );
8109
8110 return xReturn;
8111 }
8112
8113 #endif /* configUSE_TASK_NOTIFICATIONS */
8114 /*-----------------------------------------------------------*/
8115
8116 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8117
vTaskGenericNotifyGiveFromISR(TaskHandle_t xTaskToNotify,UBaseType_t uxIndexToNotify,BaseType_t * pxHigherPriorityTaskWoken)8118 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
8119 UBaseType_t uxIndexToNotify,
8120 BaseType_t * pxHigherPriorityTaskWoken )
8121 {
8122 TCB_t * pxTCB;
8123 uint8_t ucOriginalNotifyState;
8124 UBaseType_t uxSavedInterruptStatus;
8125
8126 traceENTER_vTaskGenericNotifyGiveFromISR( xTaskToNotify, uxIndexToNotify, pxHigherPriorityTaskWoken );
8127
8128 configASSERT( xTaskToNotify );
8129 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8130
8131 /* RTOS ports that support interrupt nesting have the concept of a
8132 * maximum system call (or maximum API call) interrupt priority.
8133 * Interrupts that are above the maximum system call priority are keep
8134 * permanently enabled, even when the RTOS kernel is in a critical section,
8135 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
8136 * is defined in FreeRTOSConfig.h then
8137 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
8138 * failure if a FreeRTOS API function is called from an interrupt that has
8139 * been assigned a priority above the configured maximum system call
8140 * priority. Only FreeRTOS functions that end in FromISR can be called
8141 * from interrupts that have been assigned a priority at or (logically)
8142 * below the maximum system call interrupt priority. FreeRTOS maintains a
8143 * separate interrupt safe API to ensure interrupt entry is as fast and as
8144 * simple as possible. More information (albeit Cortex-M specific) is
8145 * provided on the following link:
8146 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
8147 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
8148
8149 pxTCB = xTaskToNotify;
8150
8151 /* MISRA Ref 4.7.1 [Return value shall be checked] */
8152 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
8153 /* coverity[misra_c_2012_directive_4_7_violation] */
8154 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
8155 {
8156 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
8157 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
8158
8159 /* 'Giving' is equivalent to incrementing a count in a counting
8160 * semaphore. */
8161 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
8162
8163 traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
8164
8165 /* If the task is in the blocked state specifically to wait for a
8166 * notification then unblock it now. */
8167 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
8168 {
8169 /* The task should not have been on an event list. */
8170 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
8171
8172 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
8173 {
8174 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
8175 prvAddTaskToReadyList( pxTCB );
8176 }
8177 else
8178 {
8179 /* The delayed and ready lists cannot be accessed, so hold
8180 * this task pending until the scheduler is resumed. */
8181 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
8182 }
8183
8184 #if ( configNUMBER_OF_CORES == 1 )
8185 {
8186 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
8187 {
8188 /* The notified task has a priority above the currently
8189 * executing task so a yield is required. */
8190 if( pxHigherPriorityTaskWoken != NULL )
8191 {
8192 *pxHigherPriorityTaskWoken = pdTRUE;
8193 }
8194
8195 /* Mark that a yield is pending in case the user is not
8196 * using the "xHigherPriorityTaskWoken" parameter in an ISR
8197 * safe FreeRTOS function. */
8198 xYieldPendings[ 0 ] = pdTRUE;
8199 }
8200 else
8201 {
8202 mtCOVERAGE_TEST_MARKER();
8203 }
8204 }
8205 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
8206 {
8207 #if ( configUSE_PREEMPTION == 1 )
8208 {
8209 prvYieldForTask( pxTCB );
8210
8211 if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
8212 {
8213 if( pxHigherPriorityTaskWoken != NULL )
8214 {
8215 *pxHigherPriorityTaskWoken = pdTRUE;
8216 }
8217 }
8218 }
8219 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
8220 }
8221 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8222 }
8223 }
8224 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
8225
8226 traceRETURN_vTaskGenericNotifyGiveFromISR();
8227 }
8228
8229 #endif /* configUSE_TASK_NOTIFICATIONS */
8230 /*-----------------------------------------------------------*/
8231
8232 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8233
xTaskGenericNotifyStateClear(TaskHandle_t xTask,UBaseType_t uxIndexToClear)8234 BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
8235 UBaseType_t uxIndexToClear )
8236 {
8237 TCB_t * pxTCB;
8238 BaseType_t xReturn;
8239
8240 traceENTER_xTaskGenericNotifyStateClear( xTask, uxIndexToClear );
8241
8242 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8243
8244 /* If null is passed in here then it is the calling task that is having
8245 * its notification state cleared. */
8246 pxTCB = prvGetTCBFromHandle( xTask );
8247
8248 taskENTER_CRITICAL();
8249 {
8250 if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
8251 {
8252 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
8253 xReturn = pdPASS;
8254 }
8255 else
8256 {
8257 xReturn = pdFAIL;
8258 }
8259 }
8260 taskEXIT_CRITICAL();
8261
8262 traceRETURN_xTaskGenericNotifyStateClear( xReturn );
8263
8264 return xReturn;
8265 }
8266
8267 #endif /* configUSE_TASK_NOTIFICATIONS */
8268 /*-----------------------------------------------------------*/
8269
8270 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8271
ulTaskGenericNotifyValueClear(TaskHandle_t xTask,UBaseType_t uxIndexToClear,uint32_t ulBitsToClear)8272 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
8273 UBaseType_t uxIndexToClear,
8274 uint32_t ulBitsToClear )
8275 {
8276 TCB_t * pxTCB;
8277 uint32_t ulReturn;
8278
8279 traceENTER_ulTaskGenericNotifyValueClear( xTask, uxIndexToClear, ulBitsToClear );
8280
8281 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8282
8283 /* If null is passed in here then it is the calling task that is having
8284 * its notification state cleared. */
8285 pxTCB = prvGetTCBFromHandle( xTask );
8286
8287 taskENTER_CRITICAL();
8288 {
8289 /* Return the notification as it was before the bits were cleared,
8290 * then clear the bit mask. */
8291 ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
8292 pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
8293 }
8294 taskEXIT_CRITICAL();
8295
8296 traceRETURN_ulTaskGenericNotifyValueClear( ulReturn );
8297
8298 return ulReturn;
8299 }
8300
8301 #endif /* configUSE_TASK_NOTIFICATIONS */
8302 /*-----------------------------------------------------------*/
8303
8304 #if ( configGENERATE_RUN_TIME_STATS == 1 )
8305
ulTaskGetRunTimeCounter(const TaskHandle_t xTask)8306 configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimeCounter( const TaskHandle_t xTask )
8307 {
8308 TCB_t * pxTCB;
8309
8310 traceENTER_ulTaskGetRunTimeCounter( xTask );
8311
8312 pxTCB = prvGetTCBFromHandle( xTask );
8313
8314 traceRETURN_ulTaskGetRunTimeCounter( pxTCB->ulRunTimeCounter );
8315
8316 return pxTCB->ulRunTimeCounter;
8317 }
8318
8319 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8320 /*-----------------------------------------------------------*/
8321
8322 #if ( configGENERATE_RUN_TIME_STATS == 1 )
8323
ulTaskGetRunTimePercent(const TaskHandle_t xTask)8324 configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimePercent( const TaskHandle_t xTask )
8325 {
8326 TCB_t * pxTCB;
8327 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
8328
8329 traceENTER_ulTaskGetRunTimePercent( xTask );
8330
8331 ulTotalTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
8332
8333 /* For percentage calculations. */
8334 ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
8335
8336 /* Avoid divide by zero errors. */
8337 if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
8338 {
8339 pxTCB = prvGetTCBFromHandle( xTask );
8340 ulReturn = pxTCB->ulRunTimeCounter / ulTotalTime;
8341 }
8342 else
8343 {
8344 ulReturn = 0;
8345 }
8346
8347 traceRETURN_ulTaskGetRunTimePercent( ulReturn );
8348
8349 return ulReturn;
8350 }
8351
8352 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8353 /*-----------------------------------------------------------*/
8354
8355 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
8356
ulTaskGetIdleRunTimeCounter(void)8357 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void )
8358 {
8359 configRUN_TIME_COUNTER_TYPE ulReturn = 0;
8360 BaseType_t i;
8361
8362 traceENTER_ulTaskGetIdleRunTimeCounter();
8363
8364 for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
8365 {
8366 ulReturn += xIdleTaskHandles[ i ]->ulRunTimeCounter;
8367 }
8368
8369 traceRETURN_ulTaskGetIdleRunTimeCounter( ulReturn );
8370
8371 return ulReturn;
8372 }
8373
8374 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
8375 /*-----------------------------------------------------------*/
8376
8377 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
8378
ulTaskGetIdleRunTimePercent(void)8379 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void )
8380 {
8381 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
8382 configRUN_TIME_COUNTER_TYPE ulRunTimeCounter = 0;
8383 BaseType_t i;
8384
8385 traceENTER_ulTaskGetIdleRunTimePercent();
8386
8387 ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE() * configNUMBER_OF_CORES;
8388
8389 /* For percentage calculations. */
8390 ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
8391
8392 /* Avoid divide by zero errors. */
8393 if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
8394 {
8395 for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
8396 {
8397 ulRunTimeCounter += xIdleTaskHandles[ i ]->ulRunTimeCounter;
8398 }
8399
8400 ulReturn = ulRunTimeCounter / ulTotalTime;
8401 }
8402 else
8403 {
8404 ulReturn = 0;
8405 }
8406
8407 traceRETURN_ulTaskGetIdleRunTimePercent( ulReturn );
8408
8409 return ulReturn;
8410 }
8411
8412 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
8413 /*-----------------------------------------------------------*/
8414
prvAddCurrentTaskToDelayedList(TickType_t xTicksToWait,const BaseType_t xCanBlockIndefinitely)8415 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
8416 const BaseType_t xCanBlockIndefinitely )
8417 {
8418 TickType_t xTimeToWake;
8419 const TickType_t xConstTickCount = xTickCount;
8420 List_t * const pxDelayedList = pxDelayedTaskList;
8421 List_t * const pxOverflowDelayedList = pxOverflowDelayedTaskList;
8422
8423 #if ( INCLUDE_xTaskAbortDelay == 1 )
8424 {
8425 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
8426 * reset to pdFALSE so it can be detected as having been set to pdTRUE
8427 * when the task leaves the Blocked state. */
8428 pxCurrentTCB->ucDelayAborted = ( uint8_t ) pdFALSE;
8429 }
8430 #endif
8431
8432 /* Remove the task from the ready list before adding it to the blocked list
8433 * as the same list item is used for both lists. */
8434 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
8435 {
8436 /* The current task must be in a ready list, so there is no need to
8437 * check, and the port reset macro can be called directly. */
8438 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
8439 }
8440 else
8441 {
8442 mtCOVERAGE_TEST_MARKER();
8443 }
8444
8445 #if ( INCLUDE_vTaskSuspend == 1 )
8446 {
8447 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
8448 {
8449 /* Add the task to the suspended task list instead of a delayed task
8450 * list to ensure it is not woken by a timing event. It will block
8451 * indefinitely. */
8452 listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
8453 }
8454 else
8455 {
8456 /* Calculate the time at which the task should be woken if the event
8457 * does not occur. This may overflow but this doesn't matter, the
8458 * kernel will manage it correctly. */
8459 xTimeToWake = xConstTickCount + xTicksToWait;
8460
8461 /* The list item will be inserted in wake time order. */
8462 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
8463
8464 if( xTimeToWake < xConstTickCount )
8465 {
8466 /* Wake time has overflowed. Place this item in the overflow
8467 * list. */
8468 traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
8469 vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
8470 }
8471 else
8472 {
8473 /* The wake time has not overflowed, so the current block list
8474 * is used. */
8475 traceMOVED_TASK_TO_DELAYED_LIST();
8476 vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
8477
8478 /* If the task entering the blocked state was placed at the
8479 * head of the list of blocked tasks then xNextTaskUnblockTime
8480 * needs to be updated too. */
8481 if( xTimeToWake < xNextTaskUnblockTime )
8482 {
8483 xNextTaskUnblockTime = xTimeToWake;
8484 }
8485 else
8486 {
8487 mtCOVERAGE_TEST_MARKER();
8488 }
8489 }
8490 }
8491 }
8492 #else /* INCLUDE_vTaskSuspend */
8493 {
8494 /* Calculate the time at which the task should be woken if the event
8495 * does not occur. This may overflow but this doesn't matter, the kernel
8496 * will manage it correctly. */
8497 xTimeToWake = xConstTickCount + xTicksToWait;
8498
8499 /* The list item will be inserted in wake time order. */
8500 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
8501
8502 if( xTimeToWake < xConstTickCount )
8503 {
8504 traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
8505 /* Wake time has overflowed. Place this item in the overflow list. */
8506 vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
8507 }
8508 else
8509 {
8510 traceMOVED_TASK_TO_DELAYED_LIST();
8511 /* The wake time has not overflowed, so the current block list is used. */
8512 vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
8513
8514 /* If the task entering the blocked state was placed at the head of the
8515 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
8516 * too. */
8517 if( xTimeToWake < xNextTaskUnblockTime )
8518 {
8519 xNextTaskUnblockTime = xTimeToWake;
8520 }
8521 else
8522 {
8523 mtCOVERAGE_TEST_MARKER();
8524 }
8525 }
8526
8527 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
8528 ( void ) xCanBlockIndefinitely;
8529 }
8530 #endif /* INCLUDE_vTaskSuspend */
8531 }
8532 /*-----------------------------------------------------------*/
8533
8534 #if ( portUSING_MPU_WRAPPERS == 1 )
8535
xTaskGetMPUSettings(TaskHandle_t xTask)8536 xMPU_SETTINGS * xTaskGetMPUSettings( TaskHandle_t xTask )
8537 {
8538 TCB_t * pxTCB;
8539
8540 traceENTER_xTaskGetMPUSettings( xTask );
8541
8542 pxTCB = prvGetTCBFromHandle( xTask );
8543
8544 traceRETURN_xTaskGetMPUSettings( &( pxTCB->xMPUSettings ) );
8545
8546 return &( pxTCB->xMPUSettings );
8547 }
8548
8549 #endif /* portUSING_MPU_WRAPPERS */
8550 /*-----------------------------------------------------------*/
8551
8552 /* Code below here allows additional code to be inserted into this source file,
8553 * especially where access to file scope functions and data is needed (for example
8554 * when performing module tests). */
8555
8556 #ifdef FREERTOS_MODULE_TEST
8557 #include "tasks_test_access_functions.h"
8558 #endif
8559
8560
8561 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
8562
8563 #include "freertos_tasks_c_additions.h"
8564
8565 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
freertos_tasks_c_additions_init(void)8566 static void freertos_tasks_c_additions_init( void )
8567 {
8568 FREERTOS_TASKS_C_ADDITIONS_INIT();
8569 }
8570 #endif
8571
8572 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
8573 /*-----------------------------------------------------------*/
8574
8575 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
8576
8577 /*
8578 * This is the kernel provided implementation of vApplicationGetIdleTaskMemory()
8579 * to provide the memory that is used by the Idle task. It is used when
8580 * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
8581 * it's own implementation of vApplicationGetIdleTaskMemory by setting
8582 * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
8583 */
vApplicationGetIdleTaskMemory(StaticTask_t ** ppxIdleTaskTCBBuffer,StackType_t ** ppxIdleTaskStackBuffer,configSTACK_DEPTH_TYPE * puxIdleTaskStackSize)8584 void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
8585 StackType_t ** ppxIdleTaskStackBuffer,
8586 configSTACK_DEPTH_TYPE * puxIdleTaskStackSize )
8587 {
8588 static StaticTask_t xIdleTaskTCB;
8589 static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
8590
8591 *ppxIdleTaskTCBBuffer = &( xIdleTaskTCB );
8592 *ppxIdleTaskStackBuffer = &( uxIdleTaskStack[ 0 ] );
8593 *puxIdleTaskStackSize = configMINIMAL_STACK_SIZE;
8594 }
8595
8596 #if ( configNUMBER_OF_CORES > 1 )
8597
vApplicationGetPassiveIdleTaskMemory(StaticTask_t ** ppxIdleTaskTCBBuffer,StackType_t ** ppxIdleTaskStackBuffer,configSTACK_DEPTH_TYPE * puxIdleTaskStackSize,BaseType_t xPassiveIdleTaskIndex)8598 void vApplicationGetPassiveIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
8599 StackType_t ** ppxIdleTaskStackBuffer,
8600 configSTACK_DEPTH_TYPE * puxIdleTaskStackSize,
8601 BaseType_t xPassiveIdleTaskIndex )
8602 {
8603 static StaticTask_t xIdleTaskTCBs[ configNUMBER_OF_CORES - 1 ];
8604 static StackType_t uxIdleTaskStacks[ configNUMBER_OF_CORES - 1 ][ configMINIMAL_STACK_SIZE ];
8605
8606 *ppxIdleTaskTCBBuffer = &( xIdleTaskTCBs[ xPassiveIdleTaskIndex ] );
8607 *ppxIdleTaskStackBuffer = &( uxIdleTaskStacks[ xPassiveIdleTaskIndex ][ 0 ] );
8608 *puxIdleTaskStackSize = configMINIMAL_STACK_SIZE;
8609 }
8610
8611 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
8612
8613 #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
8614 /*-----------------------------------------------------------*/
8615
8616 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
8617
8618 /*
8619 * This is the kernel provided implementation of vApplicationGetTimerTaskMemory()
8620 * to provide the memory that is used by the Timer service task. It is used when
8621 * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
8622 * it's own implementation of vApplicationGetTimerTaskMemory by setting
8623 * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
8624 */
vApplicationGetTimerTaskMemory(StaticTask_t ** ppxTimerTaskTCBBuffer,StackType_t ** ppxTimerTaskStackBuffer,configSTACK_DEPTH_TYPE * puxTimerTaskStackSize)8625 void vApplicationGetTimerTaskMemory( StaticTask_t ** ppxTimerTaskTCBBuffer,
8626 StackType_t ** ppxTimerTaskStackBuffer,
8627 configSTACK_DEPTH_TYPE * puxTimerTaskStackSize )
8628 {
8629 static StaticTask_t xTimerTaskTCB;
8630 static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];
8631
8632 *ppxTimerTaskTCBBuffer = &( xTimerTaskTCB );
8633 *ppxTimerTaskStackBuffer = &( uxTimerTaskStack[ 0 ] );
8634 *puxTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
8635 }
8636
8637 #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
8638 /*-----------------------------------------------------------*/
8639
8640 /*
8641 * Reset the state in this file. This state is normally initialized at start up.
8642 * This function must be called by the application before restarting the
8643 * scheduler.
8644 */
vTaskResetState(void)8645 void vTaskResetState( void )
8646 {
8647 BaseType_t xCoreID;
8648
8649 /* Task control block. */
8650 #if ( configNUMBER_OF_CORES == 1 )
8651 {
8652 pxCurrentTCB = NULL;
8653 }
8654 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8655
8656 #if ( INCLUDE_vTaskDelete == 1 )
8657 {
8658 uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
8659 }
8660 #endif /* #if ( INCLUDE_vTaskDelete == 1 ) */
8661
8662 #if ( configUSE_POSIX_ERRNO == 1 )
8663 {
8664 FreeRTOS_errno = 0;
8665 }
8666 #endif /* #if ( configUSE_POSIX_ERRNO == 1 ) */
8667
8668 /* Other file private variables. */
8669 uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
8670 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
8671 uxTopReadyPriority = tskIDLE_PRIORITY;
8672 xSchedulerRunning = pdFALSE;
8673 xPendedTicks = ( TickType_t ) 0U;
8674
8675 for( xCoreID = 0; xCoreID < configNUMBER_OF_CORES; xCoreID++ )
8676 {
8677 xYieldPendings[ xCoreID ] = pdFALSE;
8678 }
8679
8680 xNumOfOverflows = ( BaseType_t ) 0;
8681 uxTaskNumber = ( UBaseType_t ) 0U;
8682 xNextTaskUnblockTime = ( TickType_t ) 0U;
8683
8684 uxSchedulerSuspended = ( UBaseType_t ) 0U;
8685
8686 #if ( configGENERATE_RUN_TIME_STATS == 1 )
8687 {
8688 for( xCoreID = 0; xCoreID < configNUMBER_OF_CORES; xCoreID++ )
8689 {
8690 ulTaskSwitchedInTime[ xCoreID ] = 0U;
8691 ulTotalRunTime[ xCoreID ] = 0U;
8692 }
8693 }
8694 #endif /* #if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8695 }
8696 /*-----------------------------------------------------------*/
8697