1 /*
2 * FreeRTOS Kernel V11.1.0
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4 *
5 * SPDX-License-Identifier: MIT
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
8 * this software and associated documentation files (the "Software"), to deal in
9 * the Software without restriction, including without limitation the rights to
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 * the Software, and to permit persons to whom the Software is furnished to do so,
12 * subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in all
15 * copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * https://www.FreeRTOS.org
25 * https://github.com/FreeRTOS
26 *
27 */
28
29 #include <stdlib.h>
30 #include <string.h>
31
32 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
33 * all the API functions to use the MPU wrappers. That should only be done when
34 * task.h is included from an application file. */
35 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
36
37 #include "FreeRTOS.h"
38 #include "task.h"
39 #include "queue.h"
40
41 #if ( configUSE_CO_ROUTINES == 1 )
42 #include "croutine.h"
43 #endif
44
45 /* The MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
46 * for the header files above, but not in this file, in order to generate the
47 * correct privileged Vs unprivileged linkage and placement. */
48 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
49
50
51 /* Constants used with the cRxLock and cTxLock structure members. */
52 #define queueUNLOCKED ( ( int8_t ) -1 )
53 #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
54 #define queueINT8_MAX ( ( int8_t ) 127 )
55
56 /* When the Queue_t structure is used to represent a base queue its pcHead and
57 * pcTail members are used as pointers into the queue storage area. When the
58 * Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
59 * not necessary, and the pcHead pointer is set to NULL to indicate that the
60 * structure instead holds a pointer to the mutex holder (if any). Map alternative
61 * names to the pcHead and structure member to ensure the readability of the code
62 * is maintained. The QueuePointers_t and SemaphoreData_t types are used to form
63 * a union as their usage is mutually exclusive dependent on what the queue is
64 * being used for. */
65 #define uxQueueType pcHead
66 #define queueQUEUE_IS_MUTEX NULL
67
68 typedef struct QueuePointers
69 {
70 int8_t * pcTail; /**< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
71 int8_t * pcReadFrom; /**< Points to the last place that a queued item was read from when the structure is used as a queue. */
72 } QueuePointers_t;
73
74 typedef struct SemaphoreData
75 {
76 TaskHandle_t xMutexHolder; /**< The handle of the task that holds the mutex. */
77 UBaseType_t uxRecursiveCallCount; /**< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
78 } SemaphoreData_t;
79
80 /* Semaphores do not actually store or copy data, so have an item size of
81 * zero. */
82 #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
83 #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
84
85 #if ( configUSE_PREEMPTION == 0 )
86
87 /* If the cooperative scheduler is being used then a yield should not be
88 * performed just because a higher priority task has been woken. */
89 #define queueYIELD_IF_USING_PREEMPTION()
90 #else
91 #if ( configNUMBER_OF_CORES == 1 )
92 #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
93 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
94 #define queueYIELD_IF_USING_PREEMPTION() vTaskYieldWithinAPI()
95 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
96 #endif
97
98 /*
99 * Definition of the queue used by the scheduler.
100 * Items are queued by copy, not reference. See the following link for the
101 * rationale: https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
102 */
103 typedef struct QueueDefinition /* The old naming convention is used to prevent breaking kernel aware debuggers. */
104 {
105 int8_t * pcHead; /**< Points to the beginning of the queue storage area. */
106 int8_t * pcWriteTo; /**< Points to the free next place in the storage area. */
107
108 union
109 {
110 QueuePointers_t xQueue; /**< Data required exclusively when this structure is used as a queue. */
111 SemaphoreData_t xSemaphore; /**< Data required exclusively when this structure is used as a semaphore. */
112 } u;
113
114 List_t xTasksWaitingToSend; /**< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
115 List_t xTasksWaitingToReceive; /**< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
116
117 volatile UBaseType_t uxMessagesWaiting; /**< The number of items currently in the queue. */
118 UBaseType_t uxLength; /**< The length of the queue defined as the number of items it will hold, not the number of bytes. */
119 UBaseType_t uxItemSize; /**< The size of each items that the queue will hold. */
120
121 volatile int8_t cRxLock; /**< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
122 volatile int8_t cTxLock; /**< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
123
124 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
125 uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
126 #endif
127
128 #if ( configUSE_QUEUE_SETS == 1 )
129 struct QueueDefinition * pxQueueSetContainer;
130 #endif
131
132 #if ( configUSE_TRACE_FACILITY == 1 )
133 UBaseType_t uxQueueNumber;
134 uint8_t ucQueueType;
135 #endif
136 } xQUEUE;
137
138 /* The old xQUEUE name is maintained above then typedefed to the new Queue_t
139 * name below to enable the use of older kernel aware debuggers. */
140 typedef xQUEUE Queue_t;
141
142 /*-----------------------------------------------------------*/
143
144 /*
145 * The queue registry is just a means for kernel aware debuggers to locate
146 * queue structures. It has no other purpose so is an optional component.
147 */
148 #if ( configQUEUE_REGISTRY_SIZE > 0 )
149
150 /* The type stored within the queue registry array. This allows a name
151 * to be assigned to each queue making kernel aware debugging a little
152 * more user friendly. */
153 typedef struct QUEUE_REGISTRY_ITEM
154 {
155 const char * pcQueueName;
156 QueueHandle_t xHandle;
157 } xQueueRegistryItem;
158
159 /* The old xQueueRegistryItem name is maintained above then typedefed to the
160 * new xQueueRegistryItem name below to enable the use of older kernel aware
161 * debuggers. */
162 typedef xQueueRegistryItem QueueRegistryItem_t;
163
164 /* The queue registry is simply an array of QueueRegistryItem_t structures.
165 * The pcQueueName member of a structure being NULL is indicative of the
166 * array position being vacant. */
167
168 /* MISRA Ref 8.4.2 [Declaration shall be visible] */
169 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
170 /* coverity[misra_c_2012_rule_8_4_violation] */
171 PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
172
173 #endif /* configQUEUE_REGISTRY_SIZE */
174
175 /*
176 * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
177 * prevent an ISR from adding or removing items to the queue, but does prevent
178 * an ISR from removing tasks from the queue event lists. If an ISR finds a
179 * queue is locked it will instead increment the appropriate queue lock count
180 * to indicate that a task may require unblocking. When the queue in unlocked
181 * these lock counts are inspected, and the appropriate action taken.
182 */
183 static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
184
185 /*
186 * Uses a critical section to determine if there is any data in a queue.
187 *
188 * @return pdTRUE if the queue contains no items, otherwise pdFALSE.
189 */
190 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
191
192 /*
193 * Uses a critical section to determine if there is any space in a queue.
194 *
195 * @return pdTRUE if there is no space, otherwise pdFALSE;
196 */
197 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
198
199 /*
200 * Copies an item into the queue, either at the front of the queue or the
201 * back of the queue.
202 */
203 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
204 const void * pvItemToQueue,
205 const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
206
207 /*
208 * Copies an item out of a queue.
209 */
210 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
211 void * const pvBuffer ) PRIVILEGED_FUNCTION;
212
213 #if ( configUSE_QUEUE_SETS == 1 )
214
215 /*
216 * Checks to see if a queue is a member of a queue set, and if so, notifies
217 * the queue set that the queue contains data.
218 */
219 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
220 #endif
221
222 /*
223 * Called after a Queue_t structure has been allocated either statically or
224 * dynamically to fill in the structure's members.
225 */
226 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
227 const UBaseType_t uxItemSize,
228 uint8_t * pucQueueStorage,
229 const uint8_t ucQueueType,
230 Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
231
232 /*
233 * Mutexes are a special type of queue. When a mutex is created, first the
234 * queue is created, then prvInitialiseMutex() is called to configure the queue
235 * as a mutex.
236 */
237 #if ( configUSE_MUTEXES == 1 )
238 static void prvInitialiseMutex( Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
239 #endif
240
241 #if ( configUSE_MUTEXES == 1 )
242
243 /*
244 * If a task waiting for a mutex causes the mutex holder to inherit a
245 * priority, but the waiting task times out, then the holder should
246 * disinherit the priority - but only down to the highest priority of any
247 * other tasks that are waiting for the same mutex. This function returns
248 * that priority.
249 */
250 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
251 #endif
252 /*-----------------------------------------------------------*/
253
254 /*
255 * Macro to mark a queue as locked. Locking a queue prevents an ISR from
256 * accessing the queue event lists.
257 */
258 #define prvLockQueue( pxQueue ) \
259 taskENTER_CRITICAL(); \
260 { \
261 if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
262 { \
263 ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
264 } \
265 if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
266 { \
267 ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
268 } \
269 } \
270 taskEXIT_CRITICAL()
271
272 /*
273 * Macro to increment cTxLock member of the queue data structure. It is
274 * capped at the number of tasks in the system as we cannot unblock more
275 * tasks than the number of tasks in the system.
276 */
277 #define prvIncrementQueueTxLock( pxQueue, cTxLock ) \
278 do { \
279 const UBaseType_t uxNumberOfTasks = uxTaskGetNumberOfTasks(); \
280 if( ( UBaseType_t ) ( cTxLock ) < uxNumberOfTasks ) \
281 { \
282 configASSERT( ( cTxLock ) != queueINT8_MAX ); \
283 ( pxQueue )->cTxLock = ( int8_t ) ( ( cTxLock ) + ( int8_t ) 1 ); \
284 } \
285 } while( 0 )
286
287 /*
288 * Macro to increment cRxLock member of the queue data structure. It is
289 * capped at the number of tasks in the system as we cannot unblock more
290 * tasks than the number of tasks in the system.
291 */
292 #define prvIncrementQueueRxLock( pxQueue, cRxLock ) \
293 do { \
294 const UBaseType_t uxNumberOfTasks = uxTaskGetNumberOfTasks(); \
295 if( ( UBaseType_t ) ( cRxLock ) < uxNumberOfTasks ) \
296 { \
297 configASSERT( ( cRxLock ) != queueINT8_MAX ); \
298 ( pxQueue )->cRxLock = ( int8_t ) ( ( cRxLock ) + ( int8_t ) 1 ); \
299 } \
300 } while( 0 )
301 /*-----------------------------------------------------------*/
302
xQueueGenericReset(QueueHandle_t xQueue,BaseType_t xNewQueue)303 BaseType_t xQueueGenericReset( QueueHandle_t xQueue,
304 BaseType_t xNewQueue )
305 {
306 BaseType_t xReturn = pdPASS;
307 Queue_t * const pxQueue = xQueue;
308
309 traceENTER_xQueueGenericReset( xQueue, xNewQueue );
310
311 configASSERT( pxQueue );
312
313 if( ( pxQueue != NULL ) &&
314 ( pxQueue->uxLength >= 1U ) &&
315 /* Check for multiplication overflow. */
316 ( ( SIZE_MAX / pxQueue->uxLength ) >= pxQueue->uxItemSize ) )
317 {
318 taskENTER_CRITICAL();
319 {
320 pxQueue->u.xQueue.pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize );
321 pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
322 pxQueue->pcWriteTo = pxQueue->pcHead;
323 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - 1U ) * pxQueue->uxItemSize );
324 pxQueue->cRxLock = queueUNLOCKED;
325 pxQueue->cTxLock = queueUNLOCKED;
326
327 if( xNewQueue == pdFALSE )
328 {
329 /* If there are tasks blocked waiting to read from the queue, then
330 * the tasks will remain blocked as after this function exits the queue
331 * will still be empty. If there are tasks blocked waiting to write to
332 * the queue, then one should be unblocked as after this function exits
333 * it will be possible to write to it. */
334 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
335 {
336 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
337 {
338 queueYIELD_IF_USING_PREEMPTION();
339 }
340 else
341 {
342 mtCOVERAGE_TEST_MARKER();
343 }
344 }
345 else
346 {
347 mtCOVERAGE_TEST_MARKER();
348 }
349 }
350 else
351 {
352 /* Ensure the event queues start in the correct state. */
353 vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
354 vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
355 }
356 }
357 taskEXIT_CRITICAL();
358 }
359 else
360 {
361 xReturn = pdFAIL;
362 }
363
364 configASSERT( xReturn != pdFAIL );
365
366 /* A value is returned for calling semantic consistency with previous
367 * versions. */
368 traceRETURN_xQueueGenericReset( xReturn );
369
370 return xReturn;
371 }
372 /*-----------------------------------------------------------*/
373
374 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
375
xQueueGenericCreateStatic(const UBaseType_t uxQueueLength,const UBaseType_t uxItemSize,uint8_t * pucQueueStorage,StaticQueue_t * pxStaticQueue,const uint8_t ucQueueType)376 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength,
377 const UBaseType_t uxItemSize,
378 uint8_t * pucQueueStorage,
379 StaticQueue_t * pxStaticQueue,
380 const uint8_t ucQueueType )
381 {
382 Queue_t * pxNewQueue = NULL;
383
384 traceENTER_xQueueGenericCreateStatic( uxQueueLength, uxItemSize, pucQueueStorage, pxStaticQueue, ucQueueType );
385
386 /* The StaticQueue_t structure and the queue storage area must be
387 * supplied. */
388 configASSERT( pxStaticQueue );
389
390 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
391 ( pxStaticQueue != NULL ) &&
392
393 /* A queue storage area should be provided if the item size is not 0, and
394 * should not be provided if the item size is 0. */
395 ( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0U ) ) ) &&
396 ( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0U ) ) ) )
397 {
398 #if ( configASSERT_DEFINED == 1 )
399 {
400 /* Sanity check that the size of the structure used to declare a
401 * variable of type StaticQueue_t or StaticSemaphore_t equals the size of
402 * the real queue and semaphore structures. */
403 volatile size_t xSize = sizeof( StaticQueue_t );
404
405 /* This assertion cannot be branch covered in unit tests */
406 configASSERT( xSize == sizeof( Queue_t ) ); /* LCOV_EXCL_BR_LINE */
407 ( void ) xSize; /* Prevent unused variable warning when configASSERT() is not defined. */
408 }
409 #endif /* configASSERT_DEFINED */
410
411 /* The address of a statically allocated queue was passed in, use it.
412 * The address of a statically allocated storage area was also passed in
413 * but is already set. */
414 /* MISRA Ref 11.3.1 [Misaligned access] */
415 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
416 /* coverity[misra_c_2012_rule_11_3_violation] */
417 pxNewQueue = ( Queue_t * ) pxStaticQueue;
418
419 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
420 {
421 /* Queues can be allocated wither statically or dynamically, so
422 * note this queue was allocated statically in case the queue is
423 * later deleted. */
424 pxNewQueue->ucStaticallyAllocated = pdTRUE;
425 }
426 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
427
428 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
429 }
430 else
431 {
432 configASSERT( pxNewQueue );
433 mtCOVERAGE_TEST_MARKER();
434 }
435
436 traceRETURN_xQueueGenericCreateStatic( pxNewQueue );
437
438 return pxNewQueue;
439 }
440
441 #endif /* configSUPPORT_STATIC_ALLOCATION */
442 /*-----------------------------------------------------------*/
443
444 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
445
xQueueGenericGetStaticBuffers(QueueHandle_t xQueue,uint8_t ** ppucQueueStorage,StaticQueue_t ** ppxStaticQueue)446 BaseType_t xQueueGenericGetStaticBuffers( QueueHandle_t xQueue,
447 uint8_t ** ppucQueueStorage,
448 StaticQueue_t ** ppxStaticQueue )
449 {
450 BaseType_t xReturn;
451 Queue_t * const pxQueue = xQueue;
452
453 traceENTER_xQueueGenericGetStaticBuffers( xQueue, ppucQueueStorage, ppxStaticQueue );
454
455 configASSERT( pxQueue );
456 configASSERT( ppxStaticQueue );
457
458 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
459 {
460 /* Check if the queue was statically allocated. */
461 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdTRUE )
462 {
463 if( ppucQueueStorage != NULL )
464 {
465 *ppucQueueStorage = ( uint8_t * ) pxQueue->pcHead;
466 }
467
468 /* MISRA Ref 11.3.1 [Misaligned access] */
469 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
470 /* coverity[misra_c_2012_rule_11_3_violation] */
471 *ppxStaticQueue = ( StaticQueue_t * ) pxQueue;
472 xReturn = pdTRUE;
473 }
474 else
475 {
476 xReturn = pdFALSE;
477 }
478 }
479 #else /* configSUPPORT_DYNAMIC_ALLOCATION */
480 {
481 /* Queue must have been statically allocated. */
482 if( ppucQueueStorage != NULL )
483 {
484 *ppucQueueStorage = ( uint8_t * ) pxQueue->pcHead;
485 }
486
487 *ppxStaticQueue = ( StaticQueue_t * ) pxQueue;
488 xReturn = pdTRUE;
489 }
490 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
491
492 traceRETURN_xQueueGenericGetStaticBuffers( xReturn );
493
494 return xReturn;
495 }
496
497 #endif /* configSUPPORT_STATIC_ALLOCATION */
498 /*-----------------------------------------------------------*/
499
500 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
501
xQueueGenericCreate(const UBaseType_t uxQueueLength,const UBaseType_t uxItemSize,const uint8_t ucQueueType)502 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength,
503 const UBaseType_t uxItemSize,
504 const uint8_t ucQueueType )
505 {
506 Queue_t * pxNewQueue = NULL;
507 size_t xQueueSizeInBytes;
508 uint8_t * pucQueueStorage;
509
510 traceENTER_xQueueGenericCreate( uxQueueLength, uxItemSize, ucQueueType );
511
512 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
513 /* Check for multiplication overflow. */
514 ( ( SIZE_MAX / uxQueueLength ) >= uxItemSize ) &&
515 /* Check for addition overflow. */
516 ( ( UBaseType_t ) ( SIZE_MAX - sizeof( Queue_t ) ) >= ( uxQueueLength * uxItemSize ) ) )
517 {
518 /* Allocate enough space to hold the maximum number of items that
519 * can be in the queue at any time. It is valid for uxItemSize to be
520 * zero in the case the queue is used as a semaphore. */
521 xQueueSizeInBytes = ( size_t ) ( ( size_t ) uxQueueLength * ( size_t ) uxItemSize );
522
523 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
524 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
525 /* coverity[misra_c_2012_rule_11_5_violation] */
526 pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes );
527
528 if( pxNewQueue != NULL )
529 {
530 /* Jump past the queue structure to find the location of the queue
531 * storage area. */
532 pucQueueStorage = ( uint8_t * ) pxNewQueue;
533 pucQueueStorage += sizeof( Queue_t );
534
535 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
536 {
537 /* Queues can be created either statically or dynamically, so
538 * note this task was created dynamically in case it is later
539 * deleted. */
540 pxNewQueue->ucStaticallyAllocated = pdFALSE;
541 }
542 #endif /* configSUPPORT_STATIC_ALLOCATION */
543
544 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
545 }
546 else
547 {
548 traceQUEUE_CREATE_FAILED( ucQueueType );
549 mtCOVERAGE_TEST_MARKER();
550 }
551 }
552 else
553 {
554 configASSERT( pxNewQueue );
555 mtCOVERAGE_TEST_MARKER();
556 }
557
558 traceRETURN_xQueueGenericCreate( pxNewQueue );
559
560 return pxNewQueue;
561 }
562
563 #endif /* configSUPPORT_STATIC_ALLOCATION */
564 /*-----------------------------------------------------------*/
565
prvInitialiseNewQueue(const UBaseType_t uxQueueLength,const UBaseType_t uxItemSize,uint8_t * pucQueueStorage,const uint8_t ucQueueType,Queue_t * pxNewQueue)566 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
567 const UBaseType_t uxItemSize,
568 uint8_t * pucQueueStorage,
569 const uint8_t ucQueueType,
570 Queue_t * pxNewQueue )
571 {
572 /* Remove compiler warnings about unused parameters should
573 * configUSE_TRACE_FACILITY not be set to 1. */
574 ( void ) ucQueueType;
575
576 if( uxItemSize == ( UBaseType_t ) 0 )
577 {
578 /* No RAM was allocated for the queue storage area, but PC head cannot
579 * be set to NULL because NULL is used as a key to say the queue is used as
580 * a mutex. Therefore just set pcHead to point to the queue as a benign
581 * value that is known to be within the memory map. */
582 pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
583 }
584 else
585 {
586 /* Set the head to the start of the queue storage area. */
587 pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
588 }
589
590 /* Initialise the queue members as described where the queue type is
591 * defined. */
592 pxNewQueue->uxLength = uxQueueLength;
593 pxNewQueue->uxItemSize = uxItemSize;
594 ( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
595
596 #if ( configUSE_TRACE_FACILITY == 1 )
597 {
598 pxNewQueue->ucQueueType = ucQueueType;
599 }
600 #endif /* configUSE_TRACE_FACILITY */
601
602 #if ( configUSE_QUEUE_SETS == 1 )
603 {
604 pxNewQueue->pxQueueSetContainer = NULL;
605 }
606 #endif /* configUSE_QUEUE_SETS */
607
608 traceQUEUE_CREATE( pxNewQueue );
609 }
610 /*-----------------------------------------------------------*/
611
612 #if ( configUSE_MUTEXES == 1 )
613
prvInitialiseMutex(Queue_t * pxNewQueue)614 static void prvInitialiseMutex( Queue_t * pxNewQueue )
615 {
616 if( pxNewQueue != NULL )
617 {
618 /* The queue create function will set all the queue structure members
619 * correctly for a generic queue, but this function is creating a
620 * mutex. Overwrite those members that need to be set differently -
621 * in particular the information required for priority inheritance. */
622 pxNewQueue->u.xSemaphore.xMutexHolder = NULL;
623 pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
624
625 /* In case this is a recursive mutex. */
626 pxNewQueue->u.xSemaphore.uxRecursiveCallCount = 0;
627
628 traceCREATE_MUTEX( pxNewQueue );
629
630 /* Start with the semaphore in the expected state. */
631 ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
632 }
633 else
634 {
635 traceCREATE_MUTEX_FAILED();
636 }
637 }
638
639 #endif /* configUSE_MUTEXES */
640 /*-----------------------------------------------------------*/
641
642 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
643
xQueueCreateMutex(const uint8_t ucQueueType)644 QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
645 {
646 QueueHandle_t xNewQueue;
647 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
648
649 traceENTER_xQueueCreateMutex( ucQueueType );
650
651 xNewQueue = xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
652 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
653
654 traceRETURN_xQueueCreateMutex( xNewQueue );
655
656 return xNewQueue;
657 }
658
659 #endif /* configUSE_MUTEXES */
660 /*-----------------------------------------------------------*/
661
662 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
663
xQueueCreateMutexStatic(const uint8_t ucQueueType,StaticQueue_t * pxStaticQueue)664 QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType,
665 StaticQueue_t * pxStaticQueue )
666 {
667 QueueHandle_t xNewQueue;
668 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
669
670 traceENTER_xQueueCreateMutexStatic( ucQueueType, pxStaticQueue );
671
672 /* Prevent compiler warnings about unused parameters if
673 * configUSE_TRACE_FACILITY does not equal 1. */
674 ( void ) ucQueueType;
675
676 xNewQueue = xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
677 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
678
679 traceRETURN_xQueueCreateMutexStatic( xNewQueue );
680
681 return xNewQueue;
682 }
683
684 #endif /* configUSE_MUTEXES */
685 /*-----------------------------------------------------------*/
686
687 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
688
xQueueGetMutexHolder(QueueHandle_t xSemaphore)689 TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore )
690 {
691 TaskHandle_t pxReturn;
692 Queue_t * const pxSemaphore = ( Queue_t * ) xSemaphore;
693
694 traceENTER_xQueueGetMutexHolder( xSemaphore );
695
696 configASSERT( xSemaphore );
697
698 /* This function is called by xSemaphoreGetMutexHolder(), and should not
699 * be called directly. Note: This is a good way of determining if the
700 * calling task is the mutex holder, but not a good way of determining the
701 * identity of the mutex holder, as the holder may change between the
702 * following critical section exiting and the function returning. */
703 taskENTER_CRITICAL();
704 {
705 if( pxSemaphore->uxQueueType == queueQUEUE_IS_MUTEX )
706 {
707 pxReturn = pxSemaphore->u.xSemaphore.xMutexHolder;
708 }
709 else
710 {
711 pxReturn = NULL;
712 }
713 }
714 taskEXIT_CRITICAL();
715
716 traceRETURN_xQueueGetMutexHolder( pxReturn );
717
718 return pxReturn;
719 }
720
721 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
722 /*-----------------------------------------------------------*/
723
724 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
725
xQueueGetMutexHolderFromISR(QueueHandle_t xSemaphore)726 TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore )
727 {
728 TaskHandle_t pxReturn;
729
730 traceENTER_xQueueGetMutexHolderFromISR( xSemaphore );
731
732 configASSERT( xSemaphore );
733
734 /* Mutexes cannot be used in interrupt service routines, so the mutex
735 * holder should not change in an ISR, and therefore a critical section is
736 * not required here. */
737 if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
738 {
739 pxReturn = ( ( Queue_t * ) xSemaphore )->u.xSemaphore.xMutexHolder;
740 }
741 else
742 {
743 pxReturn = NULL;
744 }
745
746 traceRETURN_xQueueGetMutexHolderFromISR( pxReturn );
747
748 return pxReturn;
749 }
750
751 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
752 /*-----------------------------------------------------------*/
753
754 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
755
xQueueGiveMutexRecursive(QueueHandle_t xMutex)756 BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
757 {
758 BaseType_t xReturn;
759 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
760
761 traceENTER_xQueueGiveMutexRecursive( xMutex );
762
763 configASSERT( pxMutex );
764
765 /* If this is the task that holds the mutex then xMutexHolder will not
766 * change outside of this task. If this task does not hold the mutex then
767 * pxMutexHolder can never coincidentally equal the tasks handle, and as
768 * this is the only condition we are interested in it does not matter if
769 * pxMutexHolder is accessed simultaneously by another task. Therefore no
770 * mutual exclusion is required to test the pxMutexHolder variable. */
771 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
772 {
773 traceGIVE_MUTEX_RECURSIVE( pxMutex );
774
775 /* uxRecursiveCallCount cannot be zero if xMutexHolder is equal to
776 * the task handle, therefore no underflow check is required. Also,
777 * uxRecursiveCallCount is only modified by the mutex holder, and as
778 * there can only be one, no mutual exclusion is required to modify the
779 * uxRecursiveCallCount member. */
780 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )--;
781
782 /* Has the recursive call count unwound to 0? */
783 if( pxMutex->u.xSemaphore.uxRecursiveCallCount == ( UBaseType_t ) 0 )
784 {
785 /* Return the mutex. This will automatically unblock any other
786 * task that might be waiting to access the mutex. */
787 ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
788 }
789 else
790 {
791 mtCOVERAGE_TEST_MARKER();
792 }
793
794 xReturn = pdPASS;
795 }
796 else
797 {
798 /* The mutex cannot be given because the calling task is not the
799 * holder. */
800 xReturn = pdFAIL;
801
802 traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
803 }
804
805 traceRETURN_xQueueGiveMutexRecursive( xReturn );
806
807 return xReturn;
808 }
809
810 #endif /* configUSE_RECURSIVE_MUTEXES */
811 /*-----------------------------------------------------------*/
812
813 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
814
xQueueTakeMutexRecursive(QueueHandle_t xMutex,TickType_t xTicksToWait)815 BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex,
816 TickType_t xTicksToWait )
817 {
818 BaseType_t xReturn;
819 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
820
821 traceENTER_xQueueTakeMutexRecursive( xMutex, xTicksToWait );
822
823 configASSERT( pxMutex );
824
825 /* Comments regarding mutual exclusion as per those within
826 * xQueueGiveMutexRecursive(). */
827
828 traceTAKE_MUTEX_RECURSIVE( pxMutex );
829
830 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
831 {
832 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
833 xReturn = pdPASS;
834 }
835 else
836 {
837 xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait );
838
839 /* pdPASS will only be returned if the mutex was successfully
840 * obtained. The calling task may have entered the Blocked state
841 * before reaching here. */
842 if( xReturn != pdFAIL )
843 {
844 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
845 }
846 else
847 {
848 traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
849 }
850 }
851
852 traceRETURN_xQueueTakeMutexRecursive( xReturn );
853
854 return xReturn;
855 }
856
857 #endif /* configUSE_RECURSIVE_MUTEXES */
858 /*-----------------------------------------------------------*/
859
860 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
861
xQueueCreateCountingSemaphoreStatic(const UBaseType_t uxMaxCount,const UBaseType_t uxInitialCount,StaticQueue_t * pxStaticQueue)862 QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount,
863 const UBaseType_t uxInitialCount,
864 StaticQueue_t * pxStaticQueue )
865 {
866 QueueHandle_t xHandle = NULL;
867
868 traceENTER_xQueueCreateCountingSemaphoreStatic( uxMaxCount, uxInitialCount, pxStaticQueue );
869
870 if( ( uxMaxCount != 0U ) &&
871 ( uxInitialCount <= uxMaxCount ) )
872 {
873 xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
874
875 if( xHandle != NULL )
876 {
877 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
878
879 traceCREATE_COUNTING_SEMAPHORE();
880 }
881 else
882 {
883 traceCREATE_COUNTING_SEMAPHORE_FAILED();
884 }
885 }
886 else
887 {
888 configASSERT( xHandle );
889 mtCOVERAGE_TEST_MARKER();
890 }
891
892 traceRETURN_xQueueCreateCountingSemaphoreStatic( xHandle );
893
894 return xHandle;
895 }
896
897 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
898 /*-----------------------------------------------------------*/
899
900 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
901
xQueueCreateCountingSemaphore(const UBaseType_t uxMaxCount,const UBaseType_t uxInitialCount)902 QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount,
903 const UBaseType_t uxInitialCount )
904 {
905 QueueHandle_t xHandle = NULL;
906
907 traceENTER_xQueueCreateCountingSemaphore( uxMaxCount, uxInitialCount );
908
909 if( ( uxMaxCount != 0U ) &&
910 ( uxInitialCount <= uxMaxCount ) )
911 {
912 xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
913
914 if( xHandle != NULL )
915 {
916 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
917
918 traceCREATE_COUNTING_SEMAPHORE();
919 }
920 else
921 {
922 traceCREATE_COUNTING_SEMAPHORE_FAILED();
923 }
924 }
925 else
926 {
927 configASSERT( xHandle );
928 mtCOVERAGE_TEST_MARKER();
929 }
930
931 traceRETURN_xQueueCreateCountingSemaphore( xHandle );
932
933 return xHandle;
934 }
935
936 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
937 /*-----------------------------------------------------------*/
938
xQueueGenericSend(QueueHandle_t xQueue,const void * const pvItemToQueue,TickType_t xTicksToWait,const BaseType_t xCopyPosition)939 BaseType_t xQueueGenericSend( QueueHandle_t xQueue,
940 const void * const pvItemToQueue,
941 TickType_t xTicksToWait,
942 const BaseType_t xCopyPosition )
943 {
944 BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
945 TimeOut_t xTimeOut;
946 Queue_t * const pxQueue = xQueue;
947
948 traceENTER_xQueueGenericSend( xQueue, pvItemToQueue, xTicksToWait, xCopyPosition );
949
950 configASSERT( pxQueue );
951 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
952 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
953 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
954 {
955 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
956 }
957 #endif
958
959 for( ; ; )
960 {
961 taskENTER_CRITICAL();
962 {
963 /* Is there room on the queue now? The running task must be the
964 * highest priority task wanting to access the queue. If the head item
965 * in the queue is to be overwritten then it does not matter if the
966 * queue is full. */
967 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
968 {
969 traceQUEUE_SEND( pxQueue );
970
971 #if ( configUSE_QUEUE_SETS == 1 )
972 {
973 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
974
975 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
976
977 if( pxQueue->pxQueueSetContainer != NULL )
978 {
979 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
980 {
981 /* Do not notify the queue set as an existing item
982 * was overwritten in the queue so the number of items
983 * in the queue has not changed. */
984 mtCOVERAGE_TEST_MARKER();
985 }
986 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
987 {
988 /* The queue is a member of a queue set, and posting
989 * to the queue set caused a higher priority task to
990 * unblock. A context switch is required. */
991 queueYIELD_IF_USING_PREEMPTION();
992 }
993 else
994 {
995 mtCOVERAGE_TEST_MARKER();
996 }
997 }
998 else
999 {
1000 /* If there was a task waiting for data to arrive on the
1001 * queue then unblock it now. */
1002 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1003 {
1004 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1005 {
1006 /* The unblocked task has a priority higher than
1007 * our own so yield immediately. Yes it is ok to
1008 * do this from within the critical section - the
1009 * kernel takes care of that. */
1010 queueYIELD_IF_USING_PREEMPTION();
1011 }
1012 else
1013 {
1014 mtCOVERAGE_TEST_MARKER();
1015 }
1016 }
1017 else if( xYieldRequired != pdFALSE )
1018 {
1019 /* This path is a special case that will only get
1020 * executed if the task was holding multiple mutexes
1021 * and the mutexes were given back in an order that is
1022 * different to that in which they were taken. */
1023 queueYIELD_IF_USING_PREEMPTION();
1024 }
1025 else
1026 {
1027 mtCOVERAGE_TEST_MARKER();
1028 }
1029 }
1030 }
1031 #else /* configUSE_QUEUE_SETS */
1032 {
1033 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
1034
1035 /* If there was a task waiting for data to arrive on the
1036 * queue then unblock it now. */
1037 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1038 {
1039 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1040 {
1041 /* The unblocked task has a priority higher than
1042 * our own so yield immediately. Yes it is ok to do
1043 * this from within the critical section - the kernel
1044 * takes care of that. */
1045 queueYIELD_IF_USING_PREEMPTION();
1046 }
1047 else
1048 {
1049 mtCOVERAGE_TEST_MARKER();
1050 }
1051 }
1052 else if( xYieldRequired != pdFALSE )
1053 {
1054 /* This path is a special case that will only get
1055 * executed if the task was holding multiple mutexes and
1056 * the mutexes were given back in an order that is
1057 * different to that in which they were taken. */
1058 queueYIELD_IF_USING_PREEMPTION();
1059 }
1060 else
1061 {
1062 mtCOVERAGE_TEST_MARKER();
1063 }
1064 }
1065 #endif /* configUSE_QUEUE_SETS */
1066
1067 taskEXIT_CRITICAL();
1068
1069 traceRETURN_xQueueGenericSend( pdPASS );
1070
1071 return pdPASS;
1072 }
1073 else
1074 {
1075 if( xTicksToWait == ( TickType_t ) 0 )
1076 {
1077 /* The queue was full and no block time is specified (or
1078 * the block time has expired) so leave now. */
1079 taskEXIT_CRITICAL();
1080
1081 /* Return to the original privilege level before exiting
1082 * the function. */
1083 traceQUEUE_SEND_FAILED( pxQueue );
1084 traceRETURN_xQueueGenericSend( errQUEUE_FULL );
1085
1086 return errQUEUE_FULL;
1087 }
1088 else if( xEntryTimeSet == pdFALSE )
1089 {
1090 /* The queue was full and a block time was specified so
1091 * configure the timeout structure. */
1092 vTaskInternalSetTimeOutState( &xTimeOut );
1093 xEntryTimeSet = pdTRUE;
1094 }
1095 else
1096 {
1097 /* Entry time was already set. */
1098 mtCOVERAGE_TEST_MARKER();
1099 }
1100 }
1101 }
1102 taskEXIT_CRITICAL();
1103
1104 /* Interrupts and other tasks can send to and receive from the queue
1105 * now the critical section has been exited. */
1106
1107 vTaskSuspendAll();
1108 prvLockQueue( pxQueue );
1109
1110 /* Update the timeout state to see if it has expired yet. */
1111 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1112 {
1113 if( prvIsQueueFull( pxQueue ) != pdFALSE )
1114 {
1115 traceBLOCKING_ON_QUEUE_SEND( pxQueue );
1116 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
1117
1118 /* Unlocking the queue means queue events can effect the
1119 * event list. It is possible that interrupts occurring now
1120 * remove this task from the event list again - but as the
1121 * scheduler is suspended the task will go onto the pending
1122 * ready list instead of the actual ready list. */
1123 prvUnlockQueue( pxQueue );
1124
1125 /* Resuming the scheduler will move tasks from the pending
1126 * ready list into the ready list - so it is feasible that this
1127 * task is already in the ready list before it yields - in which
1128 * case the yield will not cause a context switch unless there
1129 * is also a higher priority task in the pending ready list. */
1130 if( xTaskResumeAll() == pdFALSE )
1131 {
1132 taskYIELD_WITHIN_API();
1133 }
1134 }
1135 else
1136 {
1137 /* Try again. */
1138 prvUnlockQueue( pxQueue );
1139 ( void ) xTaskResumeAll();
1140 }
1141 }
1142 else
1143 {
1144 /* The timeout has expired. */
1145 prvUnlockQueue( pxQueue );
1146 ( void ) xTaskResumeAll();
1147
1148 traceQUEUE_SEND_FAILED( pxQueue );
1149 traceRETURN_xQueueGenericSend( errQUEUE_FULL );
1150
1151 return errQUEUE_FULL;
1152 }
1153 }
1154 }
1155 /*-----------------------------------------------------------*/
1156
xQueueGenericSendFromISR(QueueHandle_t xQueue,const void * const pvItemToQueue,BaseType_t * const pxHigherPriorityTaskWoken,const BaseType_t xCopyPosition)1157 BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue,
1158 const void * const pvItemToQueue,
1159 BaseType_t * const pxHigherPriorityTaskWoken,
1160 const BaseType_t xCopyPosition )
1161 {
1162 BaseType_t xReturn;
1163 UBaseType_t uxSavedInterruptStatus;
1164 Queue_t * const pxQueue = xQueue;
1165
1166 traceENTER_xQueueGenericSendFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken, xCopyPosition );
1167
1168 configASSERT( pxQueue );
1169 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
1170 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
1171
1172 /* RTOS ports that support interrupt nesting have the concept of a maximum
1173 * system call (or maximum API call) interrupt priority. Interrupts that are
1174 * above the maximum system call priority are kept permanently enabled, even
1175 * when the RTOS kernel is in a critical section, but cannot make any calls to
1176 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
1177 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1178 * failure if a FreeRTOS API function is called from an interrupt that has been
1179 * assigned a priority above the configured maximum system call priority.
1180 * Only FreeRTOS functions that end in FromISR can be called from interrupts
1181 * that have been assigned a priority at or (logically) below the maximum
1182 * system call interrupt priority. FreeRTOS maintains a separate interrupt
1183 * safe API to ensure interrupt entry is as fast and as simple as possible.
1184 * More information (albeit Cortex-M specific) is provided on the following
1185 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1186 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1187
1188 /* Similar to xQueueGenericSend, except without blocking if there is no room
1189 * in the queue. Also don't directly wake a task that was blocked on a queue
1190 * read, instead return a flag to say whether a context switch is required or
1191 * not (i.e. has a task with a higher priority than us been woken by this
1192 * post). */
1193 /* MISRA Ref 4.7.1 [Return value shall be checked] */
1194 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
1195 /* coverity[misra_c_2012_directive_4_7_violation] */
1196 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
1197 {
1198 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
1199 {
1200 const int8_t cTxLock = pxQueue->cTxLock;
1201 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
1202
1203 traceQUEUE_SEND_FROM_ISR( pxQueue );
1204
1205 /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
1206 * semaphore or mutex. That means prvCopyDataToQueue() cannot result
1207 * in a task disinheriting a priority and prvCopyDataToQueue() can be
1208 * called here even though the disinherit function does not check if
1209 * the scheduler is suspended before accessing the ready lists. */
1210 ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
1211
1212 /* The event list is not altered if the queue is locked. This will
1213 * be done when the queue is unlocked later. */
1214 if( cTxLock == queueUNLOCKED )
1215 {
1216 #if ( configUSE_QUEUE_SETS == 1 )
1217 {
1218 if( pxQueue->pxQueueSetContainer != NULL )
1219 {
1220 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
1221 {
1222 /* Do not notify the queue set as an existing item
1223 * was overwritten in the queue so the number of items
1224 * in the queue has not changed. */
1225 mtCOVERAGE_TEST_MARKER();
1226 }
1227 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
1228 {
1229 /* The queue is a member of a queue set, and posting
1230 * to the queue set caused a higher priority task to
1231 * unblock. A context switch is required. */
1232 if( pxHigherPriorityTaskWoken != NULL )
1233 {
1234 *pxHigherPriorityTaskWoken = pdTRUE;
1235 }
1236 else
1237 {
1238 mtCOVERAGE_TEST_MARKER();
1239 }
1240 }
1241 else
1242 {
1243 mtCOVERAGE_TEST_MARKER();
1244 }
1245 }
1246 else
1247 {
1248 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1249 {
1250 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1251 {
1252 /* The task waiting has a higher priority so
1253 * record that a context switch is required. */
1254 if( pxHigherPriorityTaskWoken != NULL )
1255 {
1256 *pxHigherPriorityTaskWoken = pdTRUE;
1257 }
1258 else
1259 {
1260 mtCOVERAGE_TEST_MARKER();
1261 }
1262 }
1263 else
1264 {
1265 mtCOVERAGE_TEST_MARKER();
1266 }
1267 }
1268 else
1269 {
1270 mtCOVERAGE_TEST_MARKER();
1271 }
1272 }
1273 }
1274 #else /* configUSE_QUEUE_SETS */
1275 {
1276 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1277 {
1278 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1279 {
1280 /* The task waiting has a higher priority so record that a
1281 * context switch is required. */
1282 if( pxHigherPriorityTaskWoken != NULL )
1283 {
1284 *pxHigherPriorityTaskWoken = pdTRUE;
1285 }
1286 else
1287 {
1288 mtCOVERAGE_TEST_MARKER();
1289 }
1290 }
1291 else
1292 {
1293 mtCOVERAGE_TEST_MARKER();
1294 }
1295 }
1296 else
1297 {
1298 mtCOVERAGE_TEST_MARKER();
1299 }
1300
1301 /* Not used in this path. */
1302 ( void ) uxPreviousMessagesWaiting;
1303 }
1304 #endif /* configUSE_QUEUE_SETS */
1305 }
1306 else
1307 {
1308 /* Increment the lock count so the task that unlocks the queue
1309 * knows that data was posted while it was locked. */
1310 prvIncrementQueueTxLock( pxQueue, cTxLock );
1311 }
1312
1313 xReturn = pdPASS;
1314 }
1315 else
1316 {
1317 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
1318 xReturn = errQUEUE_FULL;
1319 }
1320 }
1321 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
1322
1323 traceRETURN_xQueueGenericSendFromISR( xReturn );
1324
1325 return xReturn;
1326 }
1327 /*-----------------------------------------------------------*/
1328
xQueueGiveFromISR(QueueHandle_t xQueue,BaseType_t * const pxHigherPriorityTaskWoken)1329 BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue,
1330 BaseType_t * const pxHigherPriorityTaskWoken )
1331 {
1332 BaseType_t xReturn;
1333 UBaseType_t uxSavedInterruptStatus;
1334 Queue_t * const pxQueue = xQueue;
1335
1336 traceENTER_xQueueGiveFromISR( xQueue, pxHigherPriorityTaskWoken );
1337
1338 /* Similar to xQueueGenericSendFromISR() but used with semaphores where the
1339 * item size is 0. Don't directly wake a task that was blocked on a queue
1340 * read, instead return a flag to say whether a context switch is required or
1341 * not (i.e. has a task with a higher priority than us been woken by this
1342 * post). */
1343
1344 configASSERT( pxQueue );
1345
1346 /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
1347 * if the item size is not 0. */
1348 configASSERT( pxQueue->uxItemSize == 0 );
1349
1350 /* Normally a mutex would not be given from an interrupt, especially if
1351 * there is a mutex holder, as priority inheritance makes no sense for an
1352 * interrupts, only tasks. */
1353 configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->u.xSemaphore.xMutexHolder != NULL ) ) );
1354
1355 /* RTOS ports that support interrupt nesting have the concept of a maximum
1356 * system call (or maximum API call) interrupt priority. Interrupts that are
1357 * above the maximum system call priority are kept permanently enabled, even
1358 * when the RTOS kernel is in a critical section, but cannot make any calls to
1359 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
1360 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1361 * failure if a FreeRTOS API function is called from an interrupt that has been
1362 * assigned a priority above the configured maximum system call priority.
1363 * Only FreeRTOS functions that end in FromISR can be called from interrupts
1364 * that have been assigned a priority at or (logically) below the maximum
1365 * system call interrupt priority. FreeRTOS maintains a separate interrupt
1366 * safe API to ensure interrupt entry is as fast and as simple as possible.
1367 * More information (albeit Cortex-M specific) is provided on the following
1368 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1369 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1370
1371 /* MISRA Ref 4.7.1 [Return value shall be checked] */
1372 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
1373 /* coverity[misra_c_2012_directive_4_7_violation] */
1374 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
1375 {
1376 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1377
1378 /* When the queue is used to implement a semaphore no data is ever
1379 * moved through the queue but it is still valid to see if the queue 'has
1380 * space'. */
1381 if( uxMessagesWaiting < pxQueue->uxLength )
1382 {
1383 const int8_t cTxLock = pxQueue->cTxLock;
1384
1385 traceQUEUE_SEND_FROM_ISR( pxQueue );
1386
1387 /* A task can only have an inherited priority if it is a mutex
1388 * holder - and if there is a mutex holder then the mutex cannot be
1389 * given from an ISR. As this is the ISR version of the function it
1390 * can be assumed there is no mutex holder and no need to determine if
1391 * priority disinheritance is needed. Simply increase the count of
1392 * messages (semaphores) available. */
1393 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting + ( UBaseType_t ) 1 );
1394
1395 /* The event list is not altered if the queue is locked. This will
1396 * be done when the queue is unlocked later. */
1397 if( cTxLock == queueUNLOCKED )
1398 {
1399 #if ( configUSE_QUEUE_SETS == 1 )
1400 {
1401 if( pxQueue->pxQueueSetContainer != NULL )
1402 {
1403 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
1404 {
1405 /* The semaphore is a member of a queue set, and
1406 * posting to the queue set caused a higher priority
1407 * task to unblock. A context switch is required. */
1408 if( pxHigherPriorityTaskWoken != NULL )
1409 {
1410 *pxHigherPriorityTaskWoken = pdTRUE;
1411 }
1412 else
1413 {
1414 mtCOVERAGE_TEST_MARKER();
1415 }
1416 }
1417 else
1418 {
1419 mtCOVERAGE_TEST_MARKER();
1420 }
1421 }
1422 else
1423 {
1424 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1425 {
1426 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1427 {
1428 /* The task waiting has a higher priority so
1429 * record that a context switch is required. */
1430 if( pxHigherPriorityTaskWoken != NULL )
1431 {
1432 *pxHigherPriorityTaskWoken = pdTRUE;
1433 }
1434 else
1435 {
1436 mtCOVERAGE_TEST_MARKER();
1437 }
1438 }
1439 else
1440 {
1441 mtCOVERAGE_TEST_MARKER();
1442 }
1443 }
1444 else
1445 {
1446 mtCOVERAGE_TEST_MARKER();
1447 }
1448 }
1449 }
1450 #else /* configUSE_QUEUE_SETS */
1451 {
1452 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1453 {
1454 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1455 {
1456 /* The task waiting has a higher priority so record that a
1457 * context switch is required. */
1458 if( pxHigherPriorityTaskWoken != NULL )
1459 {
1460 *pxHigherPriorityTaskWoken = pdTRUE;
1461 }
1462 else
1463 {
1464 mtCOVERAGE_TEST_MARKER();
1465 }
1466 }
1467 else
1468 {
1469 mtCOVERAGE_TEST_MARKER();
1470 }
1471 }
1472 else
1473 {
1474 mtCOVERAGE_TEST_MARKER();
1475 }
1476 }
1477 #endif /* configUSE_QUEUE_SETS */
1478 }
1479 else
1480 {
1481 /* Increment the lock count so the task that unlocks the queue
1482 * knows that data was posted while it was locked. */
1483 prvIncrementQueueTxLock( pxQueue, cTxLock );
1484 }
1485
1486 xReturn = pdPASS;
1487 }
1488 else
1489 {
1490 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
1491 xReturn = errQUEUE_FULL;
1492 }
1493 }
1494 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
1495
1496 traceRETURN_xQueueGiveFromISR( xReturn );
1497
1498 return xReturn;
1499 }
1500 /*-----------------------------------------------------------*/
1501
xQueueReceive(QueueHandle_t xQueue,void * const pvBuffer,TickType_t xTicksToWait)1502 BaseType_t xQueueReceive( QueueHandle_t xQueue,
1503 void * const pvBuffer,
1504 TickType_t xTicksToWait )
1505 {
1506 BaseType_t xEntryTimeSet = pdFALSE;
1507 TimeOut_t xTimeOut;
1508 Queue_t * const pxQueue = xQueue;
1509
1510 traceENTER_xQueueReceive( xQueue, pvBuffer, xTicksToWait );
1511
1512 /* Check the pointer is not NULL. */
1513 configASSERT( ( pxQueue ) );
1514
1515 /* The buffer into which data is received can only be NULL if the data size
1516 * is zero (so no data is copied into the buffer). */
1517 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
1518
1519 /* Cannot block if the scheduler is suspended. */
1520 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1521 {
1522 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1523 }
1524 #endif
1525
1526 for( ; ; )
1527 {
1528 taskENTER_CRITICAL();
1529 {
1530 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1531
1532 /* Is there data in the queue now? To be running the calling task
1533 * must be the highest priority task wanting to access the queue. */
1534 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
1535 {
1536 /* Data available, remove one item. */
1537 prvCopyDataFromQueue( pxQueue, pvBuffer );
1538 traceQUEUE_RECEIVE( pxQueue );
1539 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting - ( UBaseType_t ) 1 );
1540
1541 /* There is now space in the queue, were any tasks waiting to
1542 * post to the queue? If so, unblock the highest priority waiting
1543 * task. */
1544 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
1545 {
1546 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
1547 {
1548 queueYIELD_IF_USING_PREEMPTION();
1549 }
1550 else
1551 {
1552 mtCOVERAGE_TEST_MARKER();
1553 }
1554 }
1555 else
1556 {
1557 mtCOVERAGE_TEST_MARKER();
1558 }
1559
1560 taskEXIT_CRITICAL();
1561
1562 traceRETURN_xQueueReceive( pdPASS );
1563
1564 return pdPASS;
1565 }
1566 else
1567 {
1568 if( xTicksToWait == ( TickType_t ) 0 )
1569 {
1570 /* The queue was empty and no block time is specified (or
1571 * the block time has expired) so leave now. */
1572 taskEXIT_CRITICAL();
1573
1574 traceQUEUE_RECEIVE_FAILED( pxQueue );
1575 traceRETURN_xQueueReceive( errQUEUE_EMPTY );
1576
1577 return errQUEUE_EMPTY;
1578 }
1579 else if( xEntryTimeSet == pdFALSE )
1580 {
1581 /* The queue was empty and a block time was specified so
1582 * configure the timeout structure. */
1583 vTaskInternalSetTimeOutState( &xTimeOut );
1584 xEntryTimeSet = pdTRUE;
1585 }
1586 else
1587 {
1588 /* Entry time was already set. */
1589 mtCOVERAGE_TEST_MARKER();
1590 }
1591 }
1592 }
1593 taskEXIT_CRITICAL();
1594
1595 /* Interrupts and other tasks can send to and receive from the queue
1596 * now the critical section has been exited. */
1597
1598 vTaskSuspendAll();
1599 prvLockQueue( pxQueue );
1600
1601 /* Update the timeout state to see if it has expired yet. */
1602 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1603 {
1604 /* The timeout has not expired. If the queue is still empty place
1605 * the task on the list of tasks waiting to receive from the queue. */
1606 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1607 {
1608 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
1609 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1610 prvUnlockQueue( pxQueue );
1611
1612 if( xTaskResumeAll() == pdFALSE )
1613 {
1614 taskYIELD_WITHIN_API();
1615 }
1616 else
1617 {
1618 mtCOVERAGE_TEST_MARKER();
1619 }
1620 }
1621 else
1622 {
1623 /* The queue contains data again. Loop back to try and read the
1624 * data. */
1625 prvUnlockQueue( pxQueue );
1626 ( void ) xTaskResumeAll();
1627 }
1628 }
1629 else
1630 {
1631 /* Timed out. If there is no data in the queue exit, otherwise loop
1632 * back and attempt to read the data. */
1633 prvUnlockQueue( pxQueue );
1634 ( void ) xTaskResumeAll();
1635
1636 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1637 {
1638 traceQUEUE_RECEIVE_FAILED( pxQueue );
1639 traceRETURN_xQueueReceive( errQUEUE_EMPTY );
1640
1641 return errQUEUE_EMPTY;
1642 }
1643 else
1644 {
1645 mtCOVERAGE_TEST_MARKER();
1646 }
1647 }
1648 }
1649 }
1650 /*-----------------------------------------------------------*/
1651
xQueueSemaphoreTake(QueueHandle_t xQueue,TickType_t xTicksToWait)1652 BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue,
1653 TickType_t xTicksToWait )
1654 {
1655 BaseType_t xEntryTimeSet = pdFALSE;
1656 TimeOut_t xTimeOut;
1657 Queue_t * const pxQueue = xQueue;
1658
1659 #if ( configUSE_MUTEXES == 1 )
1660 BaseType_t xInheritanceOccurred = pdFALSE;
1661 #endif
1662
1663 traceENTER_xQueueSemaphoreTake( xQueue, xTicksToWait );
1664
1665 /* Check the queue pointer is not NULL. */
1666 configASSERT( ( pxQueue ) );
1667
1668 /* Check this really is a semaphore, in which case the item size will be
1669 * 0. */
1670 configASSERT( pxQueue->uxItemSize == 0 );
1671
1672 /* Cannot block if the scheduler is suspended. */
1673 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1674 {
1675 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1676 }
1677 #endif
1678
1679 for( ; ; )
1680 {
1681 taskENTER_CRITICAL();
1682 {
1683 /* Semaphores are queues with an item size of 0, and where the
1684 * number of messages in the queue is the semaphore's count value. */
1685 const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting;
1686
1687 /* Is there data in the queue now? To be running the calling task
1688 * must be the highest priority task wanting to access the queue. */
1689 if( uxSemaphoreCount > ( UBaseType_t ) 0 )
1690 {
1691 traceQUEUE_RECEIVE( pxQueue );
1692
1693 /* Semaphores are queues with a data size of zero and where the
1694 * messages waiting is the semaphore's count. Reduce the count. */
1695 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxSemaphoreCount - ( UBaseType_t ) 1 );
1696
1697 #if ( configUSE_MUTEXES == 1 )
1698 {
1699 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
1700 {
1701 /* Record the information required to implement
1702 * priority inheritance should it become necessary. */
1703 pxQueue->u.xSemaphore.xMutexHolder = pvTaskIncrementMutexHeldCount();
1704 }
1705 else
1706 {
1707 mtCOVERAGE_TEST_MARKER();
1708 }
1709 }
1710 #endif /* configUSE_MUTEXES */
1711
1712 /* Check to see if other tasks are blocked waiting to give the
1713 * semaphore, and if so, unblock the highest priority such task. */
1714 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
1715 {
1716 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
1717 {
1718 queueYIELD_IF_USING_PREEMPTION();
1719 }
1720 else
1721 {
1722 mtCOVERAGE_TEST_MARKER();
1723 }
1724 }
1725 else
1726 {
1727 mtCOVERAGE_TEST_MARKER();
1728 }
1729
1730 taskEXIT_CRITICAL();
1731
1732 traceRETURN_xQueueSemaphoreTake( pdPASS );
1733
1734 return pdPASS;
1735 }
1736 else
1737 {
1738 if( xTicksToWait == ( TickType_t ) 0 )
1739 {
1740 /* The semaphore count was 0 and no block time is specified
1741 * (or the block time has expired) so exit now. */
1742 taskEXIT_CRITICAL();
1743
1744 traceQUEUE_RECEIVE_FAILED( pxQueue );
1745 traceRETURN_xQueueSemaphoreTake( errQUEUE_EMPTY );
1746
1747 return errQUEUE_EMPTY;
1748 }
1749 else if( xEntryTimeSet == pdFALSE )
1750 {
1751 /* The semaphore count was 0 and a block time was specified
1752 * so configure the timeout structure ready to block. */
1753 vTaskInternalSetTimeOutState( &xTimeOut );
1754 xEntryTimeSet = pdTRUE;
1755 }
1756 else
1757 {
1758 /* Entry time was already set. */
1759 mtCOVERAGE_TEST_MARKER();
1760 }
1761 }
1762 }
1763 taskEXIT_CRITICAL();
1764
1765 /* Interrupts and other tasks can give to and take from the semaphore
1766 * now the critical section has been exited. */
1767
1768 vTaskSuspendAll();
1769 prvLockQueue( pxQueue );
1770
1771 /* Update the timeout state to see if it has expired yet. */
1772 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1773 {
1774 /* A block time is specified and not expired. If the semaphore
1775 * count is 0 then enter the Blocked state to wait for a semaphore to
1776 * become available. As semaphores are implemented with queues the
1777 * queue being empty is equivalent to the semaphore count being 0. */
1778 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1779 {
1780 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
1781
1782 #if ( configUSE_MUTEXES == 1 )
1783 {
1784 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
1785 {
1786 taskENTER_CRITICAL();
1787 {
1788 xInheritanceOccurred = xTaskPriorityInherit( pxQueue->u.xSemaphore.xMutexHolder );
1789 }
1790 taskEXIT_CRITICAL();
1791 }
1792 else
1793 {
1794 mtCOVERAGE_TEST_MARKER();
1795 }
1796 }
1797 #endif /* if ( configUSE_MUTEXES == 1 ) */
1798
1799 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1800 prvUnlockQueue( pxQueue );
1801
1802 if( xTaskResumeAll() == pdFALSE )
1803 {
1804 taskYIELD_WITHIN_API();
1805 }
1806 else
1807 {
1808 mtCOVERAGE_TEST_MARKER();
1809 }
1810 }
1811 else
1812 {
1813 /* There was no timeout and the semaphore count was not 0, so
1814 * attempt to take the semaphore again. */
1815 prvUnlockQueue( pxQueue );
1816 ( void ) xTaskResumeAll();
1817 }
1818 }
1819 else
1820 {
1821 /* Timed out. */
1822 prvUnlockQueue( pxQueue );
1823 ( void ) xTaskResumeAll();
1824
1825 /* If the semaphore count is 0 exit now as the timeout has
1826 * expired. Otherwise return to attempt to take the semaphore that is
1827 * known to be available. As semaphores are implemented by queues the
1828 * queue being empty is equivalent to the semaphore count being 0. */
1829 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1830 {
1831 #if ( configUSE_MUTEXES == 1 )
1832 {
1833 /* xInheritanceOccurred could only have be set if
1834 * pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to
1835 * test the mutex type again to check it is actually a mutex. */
1836 if( xInheritanceOccurred != pdFALSE )
1837 {
1838 taskENTER_CRITICAL();
1839 {
1840 UBaseType_t uxHighestWaitingPriority;
1841
1842 /* This task blocking on the mutex caused another
1843 * task to inherit this task's priority. Now this task
1844 * has timed out the priority should be disinherited
1845 * again, but only as low as the next highest priority
1846 * task that is waiting for the same mutex. */
1847 uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout( pxQueue );
1848
1849 /* vTaskPriorityDisinheritAfterTimeout uses the uxHighestWaitingPriority
1850 * parameter to index pxReadyTasksLists when adding the task holding
1851 * mutex to the ready list for its new priority. Coverity thinks that
1852 * it can result in out-of-bounds access which is not true because
1853 * uxHighestWaitingPriority, as returned by prvGetDisinheritPriorityAfterTimeout,
1854 * is capped at ( configMAX_PRIORITIES - 1 ). */
1855 /* coverity[overrun] */
1856 vTaskPriorityDisinheritAfterTimeout( pxQueue->u.xSemaphore.xMutexHolder, uxHighestWaitingPriority );
1857 }
1858 taskEXIT_CRITICAL();
1859 }
1860 }
1861 #endif /* configUSE_MUTEXES */
1862
1863 traceQUEUE_RECEIVE_FAILED( pxQueue );
1864 traceRETURN_xQueueSemaphoreTake( errQUEUE_EMPTY );
1865
1866 return errQUEUE_EMPTY;
1867 }
1868 else
1869 {
1870 mtCOVERAGE_TEST_MARKER();
1871 }
1872 }
1873 }
1874 }
1875 /*-----------------------------------------------------------*/
1876
xQueuePeek(QueueHandle_t xQueue,void * const pvBuffer,TickType_t xTicksToWait)1877 BaseType_t xQueuePeek( QueueHandle_t xQueue,
1878 void * const pvBuffer,
1879 TickType_t xTicksToWait )
1880 {
1881 BaseType_t xEntryTimeSet = pdFALSE;
1882 TimeOut_t xTimeOut;
1883 int8_t * pcOriginalReadPosition;
1884 Queue_t * const pxQueue = xQueue;
1885
1886 traceENTER_xQueuePeek( xQueue, pvBuffer, xTicksToWait );
1887
1888 /* Check the pointer is not NULL. */
1889 configASSERT( ( pxQueue ) );
1890
1891 /* The buffer into which data is received can only be NULL if the data size
1892 * is zero (so no data is copied into the buffer. */
1893 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
1894
1895 /* Cannot block if the scheduler is suspended. */
1896 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1897 {
1898 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1899 }
1900 #endif
1901
1902 for( ; ; )
1903 {
1904 taskENTER_CRITICAL();
1905 {
1906 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1907
1908 /* Is there data in the queue now? To be running the calling task
1909 * must be the highest priority task wanting to access the queue. */
1910 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
1911 {
1912 /* Remember the read position so it can be reset after the data
1913 * is read from the queue as this function is only peeking the
1914 * data, not removing it. */
1915 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
1916
1917 prvCopyDataFromQueue( pxQueue, pvBuffer );
1918 traceQUEUE_PEEK( pxQueue );
1919
1920 /* The data is not being removed, so reset the read pointer. */
1921 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
1922
1923 /* The data is being left in the queue, so see if there are
1924 * any other tasks waiting for the data. */
1925 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1926 {
1927 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1928 {
1929 /* The task waiting has a higher priority than this task. */
1930 queueYIELD_IF_USING_PREEMPTION();
1931 }
1932 else
1933 {
1934 mtCOVERAGE_TEST_MARKER();
1935 }
1936 }
1937 else
1938 {
1939 mtCOVERAGE_TEST_MARKER();
1940 }
1941
1942 taskEXIT_CRITICAL();
1943
1944 traceRETURN_xQueuePeek( pdPASS );
1945
1946 return pdPASS;
1947 }
1948 else
1949 {
1950 if( xTicksToWait == ( TickType_t ) 0 )
1951 {
1952 /* The queue was empty and no block time is specified (or
1953 * the block time has expired) so leave now. */
1954 taskEXIT_CRITICAL();
1955
1956 traceQUEUE_PEEK_FAILED( pxQueue );
1957 traceRETURN_xQueuePeek( errQUEUE_EMPTY );
1958
1959 return errQUEUE_EMPTY;
1960 }
1961 else if( xEntryTimeSet == pdFALSE )
1962 {
1963 /* The queue was empty and a block time was specified so
1964 * configure the timeout structure ready to enter the blocked
1965 * state. */
1966 vTaskInternalSetTimeOutState( &xTimeOut );
1967 xEntryTimeSet = pdTRUE;
1968 }
1969 else
1970 {
1971 /* Entry time was already set. */
1972 mtCOVERAGE_TEST_MARKER();
1973 }
1974 }
1975 }
1976 taskEXIT_CRITICAL();
1977
1978 /* Interrupts and other tasks can send to and receive from the queue
1979 * now that the critical section has been exited. */
1980
1981 vTaskSuspendAll();
1982 prvLockQueue( pxQueue );
1983
1984 /* Update the timeout state to see if it has expired yet. */
1985 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1986 {
1987 /* Timeout has not expired yet, check to see if there is data in the
1988 * queue now, and if not enter the Blocked state to wait for data. */
1989 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1990 {
1991 traceBLOCKING_ON_QUEUE_PEEK( pxQueue );
1992 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1993 prvUnlockQueue( pxQueue );
1994
1995 if( xTaskResumeAll() == pdFALSE )
1996 {
1997 taskYIELD_WITHIN_API();
1998 }
1999 else
2000 {
2001 mtCOVERAGE_TEST_MARKER();
2002 }
2003 }
2004 else
2005 {
2006 /* There is data in the queue now, so don't enter the blocked
2007 * state, instead return to try and obtain the data. */
2008 prvUnlockQueue( pxQueue );
2009 ( void ) xTaskResumeAll();
2010 }
2011 }
2012 else
2013 {
2014 /* The timeout has expired. If there is still no data in the queue
2015 * exit, otherwise go back and try to read the data again. */
2016 prvUnlockQueue( pxQueue );
2017 ( void ) xTaskResumeAll();
2018
2019 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
2020 {
2021 traceQUEUE_PEEK_FAILED( pxQueue );
2022 traceRETURN_xQueuePeek( errQUEUE_EMPTY );
2023
2024 return errQUEUE_EMPTY;
2025 }
2026 else
2027 {
2028 mtCOVERAGE_TEST_MARKER();
2029 }
2030 }
2031 }
2032 }
2033 /*-----------------------------------------------------------*/
2034
xQueueReceiveFromISR(QueueHandle_t xQueue,void * const pvBuffer,BaseType_t * const pxHigherPriorityTaskWoken)2035 BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue,
2036 void * const pvBuffer,
2037 BaseType_t * const pxHigherPriorityTaskWoken )
2038 {
2039 BaseType_t xReturn;
2040 UBaseType_t uxSavedInterruptStatus;
2041 Queue_t * const pxQueue = xQueue;
2042
2043 traceENTER_xQueueReceiveFromISR( xQueue, pvBuffer, pxHigherPriorityTaskWoken );
2044
2045 configASSERT( pxQueue );
2046 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
2047
2048 /* RTOS ports that support interrupt nesting have the concept of a maximum
2049 * system call (or maximum API call) interrupt priority. Interrupts that are
2050 * above the maximum system call priority are kept permanently enabled, even
2051 * when the RTOS kernel is in a critical section, but cannot make any calls to
2052 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
2053 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2054 * failure if a FreeRTOS API function is called from an interrupt that has been
2055 * assigned a priority above the configured maximum system call priority.
2056 * Only FreeRTOS functions that end in FromISR can be called from interrupts
2057 * that have been assigned a priority at or (logically) below the maximum
2058 * system call interrupt priority. FreeRTOS maintains a separate interrupt
2059 * safe API to ensure interrupt entry is as fast and as simple as possible.
2060 * More information (albeit Cortex-M specific) is provided on the following
2061 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2062 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2063
2064 /* MISRA Ref 4.7.1 [Return value shall be checked] */
2065 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
2066 /* coverity[misra_c_2012_directive_4_7_violation] */
2067 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
2068 {
2069 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
2070
2071 /* Cannot block in an ISR, so check there is data available. */
2072 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
2073 {
2074 const int8_t cRxLock = pxQueue->cRxLock;
2075
2076 traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
2077
2078 prvCopyDataFromQueue( pxQueue, pvBuffer );
2079 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting - ( UBaseType_t ) 1 );
2080
2081 /* If the queue is locked the event list will not be modified.
2082 * Instead update the lock count so the task that unlocks the queue
2083 * will know that an ISR has removed data while the queue was
2084 * locked. */
2085 if( cRxLock == queueUNLOCKED )
2086 {
2087 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2088 {
2089 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2090 {
2091 /* The task waiting has a higher priority than us so
2092 * force a context switch. */
2093 if( pxHigherPriorityTaskWoken != NULL )
2094 {
2095 *pxHigherPriorityTaskWoken = pdTRUE;
2096 }
2097 else
2098 {
2099 mtCOVERAGE_TEST_MARKER();
2100 }
2101 }
2102 else
2103 {
2104 mtCOVERAGE_TEST_MARKER();
2105 }
2106 }
2107 else
2108 {
2109 mtCOVERAGE_TEST_MARKER();
2110 }
2111 }
2112 else
2113 {
2114 /* Increment the lock count so the task that unlocks the queue
2115 * knows that data was removed while it was locked. */
2116 prvIncrementQueueRxLock( pxQueue, cRxLock );
2117 }
2118
2119 xReturn = pdPASS;
2120 }
2121 else
2122 {
2123 xReturn = pdFAIL;
2124 traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
2125 }
2126 }
2127 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2128
2129 traceRETURN_xQueueReceiveFromISR( xReturn );
2130
2131 return xReturn;
2132 }
2133 /*-----------------------------------------------------------*/
2134
xQueuePeekFromISR(QueueHandle_t xQueue,void * const pvBuffer)2135 BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue,
2136 void * const pvBuffer )
2137 {
2138 BaseType_t xReturn;
2139 UBaseType_t uxSavedInterruptStatus;
2140 int8_t * pcOriginalReadPosition;
2141 Queue_t * const pxQueue = xQueue;
2142
2143 traceENTER_xQueuePeekFromISR( xQueue, pvBuffer );
2144
2145 configASSERT( pxQueue );
2146 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
2147 configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
2148
2149 /* RTOS ports that support interrupt nesting have the concept of a maximum
2150 * system call (or maximum API call) interrupt priority. Interrupts that are
2151 * above the maximum system call priority are kept permanently enabled, even
2152 * when the RTOS kernel is in a critical section, but cannot make any calls to
2153 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
2154 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2155 * failure if a FreeRTOS API function is called from an interrupt that has been
2156 * assigned a priority above the configured maximum system call priority.
2157 * Only FreeRTOS functions that end in FromISR can be called from interrupts
2158 * that have been assigned a priority at or (logically) below the maximum
2159 * system call interrupt priority. FreeRTOS maintains a separate interrupt
2160 * safe API to ensure interrupt entry is as fast and as simple as possible.
2161 * More information (albeit Cortex-M specific) is provided on the following
2162 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2163 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2164
2165 /* MISRA Ref 4.7.1 [Return value shall be checked] */
2166 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
2167 /* coverity[misra_c_2012_directive_4_7_violation] */
2168 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
2169 {
2170 /* Cannot block in an ISR, so check there is data available. */
2171 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2172 {
2173 traceQUEUE_PEEK_FROM_ISR( pxQueue );
2174
2175 /* Remember the read position so it can be reset as nothing is
2176 * actually being removed from the queue. */
2177 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
2178 prvCopyDataFromQueue( pxQueue, pvBuffer );
2179 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
2180
2181 xReturn = pdPASS;
2182 }
2183 else
2184 {
2185 xReturn = pdFAIL;
2186 traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
2187 }
2188 }
2189 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2190
2191 traceRETURN_xQueuePeekFromISR( xReturn );
2192
2193 return xReturn;
2194 }
2195 /*-----------------------------------------------------------*/
2196
uxQueueMessagesWaiting(const QueueHandle_t xQueue)2197 UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
2198 {
2199 UBaseType_t uxReturn;
2200
2201 traceENTER_uxQueueMessagesWaiting( xQueue );
2202
2203 configASSERT( xQueue );
2204
2205 taskENTER_CRITICAL();
2206 {
2207 uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
2208 }
2209 taskEXIT_CRITICAL();
2210
2211 traceRETURN_uxQueueMessagesWaiting( uxReturn );
2212
2213 return uxReturn;
2214 }
2215 /*-----------------------------------------------------------*/
2216
uxQueueSpacesAvailable(const QueueHandle_t xQueue)2217 UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
2218 {
2219 UBaseType_t uxReturn;
2220 Queue_t * const pxQueue = xQueue;
2221
2222 traceENTER_uxQueueSpacesAvailable( xQueue );
2223
2224 configASSERT( pxQueue );
2225
2226 taskENTER_CRITICAL();
2227 {
2228 uxReturn = ( UBaseType_t ) ( pxQueue->uxLength - pxQueue->uxMessagesWaiting );
2229 }
2230 taskEXIT_CRITICAL();
2231
2232 traceRETURN_uxQueueSpacesAvailable( uxReturn );
2233
2234 return uxReturn;
2235 }
2236 /*-----------------------------------------------------------*/
2237
uxQueueMessagesWaitingFromISR(const QueueHandle_t xQueue)2238 UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
2239 {
2240 UBaseType_t uxReturn;
2241 Queue_t * const pxQueue = xQueue;
2242
2243 traceENTER_uxQueueMessagesWaitingFromISR( xQueue );
2244
2245 configASSERT( pxQueue );
2246 uxReturn = pxQueue->uxMessagesWaiting;
2247
2248 traceRETURN_uxQueueMessagesWaitingFromISR( uxReturn );
2249
2250 return uxReturn;
2251 }
2252 /*-----------------------------------------------------------*/
2253
vQueueDelete(QueueHandle_t xQueue)2254 void vQueueDelete( QueueHandle_t xQueue )
2255 {
2256 Queue_t * const pxQueue = xQueue;
2257
2258 traceENTER_vQueueDelete( xQueue );
2259
2260 configASSERT( pxQueue );
2261 traceQUEUE_DELETE( pxQueue );
2262
2263 #if ( configQUEUE_REGISTRY_SIZE > 0 )
2264 {
2265 vQueueUnregisterQueue( pxQueue );
2266 }
2267 #endif
2268
2269 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
2270 {
2271 /* The queue can only have been allocated dynamically - free it
2272 * again. */
2273 vPortFree( pxQueue );
2274 }
2275 #elif ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
2276 {
2277 /* The queue could have been allocated statically or dynamically, so
2278 * check before attempting to free the memory. */
2279 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
2280 {
2281 vPortFree( pxQueue );
2282 }
2283 else
2284 {
2285 mtCOVERAGE_TEST_MARKER();
2286 }
2287 }
2288 #else /* if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) */
2289 {
2290 /* The queue must have been statically allocated, so is not going to be
2291 * deleted. Avoid compiler warnings about the unused parameter. */
2292 ( void ) pxQueue;
2293 }
2294 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
2295
2296 traceRETURN_vQueueDelete();
2297 }
2298 /*-----------------------------------------------------------*/
2299
2300 #if ( configUSE_TRACE_FACILITY == 1 )
2301
uxQueueGetQueueNumber(QueueHandle_t xQueue)2302 UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
2303 {
2304 traceENTER_uxQueueGetQueueNumber( xQueue );
2305
2306 traceRETURN_uxQueueGetQueueNumber( ( ( Queue_t * ) xQueue )->uxQueueNumber );
2307
2308 return ( ( Queue_t * ) xQueue )->uxQueueNumber;
2309 }
2310
2311 #endif /* configUSE_TRACE_FACILITY */
2312 /*-----------------------------------------------------------*/
2313
2314 #if ( configUSE_TRACE_FACILITY == 1 )
2315
vQueueSetQueueNumber(QueueHandle_t xQueue,UBaseType_t uxQueueNumber)2316 void vQueueSetQueueNumber( QueueHandle_t xQueue,
2317 UBaseType_t uxQueueNumber )
2318 {
2319 traceENTER_vQueueSetQueueNumber( xQueue, uxQueueNumber );
2320
2321 ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
2322
2323 traceRETURN_vQueueSetQueueNumber();
2324 }
2325
2326 #endif /* configUSE_TRACE_FACILITY */
2327 /*-----------------------------------------------------------*/
2328
2329 #if ( configUSE_TRACE_FACILITY == 1 )
2330
ucQueueGetQueueType(QueueHandle_t xQueue)2331 uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
2332 {
2333 traceENTER_ucQueueGetQueueType( xQueue );
2334
2335 traceRETURN_ucQueueGetQueueType( ( ( Queue_t * ) xQueue )->ucQueueType );
2336
2337 return ( ( Queue_t * ) xQueue )->ucQueueType;
2338 }
2339
2340 #endif /* configUSE_TRACE_FACILITY */
2341 /*-----------------------------------------------------------*/
2342
uxQueueGetQueueItemSize(QueueHandle_t xQueue)2343 UBaseType_t uxQueueGetQueueItemSize( QueueHandle_t xQueue ) /* PRIVILEGED_FUNCTION */
2344 {
2345 traceENTER_uxQueueGetQueueItemSize( xQueue );
2346
2347 traceRETURN_uxQueueGetQueueItemSize( ( ( Queue_t * ) xQueue )->uxItemSize );
2348
2349 return ( ( Queue_t * ) xQueue )->uxItemSize;
2350 }
2351 /*-----------------------------------------------------------*/
2352
uxQueueGetQueueLength(QueueHandle_t xQueue)2353 UBaseType_t uxQueueGetQueueLength( QueueHandle_t xQueue ) /* PRIVILEGED_FUNCTION */
2354 {
2355 traceENTER_uxQueueGetQueueLength( xQueue );
2356
2357 traceRETURN_uxQueueGetQueueLength( ( ( Queue_t * ) xQueue )->uxLength );
2358
2359 return ( ( Queue_t * ) xQueue )->uxLength;
2360 }
2361 /*-----------------------------------------------------------*/
2362
2363 #if ( configUSE_MUTEXES == 1 )
2364
prvGetDisinheritPriorityAfterTimeout(const Queue_t * const pxQueue)2365 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue )
2366 {
2367 UBaseType_t uxHighestPriorityOfWaitingTasks;
2368
2369 /* If a task waiting for a mutex causes the mutex holder to inherit a
2370 * priority, but the waiting task times out, then the holder should
2371 * disinherit the priority - but only down to the highest priority of any
2372 * other tasks that are waiting for the same mutex. For this purpose,
2373 * return the priority of the highest priority task that is waiting for the
2374 * mutex. */
2375 if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0U )
2376 {
2377 uxHighestPriorityOfWaitingTasks = ( UBaseType_t ) ( ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) ) );
2378 }
2379 else
2380 {
2381 uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY;
2382 }
2383
2384 return uxHighestPriorityOfWaitingTasks;
2385 }
2386
2387 #endif /* configUSE_MUTEXES */
2388 /*-----------------------------------------------------------*/
2389
prvCopyDataToQueue(Queue_t * const pxQueue,const void * pvItemToQueue,const BaseType_t xPosition)2390 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
2391 const void * pvItemToQueue,
2392 const BaseType_t xPosition )
2393 {
2394 BaseType_t xReturn = pdFALSE;
2395 UBaseType_t uxMessagesWaiting;
2396
2397 /* This function is called from a critical section. */
2398
2399 uxMessagesWaiting = pxQueue->uxMessagesWaiting;
2400
2401 if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
2402 {
2403 #if ( configUSE_MUTEXES == 1 )
2404 {
2405 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
2406 {
2407 /* The mutex is no longer being held. */
2408 xReturn = xTaskPriorityDisinherit( pxQueue->u.xSemaphore.xMutexHolder );
2409 pxQueue->u.xSemaphore.xMutexHolder = NULL;
2410 }
2411 else
2412 {
2413 mtCOVERAGE_TEST_MARKER();
2414 }
2415 }
2416 #endif /* configUSE_MUTEXES */
2417 }
2418 else if( xPosition == queueSEND_TO_BACK )
2419 {
2420 ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize );
2421 pxQueue->pcWriteTo += pxQueue->uxItemSize;
2422
2423 if( pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail )
2424 {
2425 pxQueue->pcWriteTo = pxQueue->pcHead;
2426 }
2427 else
2428 {
2429 mtCOVERAGE_TEST_MARKER();
2430 }
2431 }
2432 else
2433 {
2434 ( void ) memcpy( ( void * ) pxQueue->u.xQueue.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize );
2435 pxQueue->u.xQueue.pcReadFrom -= pxQueue->uxItemSize;
2436
2437 if( pxQueue->u.xQueue.pcReadFrom < pxQueue->pcHead )
2438 {
2439 pxQueue->u.xQueue.pcReadFrom = ( pxQueue->u.xQueue.pcTail - pxQueue->uxItemSize );
2440 }
2441 else
2442 {
2443 mtCOVERAGE_TEST_MARKER();
2444 }
2445
2446 if( xPosition == queueOVERWRITE )
2447 {
2448 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
2449 {
2450 /* An item is not being added but overwritten, so subtract
2451 * one from the recorded number of items in the queue so when
2452 * one is added again below the number of recorded items remains
2453 * correct. */
2454 --uxMessagesWaiting;
2455 }
2456 else
2457 {
2458 mtCOVERAGE_TEST_MARKER();
2459 }
2460 }
2461 else
2462 {
2463 mtCOVERAGE_TEST_MARKER();
2464 }
2465 }
2466
2467 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting + ( UBaseType_t ) 1 );
2468
2469 return xReturn;
2470 }
2471 /*-----------------------------------------------------------*/
2472
prvCopyDataFromQueue(Queue_t * const pxQueue,void * const pvBuffer)2473 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
2474 void * const pvBuffer )
2475 {
2476 if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
2477 {
2478 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
2479
2480 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
2481 {
2482 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2483 }
2484 else
2485 {
2486 mtCOVERAGE_TEST_MARKER();
2487 }
2488
2489 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( size_t ) pxQueue->uxItemSize );
2490 }
2491 }
2492 /*-----------------------------------------------------------*/
2493
prvUnlockQueue(Queue_t * const pxQueue)2494 static void prvUnlockQueue( Queue_t * const pxQueue )
2495 {
2496 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
2497
2498 /* The lock counts contains the number of extra data items placed or
2499 * removed from the queue while the queue was locked. When a queue is
2500 * locked items can be added or removed, but the event lists cannot be
2501 * updated. */
2502 taskENTER_CRITICAL();
2503 {
2504 int8_t cTxLock = pxQueue->cTxLock;
2505
2506 /* See if data was added to the queue while it was locked. */
2507 while( cTxLock > queueLOCKED_UNMODIFIED )
2508 {
2509 /* Data was posted while the queue was locked. Are any tasks
2510 * blocked waiting for data to become available? */
2511 #if ( configUSE_QUEUE_SETS == 1 )
2512 {
2513 if( pxQueue->pxQueueSetContainer != NULL )
2514 {
2515 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
2516 {
2517 /* The queue is a member of a queue set, and posting to
2518 * the queue set caused a higher priority task to unblock.
2519 * A context switch is required. */
2520 vTaskMissedYield();
2521 }
2522 else
2523 {
2524 mtCOVERAGE_TEST_MARKER();
2525 }
2526 }
2527 else
2528 {
2529 /* Tasks that are removed from the event list will get
2530 * added to the pending ready list as the scheduler is still
2531 * suspended. */
2532 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2533 {
2534 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2535 {
2536 /* The task waiting has a higher priority so record that a
2537 * context switch is required. */
2538 vTaskMissedYield();
2539 }
2540 else
2541 {
2542 mtCOVERAGE_TEST_MARKER();
2543 }
2544 }
2545 else
2546 {
2547 break;
2548 }
2549 }
2550 }
2551 #else /* configUSE_QUEUE_SETS */
2552 {
2553 /* Tasks that are removed from the event list will get added to
2554 * the pending ready list as the scheduler is still suspended. */
2555 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2556 {
2557 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2558 {
2559 /* The task waiting has a higher priority so record that
2560 * a context switch is required. */
2561 vTaskMissedYield();
2562 }
2563 else
2564 {
2565 mtCOVERAGE_TEST_MARKER();
2566 }
2567 }
2568 else
2569 {
2570 break;
2571 }
2572 }
2573 #endif /* configUSE_QUEUE_SETS */
2574
2575 --cTxLock;
2576 }
2577
2578 pxQueue->cTxLock = queueUNLOCKED;
2579 }
2580 taskEXIT_CRITICAL();
2581
2582 /* Do the same for the Rx lock. */
2583 taskENTER_CRITICAL();
2584 {
2585 int8_t cRxLock = pxQueue->cRxLock;
2586
2587 while( cRxLock > queueLOCKED_UNMODIFIED )
2588 {
2589 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2590 {
2591 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2592 {
2593 vTaskMissedYield();
2594 }
2595 else
2596 {
2597 mtCOVERAGE_TEST_MARKER();
2598 }
2599
2600 --cRxLock;
2601 }
2602 else
2603 {
2604 break;
2605 }
2606 }
2607
2608 pxQueue->cRxLock = queueUNLOCKED;
2609 }
2610 taskEXIT_CRITICAL();
2611 }
2612 /*-----------------------------------------------------------*/
2613
prvIsQueueEmpty(const Queue_t * pxQueue)2614 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue )
2615 {
2616 BaseType_t xReturn;
2617
2618 taskENTER_CRITICAL();
2619 {
2620 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2621 {
2622 xReturn = pdTRUE;
2623 }
2624 else
2625 {
2626 xReturn = pdFALSE;
2627 }
2628 }
2629 taskEXIT_CRITICAL();
2630
2631 return xReturn;
2632 }
2633 /*-----------------------------------------------------------*/
2634
xQueueIsQueueEmptyFromISR(const QueueHandle_t xQueue)2635 BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
2636 {
2637 BaseType_t xReturn;
2638 Queue_t * const pxQueue = xQueue;
2639
2640 traceENTER_xQueueIsQueueEmptyFromISR( xQueue );
2641
2642 configASSERT( pxQueue );
2643
2644 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2645 {
2646 xReturn = pdTRUE;
2647 }
2648 else
2649 {
2650 xReturn = pdFALSE;
2651 }
2652
2653 traceRETURN_xQueueIsQueueEmptyFromISR( xReturn );
2654
2655 return xReturn;
2656 }
2657 /*-----------------------------------------------------------*/
2658
prvIsQueueFull(const Queue_t * pxQueue)2659 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue )
2660 {
2661 BaseType_t xReturn;
2662
2663 taskENTER_CRITICAL();
2664 {
2665 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
2666 {
2667 xReturn = pdTRUE;
2668 }
2669 else
2670 {
2671 xReturn = pdFALSE;
2672 }
2673 }
2674 taskEXIT_CRITICAL();
2675
2676 return xReturn;
2677 }
2678 /*-----------------------------------------------------------*/
2679
xQueueIsQueueFullFromISR(const QueueHandle_t xQueue)2680 BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
2681 {
2682 BaseType_t xReturn;
2683 Queue_t * const pxQueue = xQueue;
2684
2685 traceENTER_xQueueIsQueueFullFromISR( xQueue );
2686
2687 configASSERT( pxQueue );
2688
2689 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
2690 {
2691 xReturn = pdTRUE;
2692 }
2693 else
2694 {
2695 xReturn = pdFALSE;
2696 }
2697
2698 traceRETURN_xQueueIsQueueFullFromISR( xReturn );
2699
2700 return xReturn;
2701 }
2702 /*-----------------------------------------------------------*/
2703
2704 #if ( configUSE_CO_ROUTINES == 1 )
2705
xQueueCRSend(QueueHandle_t xQueue,const void * pvItemToQueue,TickType_t xTicksToWait)2706 BaseType_t xQueueCRSend( QueueHandle_t xQueue,
2707 const void * pvItemToQueue,
2708 TickType_t xTicksToWait )
2709 {
2710 BaseType_t xReturn;
2711 Queue_t * const pxQueue = xQueue;
2712
2713 traceENTER_xQueueCRSend( xQueue, pvItemToQueue, xTicksToWait );
2714
2715 /* If the queue is already full we may have to block. A critical section
2716 * is required to prevent an interrupt removing something from the queue
2717 * between the check to see if the queue is full and blocking on the queue. */
2718 portDISABLE_INTERRUPTS();
2719 {
2720 if( prvIsQueueFull( pxQueue ) != pdFALSE )
2721 {
2722 /* The queue is full - do we want to block or just leave without
2723 * posting? */
2724 if( xTicksToWait > ( TickType_t ) 0 )
2725 {
2726 /* As this is called from a coroutine we cannot block directly, but
2727 * return indicating that we need to block. */
2728 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
2729 portENABLE_INTERRUPTS();
2730 return errQUEUE_BLOCKED;
2731 }
2732 else
2733 {
2734 portENABLE_INTERRUPTS();
2735 return errQUEUE_FULL;
2736 }
2737 }
2738 }
2739 portENABLE_INTERRUPTS();
2740
2741 portDISABLE_INTERRUPTS();
2742 {
2743 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
2744 {
2745 /* There is room in the queue, copy the data into the queue. */
2746 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
2747 xReturn = pdPASS;
2748
2749 /* Were any co-routines waiting for data to become available? */
2750 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2751 {
2752 /* In this instance the co-routine could be placed directly
2753 * into the ready list as we are within a critical section.
2754 * Instead the same pending ready list mechanism is used as if
2755 * the event were caused from within an interrupt. */
2756 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2757 {
2758 /* The co-routine waiting has a higher priority so record
2759 * that a yield might be appropriate. */
2760 xReturn = errQUEUE_YIELD;
2761 }
2762 else
2763 {
2764 mtCOVERAGE_TEST_MARKER();
2765 }
2766 }
2767 else
2768 {
2769 mtCOVERAGE_TEST_MARKER();
2770 }
2771 }
2772 else
2773 {
2774 xReturn = errQUEUE_FULL;
2775 }
2776 }
2777 portENABLE_INTERRUPTS();
2778
2779 traceRETURN_xQueueCRSend( xReturn );
2780
2781 return xReturn;
2782 }
2783
2784 #endif /* configUSE_CO_ROUTINES */
2785 /*-----------------------------------------------------------*/
2786
2787 #if ( configUSE_CO_ROUTINES == 1 )
2788
xQueueCRReceive(QueueHandle_t xQueue,void * pvBuffer,TickType_t xTicksToWait)2789 BaseType_t xQueueCRReceive( QueueHandle_t xQueue,
2790 void * pvBuffer,
2791 TickType_t xTicksToWait )
2792 {
2793 BaseType_t xReturn;
2794 Queue_t * const pxQueue = xQueue;
2795
2796 traceENTER_xQueueCRReceive( xQueue, pvBuffer, xTicksToWait );
2797
2798 /* If the queue is already empty we may have to block. A critical section
2799 * is required to prevent an interrupt adding something to the queue
2800 * between the check to see if the queue is empty and blocking on the queue. */
2801 portDISABLE_INTERRUPTS();
2802 {
2803 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2804 {
2805 /* There are no messages in the queue, do we want to block or just
2806 * leave with nothing? */
2807 if( xTicksToWait > ( TickType_t ) 0 )
2808 {
2809 /* As this is a co-routine we cannot block directly, but return
2810 * indicating that we need to block. */
2811 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
2812 portENABLE_INTERRUPTS();
2813 return errQUEUE_BLOCKED;
2814 }
2815 else
2816 {
2817 portENABLE_INTERRUPTS();
2818 return errQUEUE_FULL;
2819 }
2820 }
2821 else
2822 {
2823 mtCOVERAGE_TEST_MARKER();
2824 }
2825 }
2826 portENABLE_INTERRUPTS();
2827
2828 portDISABLE_INTERRUPTS();
2829 {
2830 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2831 {
2832 /* Data is available from the queue. */
2833 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
2834
2835 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
2836 {
2837 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2838 }
2839 else
2840 {
2841 mtCOVERAGE_TEST_MARKER();
2842 }
2843
2844 --( pxQueue->uxMessagesWaiting );
2845 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
2846
2847 xReturn = pdPASS;
2848
2849 /* Were any co-routines waiting for space to become available? */
2850 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2851 {
2852 /* In this instance the co-routine could be placed directly
2853 * into the ready list as we are within a critical section.
2854 * Instead the same pending ready list mechanism is used as if
2855 * the event were caused from within an interrupt. */
2856 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2857 {
2858 xReturn = errQUEUE_YIELD;
2859 }
2860 else
2861 {
2862 mtCOVERAGE_TEST_MARKER();
2863 }
2864 }
2865 else
2866 {
2867 mtCOVERAGE_TEST_MARKER();
2868 }
2869 }
2870 else
2871 {
2872 xReturn = pdFAIL;
2873 }
2874 }
2875 portENABLE_INTERRUPTS();
2876
2877 traceRETURN_xQueueCRReceive( xReturn );
2878
2879 return xReturn;
2880 }
2881
2882 #endif /* configUSE_CO_ROUTINES */
2883 /*-----------------------------------------------------------*/
2884
2885 #if ( configUSE_CO_ROUTINES == 1 )
2886
xQueueCRSendFromISR(QueueHandle_t xQueue,const void * pvItemToQueue,BaseType_t xCoRoutinePreviouslyWoken)2887 BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue,
2888 const void * pvItemToQueue,
2889 BaseType_t xCoRoutinePreviouslyWoken )
2890 {
2891 Queue_t * const pxQueue = xQueue;
2892
2893 traceENTER_xQueueCRSendFromISR( xQueue, pvItemToQueue, xCoRoutinePreviouslyWoken );
2894
2895 /* Cannot block within an ISR so if there is no space on the queue then
2896 * exit without doing anything. */
2897 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
2898 {
2899 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
2900
2901 /* We only want to wake one co-routine per ISR, so check that a
2902 * co-routine has not already been woken. */
2903 if( xCoRoutinePreviouslyWoken == pdFALSE )
2904 {
2905 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2906 {
2907 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2908 {
2909 return pdTRUE;
2910 }
2911 else
2912 {
2913 mtCOVERAGE_TEST_MARKER();
2914 }
2915 }
2916 else
2917 {
2918 mtCOVERAGE_TEST_MARKER();
2919 }
2920 }
2921 else
2922 {
2923 mtCOVERAGE_TEST_MARKER();
2924 }
2925 }
2926 else
2927 {
2928 mtCOVERAGE_TEST_MARKER();
2929 }
2930
2931 traceRETURN_xQueueCRSendFromISR( xCoRoutinePreviouslyWoken );
2932
2933 return xCoRoutinePreviouslyWoken;
2934 }
2935
2936 #endif /* configUSE_CO_ROUTINES */
2937 /*-----------------------------------------------------------*/
2938
2939 #if ( configUSE_CO_ROUTINES == 1 )
2940
xQueueCRReceiveFromISR(QueueHandle_t xQueue,void * pvBuffer,BaseType_t * pxCoRoutineWoken)2941 BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue,
2942 void * pvBuffer,
2943 BaseType_t * pxCoRoutineWoken )
2944 {
2945 BaseType_t xReturn;
2946 Queue_t * const pxQueue = xQueue;
2947
2948 traceENTER_xQueueCRReceiveFromISR( xQueue, pvBuffer, pxCoRoutineWoken );
2949
2950 /* We cannot block from an ISR, so check there is data available. If
2951 * not then just leave without doing anything. */
2952 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2953 {
2954 /* Copy the data from the queue. */
2955 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
2956
2957 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
2958 {
2959 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2960 }
2961 else
2962 {
2963 mtCOVERAGE_TEST_MARKER();
2964 }
2965
2966 --( pxQueue->uxMessagesWaiting );
2967 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
2968
2969 if( ( *pxCoRoutineWoken ) == pdFALSE )
2970 {
2971 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2972 {
2973 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2974 {
2975 *pxCoRoutineWoken = pdTRUE;
2976 }
2977 else
2978 {
2979 mtCOVERAGE_TEST_MARKER();
2980 }
2981 }
2982 else
2983 {
2984 mtCOVERAGE_TEST_MARKER();
2985 }
2986 }
2987 else
2988 {
2989 mtCOVERAGE_TEST_MARKER();
2990 }
2991
2992 xReturn = pdPASS;
2993 }
2994 else
2995 {
2996 xReturn = pdFAIL;
2997 }
2998
2999 traceRETURN_xQueueCRReceiveFromISR( xReturn );
3000
3001 return xReturn;
3002 }
3003
3004 #endif /* configUSE_CO_ROUTINES */
3005 /*-----------------------------------------------------------*/
3006
3007 #if ( configQUEUE_REGISTRY_SIZE > 0 )
3008
vQueueAddToRegistry(QueueHandle_t xQueue,const char * pcQueueName)3009 void vQueueAddToRegistry( QueueHandle_t xQueue,
3010 const char * pcQueueName )
3011 {
3012 UBaseType_t ux;
3013 QueueRegistryItem_t * pxEntryToWrite = NULL;
3014
3015 traceENTER_vQueueAddToRegistry( xQueue, pcQueueName );
3016
3017 configASSERT( xQueue );
3018
3019 if( pcQueueName != NULL )
3020 {
3021 /* See if there is an empty space in the registry. A NULL name denotes
3022 * a free slot. */
3023 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
3024 {
3025 /* Replace an existing entry if the queue is already in the registry. */
3026 if( xQueue == xQueueRegistry[ ux ].xHandle )
3027 {
3028 pxEntryToWrite = &( xQueueRegistry[ ux ] );
3029 break;
3030 }
3031 /* Otherwise, store in the next empty location */
3032 else if( ( pxEntryToWrite == NULL ) && ( xQueueRegistry[ ux ].pcQueueName == NULL ) )
3033 {
3034 pxEntryToWrite = &( xQueueRegistry[ ux ] );
3035 }
3036 else
3037 {
3038 mtCOVERAGE_TEST_MARKER();
3039 }
3040 }
3041 }
3042
3043 if( pxEntryToWrite != NULL )
3044 {
3045 /* Store the information on this queue. */
3046 pxEntryToWrite->pcQueueName = pcQueueName;
3047 pxEntryToWrite->xHandle = xQueue;
3048
3049 traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
3050 }
3051
3052 traceRETURN_vQueueAddToRegistry();
3053 }
3054
3055 #endif /* configQUEUE_REGISTRY_SIZE */
3056 /*-----------------------------------------------------------*/
3057
3058 #if ( configQUEUE_REGISTRY_SIZE > 0 )
3059
pcQueueGetName(QueueHandle_t xQueue)3060 const char * pcQueueGetName( QueueHandle_t xQueue )
3061 {
3062 UBaseType_t ux;
3063 const char * pcReturn = NULL;
3064
3065 traceENTER_pcQueueGetName( xQueue );
3066
3067 configASSERT( xQueue );
3068
3069 /* Note there is nothing here to protect against another task adding or
3070 * removing entries from the registry while it is being searched. */
3071
3072 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
3073 {
3074 if( xQueueRegistry[ ux ].xHandle == xQueue )
3075 {
3076 pcReturn = xQueueRegistry[ ux ].pcQueueName;
3077 break;
3078 }
3079 else
3080 {
3081 mtCOVERAGE_TEST_MARKER();
3082 }
3083 }
3084
3085 traceRETURN_pcQueueGetName( pcReturn );
3086
3087 return pcReturn;
3088 }
3089
3090 #endif /* configQUEUE_REGISTRY_SIZE */
3091 /*-----------------------------------------------------------*/
3092
3093 #if ( configQUEUE_REGISTRY_SIZE > 0 )
3094
vQueueUnregisterQueue(QueueHandle_t xQueue)3095 void vQueueUnregisterQueue( QueueHandle_t xQueue )
3096 {
3097 UBaseType_t ux;
3098
3099 traceENTER_vQueueUnregisterQueue( xQueue );
3100
3101 configASSERT( xQueue );
3102
3103 /* See if the handle of the queue being unregistered in actually in the
3104 * registry. */
3105 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
3106 {
3107 if( xQueueRegistry[ ux ].xHandle == xQueue )
3108 {
3109 /* Set the name to NULL to show that this slot if free again. */
3110 xQueueRegistry[ ux ].pcQueueName = NULL;
3111
3112 /* Set the handle to NULL to ensure the same queue handle cannot
3113 * appear in the registry twice if it is added, removed, then
3114 * added again. */
3115 xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
3116 break;
3117 }
3118 else
3119 {
3120 mtCOVERAGE_TEST_MARKER();
3121 }
3122 }
3123
3124 traceRETURN_vQueueUnregisterQueue();
3125 }
3126
3127 #endif /* configQUEUE_REGISTRY_SIZE */
3128 /*-----------------------------------------------------------*/
3129
3130 #if ( configUSE_TIMERS == 1 )
3131
vQueueWaitForMessageRestricted(QueueHandle_t xQueue,TickType_t xTicksToWait,const BaseType_t xWaitIndefinitely)3132 void vQueueWaitForMessageRestricted( QueueHandle_t xQueue,
3133 TickType_t xTicksToWait,
3134 const BaseType_t xWaitIndefinitely )
3135 {
3136 Queue_t * const pxQueue = xQueue;
3137
3138 traceENTER_vQueueWaitForMessageRestricted( xQueue, xTicksToWait, xWaitIndefinitely );
3139
3140 /* This function should not be called by application code hence the
3141 * 'Restricted' in its name. It is not part of the public API. It is
3142 * designed for use by kernel code, and has special calling requirements.
3143 * It can result in vListInsert() being called on a list that can only
3144 * possibly ever have one item in it, so the list will be fast, but even
3145 * so it should be called with the scheduler locked and not from a critical
3146 * section. */
3147
3148 /* Only do anything if there are no messages in the queue. This function
3149 * will not actually cause the task to block, just place it on a blocked
3150 * list. It will not block until the scheduler is unlocked - at which
3151 * time a yield will be performed. If an item is added to the queue while
3152 * the queue is locked, and the calling task blocks on the queue, then the
3153 * calling task will be immediately unblocked when the queue is unlocked. */
3154 prvLockQueue( pxQueue );
3155
3156 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
3157 {
3158 /* There is nothing in the queue, block for the specified period. */
3159 vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
3160 }
3161 else
3162 {
3163 mtCOVERAGE_TEST_MARKER();
3164 }
3165
3166 prvUnlockQueue( pxQueue );
3167
3168 traceRETURN_vQueueWaitForMessageRestricted();
3169 }
3170
3171 #endif /* configUSE_TIMERS */
3172 /*-----------------------------------------------------------*/
3173
3174 #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
3175
xQueueCreateSet(const UBaseType_t uxEventQueueLength)3176 QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
3177 {
3178 QueueSetHandle_t pxQueue;
3179
3180 traceENTER_xQueueCreateSet( uxEventQueueLength );
3181
3182 pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
3183
3184 traceRETURN_xQueueCreateSet( pxQueue );
3185
3186 return pxQueue;
3187 }
3188
3189 #endif /* configUSE_QUEUE_SETS */
3190 /*-----------------------------------------------------------*/
3191
3192 #if ( configUSE_QUEUE_SETS == 1 )
3193
xQueueAddToSet(QueueSetMemberHandle_t xQueueOrSemaphore,QueueSetHandle_t xQueueSet)3194 BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore,
3195 QueueSetHandle_t xQueueSet )
3196 {
3197 BaseType_t xReturn;
3198
3199 traceENTER_xQueueAddToSet( xQueueOrSemaphore, xQueueSet );
3200
3201 taskENTER_CRITICAL();
3202 {
3203 if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
3204 {
3205 /* Cannot add a queue/semaphore to more than one queue set. */
3206 xReturn = pdFAIL;
3207 }
3208 else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
3209 {
3210 /* Cannot add a queue/semaphore to a queue set if there are already
3211 * items in the queue/semaphore. */
3212 xReturn = pdFAIL;
3213 }
3214 else
3215 {
3216 ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
3217 xReturn = pdPASS;
3218 }
3219 }
3220 taskEXIT_CRITICAL();
3221
3222 traceRETURN_xQueueAddToSet( xReturn );
3223
3224 return xReturn;
3225 }
3226
3227 #endif /* configUSE_QUEUE_SETS */
3228 /*-----------------------------------------------------------*/
3229
3230 #if ( configUSE_QUEUE_SETS == 1 )
3231
xQueueRemoveFromSet(QueueSetMemberHandle_t xQueueOrSemaphore,QueueSetHandle_t xQueueSet)3232 BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore,
3233 QueueSetHandle_t xQueueSet )
3234 {
3235 BaseType_t xReturn;
3236 Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
3237
3238 traceENTER_xQueueRemoveFromSet( xQueueOrSemaphore, xQueueSet );
3239
3240 if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
3241 {
3242 /* The queue was not a member of the set. */
3243 xReturn = pdFAIL;
3244 }
3245 else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
3246 {
3247 /* It is dangerous to remove a queue from a set when the queue is
3248 * not empty because the queue set will still hold pending events for
3249 * the queue. */
3250 xReturn = pdFAIL;
3251 }
3252 else
3253 {
3254 taskENTER_CRITICAL();
3255 {
3256 /* The queue is no longer contained in the set. */
3257 pxQueueOrSemaphore->pxQueueSetContainer = NULL;
3258 }
3259 taskEXIT_CRITICAL();
3260 xReturn = pdPASS;
3261 }
3262
3263 traceRETURN_xQueueRemoveFromSet( xReturn );
3264
3265 return xReturn;
3266 }
3267
3268 #endif /* configUSE_QUEUE_SETS */
3269 /*-----------------------------------------------------------*/
3270
3271 #if ( configUSE_QUEUE_SETS == 1 )
3272
xQueueSelectFromSet(QueueSetHandle_t xQueueSet,TickType_t const xTicksToWait)3273 QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet,
3274 TickType_t const xTicksToWait )
3275 {
3276 QueueSetMemberHandle_t xReturn = NULL;
3277
3278 traceENTER_xQueueSelectFromSet( xQueueSet, xTicksToWait );
3279
3280 ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait );
3281
3282 traceRETURN_xQueueSelectFromSet( xReturn );
3283
3284 return xReturn;
3285 }
3286
3287 #endif /* configUSE_QUEUE_SETS */
3288 /*-----------------------------------------------------------*/
3289
3290 #if ( configUSE_QUEUE_SETS == 1 )
3291
xQueueSelectFromSetFromISR(QueueSetHandle_t xQueueSet)3292 QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
3293 {
3294 QueueSetMemberHandle_t xReturn = NULL;
3295
3296 traceENTER_xQueueSelectFromSetFromISR( xQueueSet );
3297
3298 ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL );
3299
3300 traceRETURN_xQueueSelectFromSetFromISR( xReturn );
3301
3302 return xReturn;
3303 }
3304
3305 #endif /* configUSE_QUEUE_SETS */
3306 /*-----------------------------------------------------------*/
3307
3308 #if ( configUSE_QUEUE_SETS == 1 )
3309
prvNotifyQueueSetContainer(const Queue_t * const pxQueue)3310 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue )
3311 {
3312 Queue_t * pxQueueSetContainer = pxQueue->pxQueueSetContainer;
3313 BaseType_t xReturn = pdFALSE;
3314
3315 /* This function must be called form a critical section. */
3316
3317 /* The following line is not reachable in unit tests because every call
3318 * to prvNotifyQueueSetContainer is preceded by a check that
3319 * pxQueueSetContainer != NULL */
3320 configASSERT( pxQueueSetContainer ); /* LCOV_EXCL_BR_LINE */
3321 configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
3322
3323 if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
3324 {
3325 const int8_t cTxLock = pxQueueSetContainer->cTxLock;
3326
3327 traceQUEUE_SET_SEND( pxQueueSetContainer );
3328
3329 /* The data copied is the handle of the queue that contains data. */
3330 xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, queueSEND_TO_BACK );
3331
3332 if( cTxLock == queueUNLOCKED )
3333 {
3334 if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
3335 {
3336 if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
3337 {
3338 /* The task waiting has a higher priority. */
3339 xReturn = pdTRUE;
3340 }
3341 else
3342 {
3343 mtCOVERAGE_TEST_MARKER();
3344 }
3345 }
3346 else
3347 {
3348 mtCOVERAGE_TEST_MARKER();
3349 }
3350 }
3351 else
3352 {
3353 prvIncrementQueueTxLock( pxQueueSetContainer, cTxLock );
3354 }
3355 }
3356 else
3357 {
3358 mtCOVERAGE_TEST_MARKER();
3359 }
3360
3361 return xReturn;
3362 }
3363
3364 #endif /* configUSE_QUEUE_SETS */
3365