1 /*
2  * FreeRTOS Kernel V11.0.1
3  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
4  *
5  * SPDX-License-Identifier: MIT
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in all
15  * copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * https://www.FreeRTOS.org
25  * https://github.com/FreeRTOS
26  *
27  */
28 
29 
30 #ifndef INC_TASK_H
31 #define INC_TASK_H
32 
33 #ifndef INC_FREERTOS_H
34     #error "include FreeRTOS.h must appear in source files before include task.h"
35 #endif
36 
37 #include "list.h"
38 
39 /* *INDENT-OFF* */
40 #ifdef __cplusplus
41     extern "C" {
42 #endif
43 /* *INDENT-ON* */
44 
45 /*-----------------------------------------------------------
46 * MACROS AND DEFINITIONS
47 *----------------------------------------------------------*/
48 
49 /*
50  * If tskKERNEL_VERSION_NUMBER ends with + it represents the version in development
51  * after the numbered release.
52  *
53  * The tskKERNEL_VERSION_MAJOR, tskKERNEL_VERSION_MINOR, tskKERNEL_VERSION_BUILD
54  * values will reflect the last released version number.
55  */
56 #define tskKERNEL_VERSION_NUMBER       "V11.0.1"
57 #define tskKERNEL_VERSION_MAJOR        11
58 #define tskKERNEL_VERSION_MINOR        0
59 #define tskKERNEL_VERSION_BUILD        1
60 
61 /* MPU region parameters passed in ulParameters
62  * of MemoryRegion_t struct. */
63 #define tskMPU_REGION_READ_ONLY        ( 1UL << 0UL )
64 #define tskMPU_REGION_READ_WRITE       ( 1UL << 1UL )
65 #define tskMPU_REGION_EXECUTE_NEVER    ( 1UL << 2UL )
66 #define tskMPU_REGION_NORMAL_MEMORY    ( 1UL << 3UL )
67 #define tskMPU_REGION_DEVICE_MEMORY    ( 1UL << 4UL )
68 
69 /* MPU region permissions stored in MPU settings to
70  * authorize access requests. */
71 #define tskMPU_READ_PERMISSION         ( 1UL << 0UL )
72 #define tskMPU_WRITE_PERMISSION        ( 1UL << 1UL )
73 
74 /* The direct to task notification feature used to have only a single notification
75  * per task.  Now there is an array of notifications per task that is dimensioned by
76  * configTASK_NOTIFICATION_ARRAY_ENTRIES.  For backward compatibility, any use of the
77  * original direct to task notification defaults to using the first index in the
78  * array. */
79 #define tskDEFAULT_INDEX_TO_NOTIFY     ( 0 )
80 
81 /**
82  * task. h
83  *
84  * Type by which tasks are referenced.  For example, a call to xTaskCreate
85  * returns (via a pointer parameter) an TaskHandle_t variable that can then
86  * be used as a parameter to vTaskDelete to delete the task.
87  *
88  * \defgroup TaskHandle_t TaskHandle_t
89  * \ingroup Tasks
90  */
91 struct tskTaskControlBlock; /* The old naming convention is used to prevent breaking kernel aware debuggers. */
92 typedef struct tskTaskControlBlock         * TaskHandle_t;
93 typedef const struct tskTaskControlBlock   * ConstTaskHandle_t;
94 
95 /*
96  * Defines the prototype to which the application task hook function must
97  * conform.
98  */
99 typedef BaseType_t (* TaskHookFunction_t)( void * arg );
100 
101 /* Task states returned by eTaskGetState. */
102 typedef enum
103 {
104     eRunning = 0, /* A task is querying the state of itself, so must be running. */
105     eReady,       /* The task being queried is in a ready or pending ready list. */
106     eBlocked,     /* The task being queried is in the Blocked state. */
107     eSuspended,   /* The task being queried is in the Suspended state, or is in the Blocked state with an infinite time out. */
108     eDeleted,     /* The task being queried has been deleted, but its TCB has not yet been freed. */
109     eInvalid      /* Used as an 'invalid state' value. */
110 } eTaskState;
111 
112 /* Actions that can be performed when vTaskNotify() is called. */
113 typedef enum
114 {
115     eNoAction = 0,            /* Notify the task without updating its notify value. */
116     eSetBits,                 /* Set bits in the task's notification value. */
117     eIncrement,               /* Increment the task's notification value. */
118     eSetValueWithOverwrite,   /* Set the task's notification value to a specific value even if the previous value has not yet been read by the task. */
119     eSetValueWithoutOverwrite /* Set the task's notification value if the previous value has been read by the task. */
120 } eNotifyAction;
121 
122 /*
123  * Used internally only.
124  */
125 typedef struct xTIME_OUT
126 {
127     BaseType_t xOverflowCount;
128     TickType_t xTimeOnEntering;
129 } TimeOut_t;
130 
131 /*
132  * Defines the memory ranges allocated to the task when an MPU is used.
133  */
134 typedef struct xMEMORY_REGION
135 {
136     void * pvBaseAddress;
137     uint32_t ulLengthInBytes;
138     uint32_t ulParameters;
139 } MemoryRegion_t;
140 
141 /*
142  * Parameters required to create an MPU protected task.
143  */
144 typedef struct xTASK_PARAMETERS
145 {
146     TaskFunction_t pvTaskCode;
147     const char * pcName;
148     configSTACK_DEPTH_TYPE usStackDepth;
149     void * pvParameters;
150     UBaseType_t uxPriority;
151     StackType_t * puxStackBuffer;
152     MemoryRegion_t xRegions[ portNUM_CONFIGURABLE_REGIONS ];
153     #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
154         StaticTask_t * const pxTaskBuffer;
155     #endif
156 } TaskParameters_t;
157 
158 /* Used with the uxTaskGetSystemState() function to return the state of each task
159  * in the system. */
160 typedef struct xTASK_STATUS
161 {
162     TaskHandle_t xHandle;                         /* The handle of the task to which the rest of the information in the structure relates. */
163     const char * pcTaskName;                      /* A pointer to the task's name.  This value will be invalid if the task was deleted since the structure was populated! */
164     UBaseType_t xTaskNumber;                      /* A number unique to the task. */
165     eTaskState eCurrentState;                     /* The state in which the task existed when the structure was populated. */
166     UBaseType_t uxCurrentPriority;                /* The priority at which the task was running (may be inherited) when the structure was populated. */
167     UBaseType_t uxBasePriority;                   /* The priority to which the task will return if the task's current priority has been inherited to avoid unbounded priority inversion when obtaining a mutex.  Only valid if configUSE_MUTEXES is defined as 1 in FreeRTOSConfig.h. */
168     configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /* The total run time allocated to the task so far, as defined by the run time stats clock.  See https://www.FreeRTOS.org/rtos-run-time-stats.html.  Only valid when configGENERATE_RUN_TIME_STATS is defined as 1 in FreeRTOSConfig.h. */
169     StackType_t * pxStackBase;                    /* Points to the lowest address of the task's stack area. */
170     #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
171         StackType_t * pxTopOfStack;               /* Points to the top address of the task's stack area. */
172         StackType_t * pxEndOfStack;               /* Points to the end address of the task's stack area. */
173     #endif
174     configSTACK_DEPTH_TYPE usStackHighWaterMark;  /* The minimum amount of stack space that has remained for the task since the task was created.  The closer this value is to zero the closer the task has come to overflowing its stack. */
175     #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
176         UBaseType_t uxCoreAffinityMask;           /* The core affinity mask for the task */
177     #endif
178 } TaskStatus_t;
179 
180 /* Possible return values for eTaskConfirmSleepModeStatus(). */
181 typedef enum
182 {
183     eAbortSleep = 0,           /* A task has been made ready or a context switch pended since portSUPPRESS_TICKS_AND_SLEEP() was called - abort entering a sleep mode. */
184     eStandardSleep,            /* Enter a sleep mode that will not last any longer than the expected idle time. */
185     #if ( INCLUDE_vTaskSuspend == 1 )
186         eNoTasksWaitingTimeout /* No tasks are waiting for a timeout so it is safe to enter a sleep mode that can only be exited by an external interrupt. */
187     #endif /* INCLUDE_vTaskSuspend */
188 } eSleepModeStatus;
189 
190 /**
191  * Defines the priority used by the idle task.  This must not be modified.
192  *
193  * \ingroup TaskUtils
194  */
195 #define tskIDLE_PRIORITY    ( ( UBaseType_t ) 0U )
196 
197 /**
198  * Defines affinity to all available cores.
199  *
200  * \ingroup TaskUtils
201  */
202 #define tskNO_AFFINITY      ( ( UBaseType_t ) -1 )
203 
204 /**
205  * task. h
206  *
207  * Macro for forcing a context switch.
208  *
209  * \defgroup taskYIELD taskYIELD
210  * \ingroup SchedulerControl
211  */
212 #define taskYIELD()                          portYIELD()
213 
214 /**
215  * task. h
216  *
217  * Macro to mark the start of a critical code region.  Preemptive context
218  * switches cannot occur when in a critical region.
219  *
220  * NOTE: This may alter the stack (depending on the portable implementation)
221  * so must be used with care!
222  *
223  * \defgroup taskENTER_CRITICAL taskENTER_CRITICAL
224  * \ingroup SchedulerControl
225  */
226 #define taskENTER_CRITICAL()                 portENTER_CRITICAL()
227 #if ( configNUMBER_OF_CORES == 1 )
228     #define taskENTER_CRITICAL_FROM_ISR()    portSET_INTERRUPT_MASK_FROM_ISR()
229 #else
230     #define taskENTER_CRITICAL_FROM_ISR()    portENTER_CRITICAL_FROM_ISR()
231 #endif
232 
233 /**
234  * task. h
235  *
236  * Macro to mark the end of a critical code region.  Preemptive context
237  * switches cannot occur when in a critical region.
238  *
239  * NOTE: This may alter the stack (depending on the portable implementation)
240  * so must be used with care!
241  *
242  * \defgroup taskEXIT_CRITICAL taskEXIT_CRITICAL
243  * \ingroup SchedulerControl
244  */
245 #define taskEXIT_CRITICAL()                    portEXIT_CRITICAL()
246 #if ( configNUMBER_OF_CORES == 1 )
247     #define taskEXIT_CRITICAL_FROM_ISR( x )    portCLEAR_INTERRUPT_MASK_FROM_ISR( x )
248 #else
249     #define taskEXIT_CRITICAL_FROM_ISR( x )    portEXIT_CRITICAL_FROM_ISR( x )
250 #endif
251 
252 /**
253  * task. h
254  *
255  * Macro to disable all maskable interrupts.
256  *
257  * \defgroup taskDISABLE_INTERRUPTS taskDISABLE_INTERRUPTS
258  * \ingroup SchedulerControl
259  */
260 #define taskDISABLE_INTERRUPTS()    portDISABLE_INTERRUPTS()
261 
262 /**
263  * task. h
264  *
265  * Macro to enable microcontroller interrupts.
266  *
267  * \defgroup taskENABLE_INTERRUPTS taskENABLE_INTERRUPTS
268  * \ingroup SchedulerControl
269  */
270 #define taskENABLE_INTERRUPTS()     portENABLE_INTERRUPTS()
271 
272 /* Definitions returned by xTaskGetSchedulerState().  taskSCHEDULER_SUSPENDED is
273  * 0 to generate more optimal code when configASSERT() is defined as the constant
274  * is used in assert() statements. */
275 #define taskSCHEDULER_SUSPENDED      ( ( BaseType_t ) 0 )
276 #define taskSCHEDULER_NOT_STARTED    ( ( BaseType_t ) 1 )
277 #define taskSCHEDULER_RUNNING        ( ( BaseType_t ) 2 )
278 
279 /* Checks if core ID is valid. */
280 #define taskVALID_CORE_ID( xCoreID )    ( ( ( ( ( BaseType_t ) 0 <= ( xCoreID ) ) && ( ( xCoreID ) < ( BaseType_t ) configNUMBER_OF_CORES ) ) ) ? ( pdTRUE ) : ( pdFALSE ) )
281 
282 /*-----------------------------------------------------------
283 * TASK CREATION API
284 *----------------------------------------------------------*/
285 
286 /**
287  * task. h
288  * @code{c}
289  * BaseType_t xTaskCreate(
290  *                            TaskFunction_t pxTaskCode,
291  *                            const char *pcName,
292  *                            configSTACK_DEPTH_TYPE usStackDepth,
293  *                            void *pvParameters,
294  *                            UBaseType_t uxPriority,
295  *                            TaskHandle_t *pxCreatedTask
296  *                        );
297  * @endcode
298  *
299  * Create a new task and add it to the list of tasks that are ready to run.
300  *
301  * Internally, within the FreeRTOS implementation, tasks use two blocks of
302  * memory.  The first block is used to hold the task's data structures.  The
303  * second block is used by the task as its stack.  If a task is created using
304  * xTaskCreate() then both blocks of memory are automatically dynamically
305  * allocated inside the xTaskCreate() function.  (see
306  * https://www.FreeRTOS.org/a00111.html).  If a task is created using
307  * xTaskCreateStatic() then the application writer must provide the required
308  * memory.  xTaskCreateStatic() therefore allows a task to be created without
309  * using any dynamic memory allocation.
310  *
311  * See xTaskCreateStatic() for a version that does not use any dynamic memory
312  * allocation.
313  *
314  * xTaskCreate() can only be used to create a task that has unrestricted
315  * access to the entire microcontroller memory map.  Systems that include MPU
316  * support can alternatively create an MPU constrained task using
317  * xTaskCreateRestricted().
318  *
319  * @param pxTaskCode Pointer to the task entry function.  Tasks
320  * must be implemented to never return (i.e. continuous loop).
321  *
322  * @param pcName A descriptive name for the task.  This is mainly used to
323  * facilitate debugging.  Max length defined by configMAX_TASK_NAME_LEN - default
324  * is 16.
325  *
326  * @param usStackDepth The size of the task stack specified as the number of
327  * variables the stack can hold - not the number of bytes.  For example, if
328  * the stack is 16 bits wide and usStackDepth is defined as 100, 200 bytes
329  * will be allocated for stack storage.
330  *
331  * @param pvParameters Pointer that will be used as the parameter for the task
332  * being created.
333  *
334  * @param uxPriority The priority at which the task should run.  Systems that
335  * include MPU support can optionally create tasks in a privileged (system)
336  * mode by setting bit portPRIVILEGE_BIT of the priority parameter.  For
337  * example, to create a privileged task at priority 2 the uxPriority parameter
338  * should be set to ( 2 | portPRIVILEGE_BIT ).
339  *
340  * @param pxCreatedTask Used to pass back a handle by which the created task
341  * can be referenced.
342  *
343  * @return pdPASS if the task was successfully created and added to a ready
344  * list, otherwise an error code defined in the file projdefs.h
345  *
346  * Example usage:
347  * @code{c}
348  * // Task to be created.
349  * void vTaskCode( void * pvParameters )
350  * {
351  *   for( ;; )
352  *   {
353  *       // Task code goes here.
354  *   }
355  * }
356  *
357  * // Function that creates a task.
358  * void vOtherFunction( void )
359  * {
360  * static uint8_t ucParameterToPass;
361  * TaskHandle_t xHandle = NULL;
362  *
363  *   // Create the task, storing the handle.  Note that the passed parameter ucParameterToPass
364  *   // must exist for the lifetime of the task, so in this case is declared static.  If it was just an
365  *   // an automatic stack variable it might no longer exist, or at least have been corrupted, by the time
366  *   // the new task attempts to access it.
367  *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, &ucParameterToPass, tskIDLE_PRIORITY, &xHandle );
368  *   configASSERT( xHandle );
369  *
370  *   // Use the handle to delete the task.
371  *   if( xHandle != NULL )
372  *   {
373  *      vTaskDelete( xHandle );
374  *   }
375  * }
376  * @endcode
377  * \defgroup xTaskCreate xTaskCreate
378  * \ingroup Tasks
379  */
380 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
381     BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
382                             const char * const pcName,
383                             const configSTACK_DEPTH_TYPE usStackDepth,
384                             void * const pvParameters,
385                             UBaseType_t uxPriority,
386                             TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
387 #endif
388 
389 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
390     BaseType_t xTaskCreateAffinitySet( TaskFunction_t pxTaskCode,
391                                        const char * const pcName,
392                                        const configSTACK_DEPTH_TYPE usStackDepth,
393                                        void * const pvParameters,
394                                        UBaseType_t uxPriority,
395                                        UBaseType_t uxCoreAffinityMask,
396                                        TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
397 #endif
398 
399 /**
400  * task. h
401  * @code{c}
402  * TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
403  *                               const char *pcName,
404  *                               uint32_t ulStackDepth,
405  *                               void *pvParameters,
406  *                               UBaseType_t uxPriority,
407  *                               StackType_t *puxStackBuffer,
408  *                               StaticTask_t *pxTaskBuffer );
409  * @endcode
410  *
411  * Create a new task and add it to the list of tasks that are ready to run.
412  *
413  * Internally, within the FreeRTOS implementation, tasks use two blocks of
414  * memory.  The first block is used to hold the task's data structures.  The
415  * second block is used by the task as its stack.  If a task is created using
416  * xTaskCreate() then both blocks of memory are automatically dynamically
417  * allocated inside the xTaskCreate() function.  (see
418  * https://www.FreeRTOS.org/a00111.html).  If a task is created using
419  * xTaskCreateStatic() then the application writer must provide the required
420  * memory.  xTaskCreateStatic() therefore allows a task to be created without
421  * using any dynamic memory allocation.
422  *
423  * @param pxTaskCode Pointer to the task entry function.  Tasks
424  * must be implemented to never return (i.e. continuous loop).
425  *
426  * @param pcName A descriptive name for the task.  This is mainly used to
427  * facilitate debugging.  The maximum length of the string is defined by
428  * configMAX_TASK_NAME_LEN in FreeRTOSConfig.h.
429  *
430  * @param ulStackDepth The size of the task stack specified as the number of
431  * variables the stack can hold - not the number of bytes.  For example, if
432  * the stack is 32-bits wide and ulStackDepth is defined as 100 then 400 bytes
433  * will be allocated for stack storage.
434  *
435  * @param pvParameters Pointer that will be used as the parameter for the task
436  * being created.
437  *
438  * @param uxPriority The priority at which the task will run.
439  *
440  * @param puxStackBuffer Must point to a StackType_t array that has at least
441  * ulStackDepth indexes - the array will then be used as the task's stack,
442  * removing the need for the stack to be allocated dynamically.
443  *
444  * @param pxTaskBuffer Must point to a variable of type StaticTask_t, which will
445  * then be used to hold the task's data structures, removing the need for the
446  * memory to be allocated dynamically.
447  *
448  * @return If neither puxStackBuffer nor pxTaskBuffer are NULL, then the task
449  * will be created and a handle to the created task is returned.  If either
450  * puxStackBuffer or pxTaskBuffer are NULL then the task will not be created and
451  * NULL is returned.
452  *
453  * Example usage:
454  * @code{c}
455  *
456  *  // Dimensions of the buffer that the task being created will use as its stack.
457  *  // NOTE:  This is the number of words the stack will hold, not the number of
458  *  // bytes.  For example, if each stack item is 32-bits, and this is set to 100,
459  *  // then 400 bytes (100 * 32-bits) will be allocated.
460  #define STACK_SIZE 200
461  *
462  *  // Structure that will hold the TCB of the task being created.
463  *  StaticTask_t xTaskBuffer;
464  *
465  *  // Buffer that the task being created will use as its stack.  Note this is
466  *  // an array of StackType_t variables.  The size of StackType_t is dependent on
467  *  // the RTOS port.
468  *  StackType_t xStack[ STACK_SIZE ];
469  *
470  *  // Function that implements the task being created.
471  *  void vTaskCode( void * pvParameters )
472  *  {
473  *      // The parameter value is expected to be 1 as 1 is passed in the
474  *      // pvParameters value in the call to xTaskCreateStatic().
475  *      configASSERT( ( uint32_t ) pvParameters == 1UL );
476  *
477  *      for( ;; )
478  *      {
479  *          // Task code goes here.
480  *      }
481  *  }
482  *
483  *  // Function that creates a task.
484  *  void vOtherFunction( void )
485  *  {
486  *      TaskHandle_t xHandle = NULL;
487  *
488  *      // Create the task without using any dynamic memory allocation.
489  *      xHandle = xTaskCreateStatic(
490  *                    vTaskCode,       // Function that implements the task.
491  *                    "NAME",          // Text name for the task.
492  *                    STACK_SIZE,      // Stack size in words, not bytes.
493  *                    ( void * ) 1,    // Parameter passed into the task.
494  *                    tskIDLE_PRIORITY,// Priority at which the task is created.
495  *                    xStack,          // Array to use as the task's stack.
496  *                    &xTaskBuffer );  // Variable to hold the task's data structure.
497  *
498  *      // puxStackBuffer and pxTaskBuffer were not NULL, so the task will have
499  *      // been created, and xHandle will be the task's handle.  Use the handle
500  *      // to suspend the task.
501  *      vTaskSuspend( xHandle );
502  *  }
503  * @endcode
504  * \defgroup xTaskCreateStatic xTaskCreateStatic
505  * \ingroup Tasks
506  */
507 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
508     TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
509                                     const char * const pcName,
510                                     const uint32_t ulStackDepth,
511                                     void * const pvParameters,
512                                     UBaseType_t uxPriority,
513                                     StackType_t * const puxStackBuffer,
514                                     StaticTask_t * const pxTaskBuffer ) PRIVILEGED_FUNCTION;
515 #endif /* configSUPPORT_STATIC_ALLOCATION */
516 
517 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
518     TaskHandle_t xTaskCreateStaticAffinitySet( TaskFunction_t pxTaskCode,
519                                                const char * const pcName,
520                                                const uint32_t ulStackDepth,
521                                                void * const pvParameters,
522                                                UBaseType_t uxPriority,
523                                                StackType_t * const puxStackBuffer,
524                                                StaticTask_t * const pxTaskBuffer,
525                                                UBaseType_t uxCoreAffinityMask ) PRIVILEGED_FUNCTION;
526 #endif
527 
528 /**
529  * task. h
530  * @code{c}
531  * BaseType_t xTaskCreateRestricted( TaskParameters_t *pxTaskDefinition, TaskHandle_t *pxCreatedTask );
532  * @endcode
533  *
534  * Only available when configSUPPORT_DYNAMIC_ALLOCATION is set to 1.
535  *
536  * xTaskCreateRestricted() should only be used in systems that include an MPU
537  * implementation.
538  *
539  * Create a new task and add it to the list of tasks that are ready to run.
540  * The function parameters define the memory regions and associated access
541  * permissions allocated to the task.
542  *
543  * See xTaskCreateRestrictedStatic() for a version that does not use any
544  * dynamic memory allocation.
545  *
546  * @param pxTaskDefinition Pointer to a structure that contains a member
547  * for each of the normal xTaskCreate() parameters (see the xTaskCreate() API
548  * documentation) plus an optional stack buffer and the memory region
549  * definitions.
550  *
551  * @param pxCreatedTask Used to pass back a handle by which the created task
552  * can be referenced.
553  *
554  * @return pdPASS if the task was successfully created and added to a ready
555  * list, otherwise an error code defined in the file projdefs.h
556  *
557  * Example usage:
558  * @code{c}
559  * // Create an TaskParameters_t structure that defines the task to be created.
560  * static const TaskParameters_t xCheckTaskParameters =
561  * {
562  *  vATask,     // pvTaskCode - the function that implements the task.
563  *  "ATask",    // pcName - just a text name for the task to assist debugging.
564  *  100,        // usStackDepth - the stack size DEFINED IN WORDS.
565  *  NULL,       // pvParameters - passed into the task function as the function parameters.
566  *  ( 1UL | portPRIVILEGE_BIT ),// uxPriority - task priority, set the portPRIVILEGE_BIT if the task should run in a privileged state.
567  *  cStackBuffer,// puxStackBuffer - the buffer to be used as the task stack.
568  *
569  *  // xRegions - Allocate up to three separate memory regions for access by
570  *  // the task, with appropriate access permissions.  Different processors have
571  *  // different memory alignment requirements - refer to the FreeRTOS documentation
572  *  // for full information.
573  *  {
574  *      // Base address                 Length  Parameters
575  *      { cReadWriteArray,              32,     portMPU_REGION_READ_WRITE },
576  *      { cReadOnlyArray,               32,     portMPU_REGION_READ_ONLY },
577  *      { cPrivilegedOnlyAccessArray,   128,    portMPU_REGION_PRIVILEGED_READ_WRITE }
578  *  }
579  * };
580  *
581  * int main( void )
582  * {
583  * TaskHandle_t xHandle;
584  *
585  *  // Create a task from the const structure defined above.  The task handle
586  *  // is requested (the second parameter is not NULL) but in this case just for
587  *  // demonstration purposes as its not actually used.
588  *  xTaskCreateRestricted( &xRegTest1Parameters, &xHandle );
589  *
590  *  // Start the scheduler.
591  *  vTaskStartScheduler();
592  *
593  *  // Will only get here if there was insufficient memory to create the idle
594  *  // and/or timer task.
595  *  for( ;; );
596  * }
597  * @endcode
598  * \defgroup xTaskCreateRestricted xTaskCreateRestricted
599  * \ingroup Tasks
600  */
601 #if ( portUSING_MPU_WRAPPERS == 1 )
602     BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
603                                       TaskHandle_t * pxCreatedTask ) PRIVILEGED_FUNCTION;
604 #endif
605 
606 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
607     BaseType_t xTaskCreateRestrictedAffinitySet( const TaskParameters_t * const pxTaskDefinition,
608                                                  UBaseType_t uxCoreAffinityMask,
609                                                  TaskHandle_t * pxCreatedTask ) PRIVILEGED_FUNCTION;
610 #endif
611 
612 /**
613  * task. h
614  * @code{c}
615  * BaseType_t xTaskCreateRestrictedStatic( TaskParameters_t *pxTaskDefinition, TaskHandle_t *pxCreatedTask );
616  * @endcode
617  *
618  * Only available when configSUPPORT_STATIC_ALLOCATION is set to 1.
619  *
620  * xTaskCreateRestrictedStatic() should only be used in systems that include an
621  * MPU implementation.
622  *
623  * Internally, within the FreeRTOS implementation, tasks use two blocks of
624  * memory.  The first block is used to hold the task's data structures.  The
625  * second block is used by the task as its stack.  If a task is created using
626  * xTaskCreateRestricted() then the stack is provided by the application writer,
627  * and the memory used to hold the task's data structure is automatically
628  * dynamically allocated inside the xTaskCreateRestricted() function.  If a task
629  * is created using xTaskCreateRestrictedStatic() then the application writer
630  * must provide the memory used to hold the task's data structures too.
631  * xTaskCreateRestrictedStatic() therefore allows a memory protected task to be
632  * created without using any dynamic memory allocation.
633  *
634  * @param pxTaskDefinition Pointer to a structure that contains a member
635  * for each of the normal xTaskCreate() parameters (see the xTaskCreate() API
636  * documentation) plus an optional stack buffer and the memory region
637  * definitions.  If configSUPPORT_STATIC_ALLOCATION is set to 1 the structure
638  * contains an additional member, which is used to point to a variable of type
639  * StaticTask_t - which is then used to hold the task's data structure.
640  *
641  * @param pxCreatedTask Used to pass back a handle by which the created task
642  * can be referenced.
643  *
644  * @return pdPASS if the task was successfully created and added to a ready
645  * list, otherwise an error code defined in the file projdefs.h
646  *
647  * Example usage:
648  * @code{c}
649  * // Create an TaskParameters_t structure that defines the task to be created.
650  * // The StaticTask_t variable is only included in the structure when
651  * // configSUPPORT_STATIC_ALLOCATION is set to 1.  The PRIVILEGED_DATA macro can
652  * // be used to force the variable into the RTOS kernel's privileged data area.
653  * static PRIVILEGED_DATA StaticTask_t xTaskBuffer;
654  * static const TaskParameters_t xCheckTaskParameters =
655  * {
656  *  vATask,     // pvTaskCode - the function that implements the task.
657  *  "ATask",    // pcName - just a text name for the task to assist debugging.
658  *  100,        // usStackDepth - the stack size DEFINED IN WORDS.
659  *  NULL,       // pvParameters - passed into the task function as the function parameters.
660  *  ( 1UL | portPRIVILEGE_BIT ),// uxPriority - task priority, set the portPRIVILEGE_BIT if the task should run in a privileged state.
661  *  cStackBuffer,// puxStackBuffer - the buffer to be used as the task stack.
662  *
663  *  // xRegions - Allocate up to three separate memory regions for access by
664  *  // the task, with appropriate access permissions.  Different processors have
665  *  // different memory alignment requirements - refer to the FreeRTOS documentation
666  *  // for full information.
667  *  {
668  *      // Base address                 Length  Parameters
669  *      { cReadWriteArray,              32,     portMPU_REGION_READ_WRITE },
670  *      { cReadOnlyArray,               32,     portMPU_REGION_READ_ONLY },
671  *      { cPrivilegedOnlyAccessArray,   128,    portMPU_REGION_PRIVILEGED_READ_WRITE }
672  *  }
673  *
674  *  &xTaskBuffer; // Holds the task's data structure.
675  * };
676  *
677  * int main( void )
678  * {
679  * TaskHandle_t xHandle;
680  *
681  *  // Create a task from the const structure defined above.  The task handle
682  *  // is requested (the second parameter is not NULL) but in this case just for
683  *  // demonstration purposes as its not actually used.
684  *  xTaskCreateRestrictedStatic( &xRegTest1Parameters, &xHandle );
685  *
686  *  // Start the scheduler.
687  *  vTaskStartScheduler();
688  *
689  *  // Will only get here if there was insufficient memory to create the idle
690  *  // and/or timer task.
691  *  for( ;; );
692  * }
693  * @endcode
694  * \defgroup xTaskCreateRestrictedStatic xTaskCreateRestrictedStatic
695  * \ingroup Tasks
696  */
697 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
698     BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
699                                             TaskHandle_t * pxCreatedTask ) PRIVILEGED_FUNCTION;
700 #endif
701 
702 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
703     BaseType_t xTaskCreateRestrictedStaticAffinitySet( const TaskParameters_t * const pxTaskDefinition,
704                                                        UBaseType_t uxCoreAffinityMask,
705                                                        TaskHandle_t * pxCreatedTask ) PRIVILEGED_FUNCTION;
706 #endif
707 
708 /**
709  * task. h
710  * @code{c}
711  * void vTaskAllocateMPURegions( TaskHandle_t xTask, const MemoryRegion_t * const pxRegions );
712  * @endcode
713  *
714  * Memory regions are assigned to a restricted task when the task is created by
715  * a call to xTaskCreateRestricted().  These regions can be redefined using
716  * vTaskAllocateMPURegions().
717  *
718  * @param xTaskToModify The handle of the task being updated.
719  *
720  * @param[in] pxRegions A pointer to a MemoryRegion_t structure that contains the
721  * new memory region definitions.
722  *
723  * Example usage:
724  * @code{c}
725  * // Define an array of MemoryRegion_t structures that configures an MPU region
726  * // allowing read/write access for 1024 bytes starting at the beginning of the
727  * // ucOneKByte array.  The other two of the maximum 3 definable regions are
728  * // unused so set to zero.
729  * static const MemoryRegion_t xAltRegions[ portNUM_CONFIGURABLE_REGIONS ] =
730  * {
731  *  // Base address     Length      Parameters
732  *  { ucOneKByte,       1024,       portMPU_REGION_READ_WRITE },
733  *  { 0,                0,          0 },
734  *  { 0,                0,          0 }
735  * };
736  *
737  * void vATask( void *pvParameters )
738  * {
739  *  // This task was created such that it has access to certain regions of
740  *  // memory as defined by the MPU configuration.  At some point it is
741  *  // desired that these MPU regions are replaced with that defined in the
742  *  // xAltRegions const struct above.  Use a call to vTaskAllocateMPURegions()
743  *  // for this purpose.  NULL is used as the task handle to indicate that this
744  *  // function should modify the MPU regions of the calling task.
745  *  vTaskAllocateMPURegions( NULL, xAltRegions );
746  *
747  *  // Now the task can continue its function, but from this point on can only
748  *  // access its stack and the ucOneKByte array (unless any other statically
749  *  // defined or shared regions have been declared elsewhere).
750  * }
751  * @endcode
752  * \defgroup vTaskAllocateMPURegions vTaskAllocateMPURegions
753  * \ingroup Tasks
754  */
755 #if ( portUSING_MPU_WRAPPERS == 1 )
756     void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
757                                   const MemoryRegion_t * const pxRegions ) PRIVILEGED_FUNCTION;
758 #endif
759 
760 /**
761  * task. h
762  * @code{c}
763  * void vTaskDelete( TaskHandle_t xTaskToDelete );
764  * @endcode
765  *
766  * INCLUDE_vTaskDelete must be defined as 1 for this function to be available.
767  * See the configuration section for more information.
768  *
769  * Remove a task from the RTOS real time kernel's management.  The task being
770  * deleted will be removed from all ready, blocked, suspended and event lists.
771  *
772  * NOTE:  The idle task is responsible for freeing the kernel allocated
773  * memory from tasks that have been deleted.  It is therefore important that
774  * the idle task is not starved of microcontroller processing time if your
775  * application makes any calls to vTaskDelete ().  Memory allocated by the
776  * task code is not automatically freed, and should be freed before the task
777  * is deleted.
778  *
779  * See the demo application file death.c for sample code that utilises
780  * vTaskDelete ().
781  *
782  * @param xTaskToDelete The handle of the task to be deleted.  Passing NULL will
783  * cause the calling task to be deleted.
784  *
785  * Example usage:
786  * @code{c}
787  * void vOtherFunction( void )
788  * {
789  * TaskHandle_t xHandle;
790  *
791  *   // Create the task, storing the handle.
792  *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
793  *
794  *   // Use the handle to delete the task.
795  *   vTaskDelete( xHandle );
796  * }
797  * @endcode
798  * \defgroup vTaskDelete vTaskDelete
799  * \ingroup Tasks
800  */
801 void vTaskDelete( TaskHandle_t xTaskToDelete ) PRIVILEGED_FUNCTION;
802 
803 /*-----------------------------------------------------------
804 * TASK CONTROL API
805 *----------------------------------------------------------*/
806 
807 /**
808  * task. h
809  * @code{c}
810  * void vTaskDelay( const TickType_t xTicksToDelay );
811  * @endcode
812  *
813  * Delay a task for a given number of ticks.  The actual time that the
814  * task remains blocked depends on the tick rate.  The constant
815  * portTICK_PERIOD_MS can be used to calculate real time from the tick
816  * rate - with the resolution of one tick period.
817  *
818  * INCLUDE_vTaskDelay must be defined as 1 for this function to be available.
819  * See the configuration section for more information.
820  *
821  *
822  * vTaskDelay() specifies a time at which the task wishes to unblock relative to
823  * the time at which vTaskDelay() is called.  For example, specifying a block
824  * period of 100 ticks will cause the task to unblock 100 ticks after
825  * vTaskDelay() is called.  vTaskDelay() does not therefore provide a good method
826  * of controlling the frequency of a periodic task as the path taken through the
827  * code, as well as other task and interrupt activity, will affect the frequency
828  * at which vTaskDelay() gets called and therefore the time at which the task
829  * next executes.  See xTaskDelayUntil() for an alternative API function designed
830  * to facilitate fixed frequency execution.  It does this by specifying an
831  * absolute time (rather than a relative time) at which the calling task should
832  * unblock.
833  *
834  * @param xTicksToDelay The amount of time, in tick periods, that
835  * the calling task should block.
836  *
837  * Example usage:
838  *
839  * void vTaskFunction( void * pvParameters )
840  * {
841  * // Block for 500ms.
842  * const TickType_t xDelay = 500 / portTICK_PERIOD_MS;
843  *
844  *   for( ;; )
845  *   {
846  *       // Simply toggle the LED every 500ms, blocking between each toggle.
847  *       vToggleLED();
848  *       vTaskDelay( xDelay );
849  *   }
850  * }
851  *
852  * \defgroup vTaskDelay vTaskDelay
853  * \ingroup TaskCtrl
854  */
855 void vTaskDelay( const TickType_t xTicksToDelay ) PRIVILEGED_FUNCTION;
856 
857 /**
858  * task. h
859  * @code{c}
860  * BaseType_t xTaskDelayUntil( TickType_t *pxPreviousWakeTime, const TickType_t xTimeIncrement );
861  * @endcode
862  *
863  * INCLUDE_xTaskDelayUntil must be defined as 1 for this function to be available.
864  * See the configuration section for more information.
865  *
866  * Delay a task until a specified time.  This function can be used by periodic
867  * tasks to ensure a constant execution frequency.
868  *
869  * This function differs from vTaskDelay () in one important aspect:  vTaskDelay () will
870  * cause a task to block for the specified number of ticks from the time vTaskDelay () is
871  * called.  It is therefore difficult to use vTaskDelay () by itself to generate a fixed
872  * execution frequency as the time between a task starting to execute and that task
873  * calling vTaskDelay () may not be fixed [the task may take a different path though the
874  * code between calls, or may get interrupted or preempted a different number of times
875  * each time it executes].
876  *
877  * Whereas vTaskDelay () specifies a wake time relative to the time at which the function
878  * is called, xTaskDelayUntil () specifies the absolute (exact) time at which it wishes to
879  * unblock.
880  *
881  * The macro pdMS_TO_TICKS() can be used to calculate the number of ticks from a
882  * time specified in milliseconds with a resolution of one tick period.
883  *
884  * @param pxPreviousWakeTime Pointer to a variable that holds the time at which the
885  * task was last unblocked.  The variable must be initialised with the current time
886  * prior to its first use (see the example below).  Following this the variable is
887  * automatically updated within xTaskDelayUntil ().
888  *
889  * @param xTimeIncrement The cycle time period.  The task will be unblocked at
890  * time *pxPreviousWakeTime + xTimeIncrement.  Calling xTaskDelayUntil with the
891  * same xTimeIncrement parameter value will cause the task to execute with
892  * a fixed interface period.
893  *
894  * @return Value which can be used to check whether the task was actually delayed.
895  * Will be pdTRUE if the task way delayed and pdFALSE otherwise.  A task will not
896  * be delayed if the next expected wake time is in the past.
897  *
898  * Example usage:
899  * @code{c}
900  * // Perform an action every 10 ticks.
901  * void vTaskFunction( void * pvParameters )
902  * {
903  * TickType_t xLastWakeTime;
904  * const TickType_t xFrequency = 10;
905  * BaseType_t xWasDelayed;
906  *
907  *     // Initialise the xLastWakeTime variable with the current time.
908  *     xLastWakeTime = xTaskGetTickCount ();
909  *     for( ;; )
910  *     {
911  *         // Wait for the next cycle.
912  *         xWasDelayed = xTaskDelayUntil( &xLastWakeTime, xFrequency );
913  *
914  *         // Perform action here. xWasDelayed value can be used to determine
915  *         // whether a deadline was missed if the code here took too long.
916  *     }
917  * }
918  * @endcode
919  * \defgroup xTaskDelayUntil xTaskDelayUntil
920  * \ingroup TaskCtrl
921  */
922 BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
923                             const TickType_t xTimeIncrement ) PRIVILEGED_FUNCTION;
924 
925 /*
926  * vTaskDelayUntil() is the older version of xTaskDelayUntil() and does not
927  * return a value.
928  */
929 #define vTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement )                   \
930     do {                                                                        \
931         ( void ) xTaskDelayUntil( ( pxPreviousWakeTime ), ( xTimeIncrement ) ); \
932     } while( 0 )
933 
934 
935 /**
936  * task. h
937  * @code{c}
938  * BaseType_t xTaskAbortDelay( TaskHandle_t xTask );
939  * @endcode
940  *
941  * INCLUDE_xTaskAbortDelay must be defined as 1 in FreeRTOSConfig.h for this
942  * function to be available.
943  *
944  * A task will enter the Blocked state when it is waiting for an event.  The
945  * event it is waiting for can be a temporal event (waiting for a time), such
946  * as when vTaskDelay() is called, or an event on an object, such as when
947  * xQueueReceive() or ulTaskNotifyTake() is called.  If the handle of a task
948  * that is in the Blocked state is used in a call to xTaskAbortDelay() then the
949  * task will leave the Blocked state, and return from whichever function call
950  * placed the task into the Blocked state.
951  *
952  * There is no 'FromISR' version of this function as an interrupt would need to
953  * know which object a task was blocked on in order to know which actions to
954  * take.  For example, if the task was blocked on a queue the interrupt handler
955  * would then need to know if the queue was locked.
956  *
957  * @param xTask The handle of the task to remove from the Blocked state.
958  *
959  * @return If the task referenced by xTask was not in the Blocked state then
960  * pdFAIL is returned.  Otherwise pdPASS is returned.
961  *
962  * \defgroup xTaskAbortDelay xTaskAbortDelay
963  * \ingroup TaskCtrl
964  */
965 #if ( INCLUDE_xTaskAbortDelay == 1 )
966     BaseType_t xTaskAbortDelay( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
967 #endif
968 
969 /**
970  * task. h
971  * @code{c}
972  * UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask );
973  * @endcode
974  *
975  * INCLUDE_uxTaskPriorityGet must be defined as 1 for this function to be available.
976  * See the configuration section for more information.
977  *
978  * Obtain the priority of any task.
979  *
980  * @param xTask Handle of the task to be queried.  Passing a NULL
981  * handle results in the priority of the calling task being returned.
982  *
983  * @return The priority of xTask.
984  *
985  * Example usage:
986  * @code{c}
987  * void vAFunction( void )
988  * {
989  * TaskHandle_t xHandle;
990  *
991  *   // Create a task, storing the handle.
992  *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
993  *
994  *   // ...
995  *
996  *   // Use the handle to obtain the priority of the created task.
997  *   // It was created with tskIDLE_PRIORITY, but may have changed
998  *   // it itself.
999  *   if( uxTaskPriorityGet( xHandle ) != tskIDLE_PRIORITY )
1000  *   {
1001  *       // The task has changed it's priority.
1002  *   }
1003  *
1004  *   // ...
1005  *
1006  *   // Is our priority higher than the created task?
1007  *   if( uxTaskPriorityGet( xHandle ) < uxTaskPriorityGet( NULL ) )
1008  *   {
1009  *       // Our priority (obtained using NULL handle) is higher.
1010  *   }
1011  * }
1012  * @endcode
1013  * \defgroup uxTaskPriorityGet uxTaskPriorityGet
1014  * \ingroup TaskCtrl
1015  */
1016 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
1017 
1018 /**
1019  * task. h
1020  * @code{c}
1021  * UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask );
1022  * @endcode
1023  *
1024  * A version of uxTaskPriorityGet() that can be used from an ISR.
1025  */
1026 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
1027 
1028 /**
1029  * task. h
1030  * @code{c}
1031  * UBaseType_t uxTaskBasePriorityGet( const TaskHandle_t xTask );
1032  * @endcode
1033  *
1034  * INCLUDE_uxTaskPriorityGet and configUSE_MUTEXES must be defined as 1 for this
1035  * function to be available. See the configuration section for more information.
1036  *
1037  * Obtain the base priority of any task.
1038  *
1039  * @param xTask Handle of the task to be queried.  Passing a NULL
1040  * handle results in the base priority of the calling task being returned.
1041  *
1042  * @return The base priority of xTask.
1043  *
1044  * \defgroup uxTaskPriorityGet uxTaskBasePriorityGet
1045  * \ingroup TaskCtrl
1046  */
1047 UBaseType_t uxTaskBasePriorityGet( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
1048 
1049 /**
1050  * task. h
1051  * @code{c}
1052  * UBaseType_t uxTaskBasePriorityGetFromISR( const TaskHandle_t xTask );
1053  * @endcode
1054  *
1055  * A version of uxTaskBasePriorityGet() that can be used from an ISR.
1056  */
1057 UBaseType_t uxTaskBasePriorityGetFromISR( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
1058 
1059 /**
1060  * task. h
1061  * @code{c}
1062  * eTaskState eTaskGetState( TaskHandle_t xTask );
1063  * @endcode
1064  *
1065  * INCLUDE_eTaskGetState must be defined as 1 for this function to be available.
1066  * See the configuration section for more information.
1067  *
1068  * Obtain the state of any task.  States are encoded by the eTaskState
1069  * enumerated type.
1070  *
1071  * @param xTask Handle of the task to be queried.
1072  *
1073  * @return The state of xTask at the time the function was called.  Note the
1074  * state of the task might change between the function being called, and the
1075  * functions return value being tested by the calling task.
1076  */
1077 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
1078     eTaskState eTaskGetState( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
1079 #endif
1080 
1081 /**
1082  * task. h
1083  * @code{c}
1084  * void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t *pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState );
1085  * @endcode
1086  *
1087  * configUSE_TRACE_FACILITY must be defined as 1 for this function to be
1088  * available.  See the configuration section for more information.
1089  *
1090  * Populates a TaskStatus_t structure with information about a task.
1091  *
1092  * @param xTask Handle of the task being queried.  If xTask is NULL then
1093  * information will be returned about the calling task.
1094  *
1095  * @param pxTaskStatus A pointer to the TaskStatus_t structure that will be
1096  * filled with information about the task referenced by the handle passed using
1097  * the xTask parameter.
1098  *
1099  * @param xGetFreeStackSpace The TaskStatus_t structure contains a member to report
1100  * the stack high water mark of the task being queried.  Calculating the stack
1101  * high water mark takes a relatively long time, and can make the system
1102  * temporarily unresponsive - so the xGetFreeStackSpace parameter is provided to
1103  * allow the high water mark checking to be skipped.  The high watermark value
1104  * will only be written to the TaskStatus_t structure if xGetFreeStackSpace is
1105  * not set to pdFALSE;
1106  *
1107  * @param eState The TaskStatus_t structure contains a member to report the
1108  * state of the task being queried.  Obtaining the task state is not as fast as
1109  * a simple assignment - so the eState parameter is provided to allow the state
1110  * information to be omitted from the TaskStatus_t structure.  To obtain state
1111  * information then set eState to eInvalid - otherwise the value passed in
1112  * eState will be reported as the task state in the TaskStatus_t structure.
1113  *
1114  * Example usage:
1115  * @code{c}
1116  * void vAFunction( void )
1117  * {
1118  * TaskHandle_t xHandle;
1119  * TaskStatus_t xTaskDetails;
1120  *
1121  *  // Obtain the handle of a task from its name.
1122  *  xHandle = xTaskGetHandle( "Task_Name" );
1123  *
1124  *  // Check the handle is not NULL.
1125  *  configASSERT( xHandle );
1126  *
1127  *  // Use the handle to obtain further information about the task.
1128  *  vTaskGetInfo( xHandle,
1129  *                &xTaskDetails,
1130  *                pdTRUE, // Include the high water mark in xTaskDetails.
1131  *                eInvalid ); // Include the task state in xTaskDetails.
1132  * }
1133  * @endcode
1134  * \defgroup vTaskGetInfo vTaskGetInfo
1135  * \ingroup TaskCtrl
1136  */
1137 #if ( configUSE_TRACE_FACILITY == 1 )
1138     void vTaskGetInfo( TaskHandle_t xTask,
1139                        TaskStatus_t * pxTaskStatus,
1140                        BaseType_t xGetFreeStackSpace,
1141                        eTaskState eState ) PRIVILEGED_FUNCTION;
1142 #endif
1143 
1144 /**
1145  * task. h
1146  * @code{c}
1147  * void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority );
1148  * @endcode
1149  *
1150  * INCLUDE_vTaskPrioritySet must be defined as 1 for this function to be available.
1151  * See the configuration section for more information.
1152  *
1153  * Set the priority of any task.
1154  *
1155  * A context switch will occur before the function returns if the priority
1156  * being set is higher than the currently executing task.
1157  *
1158  * @param xTask Handle to the task for which the priority is being set.
1159  * Passing a NULL handle results in the priority of the calling task being set.
1160  *
1161  * @param uxNewPriority The priority to which the task will be set.
1162  *
1163  * Example usage:
1164  * @code{c}
1165  * void vAFunction( void )
1166  * {
1167  * TaskHandle_t xHandle;
1168  *
1169  *   // Create a task, storing the handle.
1170  *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
1171  *
1172  *   // ...
1173  *
1174  *   // Use the handle to raise the priority of the created task.
1175  *   vTaskPrioritySet( xHandle, tskIDLE_PRIORITY + 1 );
1176  *
1177  *   // ...
1178  *
1179  *   // Use a NULL handle to raise our priority to the same value.
1180  *   vTaskPrioritySet( NULL, tskIDLE_PRIORITY + 1 );
1181  * }
1182  * @endcode
1183  * \defgroup vTaskPrioritySet vTaskPrioritySet
1184  * \ingroup TaskCtrl
1185  */
1186 void vTaskPrioritySet( TaskHandle_t xTask,
1187                        UBaseType_t uxNewPriority ) PRIVILEGED_FUNCTION;
1188 
1189 /**
1190  * task. h
1191  * @code{c}
1192  * void vTaskSuspend( TaskHandle_t xTaskToSuspend );
1193  * @endcode
1194  *
1195  * INCLUDE_vTaskSuspend must be defined as 1 for this function to be available.
1196  * See the configuration section for more information.
1197  *
1198  * Suspend any task.  When suspended a task will never get any microcontroller
1199  * processing time, no matter what its priority.
1200  *
1201  * Calls to vTaskSuspend are not accumulative -
1202  * i.e. calling vTaskSuspend () twice on the same task still only requires one
1203  * call to vTaskResume () to ready the suspended task.
1204  *
1205  * @param xTaskToSuspend Handle to the task being suspended.  Passing a NULL
1206  * handle will cause the calling task to be suspended.
1207  *
1208  * Example usage:
1209  * @code{c}
1210  * void vAFunction( void )
1211  * {
1212  * TaskHandle_t xHandle;
1213  *
1214  *   // Create a task, storing the handle.
1215  *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
1216  *
1217  *   // ...
1218  *
1219  *   // Use the handle to suspend the created task.
1220  *   vTaskSuspend( xHandle );
1221  *
1222  *   // ...
1223  *
1224  *   // The created task will not run during this period, unless
1225  *   // another task calls vTaskResume( xHandle ).
1226  *
1227  *   //...
1228  *
1229  *
1230  *   // Suspend ourselves.
1231  *   vTaskSuspend( NULL );
1232  *
1233  *   // We cannot get here unless another task calls vTaskResume
1234  *   // with our handle as the parameter.
1235  * }
1236  * @endcode
1237  * \defgroup vTaskSuspend vTaskSuspend
1238  * \ingroup TaskCtrl
1239  */
1240 void vTaskSuspend( TaskHandle_t xTaskToSuspend ) PRIVILEGED_FUNCTION;
1241 
1242 /**
1243  * task. h
1244  * @code{c}
1245  * void vTaskResume( TaskHandle_t xTaskToResume );
1246  * @endcode
1247  *
1248  * INCLUDE_vTaskSuspend must be defined as 1 for this function to be available.
1249  * See the configuration section for more information.
1250  *
1251  * Resumes a suspended task.
1252  *
1253  * A task that has been suspended by one or more calls to vTaskSuspend ()
1254  * will be made available for running again by a single call to
1255  * vTaskResume ().
1256  *
1257  * @param xTaskToResume Handle to the task being readied.
1258  *
1259  * Example usage:
1260  * @code{c}
1261  * void vAFunction( void )
1262  * {
1263  * TaskHandle_t xHandle;
1264  *
1265  *   // Create a task, storing the handle.
1266  *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
1267  *
1268  *   // ...
1269  *
1270  *   // Use the handle to suspend the created task.
1271  *   vTaskSuspend( xHandle );
1272  *
1273  *   // ...
1274  *
1275  *   // The created task will not run during this period, unless
1276  *   // another task calls vTaskResume( xHandle ).
1277  *
1278  *   //...
1279  *
1280  *
1281  *   // Resume the suspended task ourselves.
1282  *   vTaskResume( xHandle );
1283  *
1284  *   // The created task will once again get microcontroller processing
1285  *   // time in accordance with its priority within the system.
1286  * }
1287  * @endcode
1288  * \defgroup vTaskResume vTaskResume
1289  * \ingroup TaskCtrl
1290  */
1291 void vTaskResume( TaskHandle_t xTaskToResume ) PRIVILEGED_FUNCTION;
1292 
1293 /**
1294  * task. h
1295  * @code{c}
1296  * void xTaskResumeFromISR( TaskHandle_t xTaskToResume );
1297  * @endcode
1298  *
1299  * INCLUDE_xTaskResumeFromISR must be defined as 1 for this function to be
1300  * available.  See the configuration section for more information.
1301  *
1302  * An implementation of vTaskResume() that can be called from within an ISR.
1303  *
1304  * A task that has been suspended by one or more calls to vTaskSuspend ()
1305  * will be made available for running again by a single call to
1306  * xTaskResumeFromISR ().
1307  *
1308  * xTaskResumeFromISR() should not be used to synchronise a task with an
1309  * interrupt if there is a chance that the interrupt could arrive prior to the
1310  * task being suspended - as this can lead to interrupts being missed. Use of a
1311  * semaphore as a synchronisation mechanism would avoid this eventuality.
1312  *
1313  * @param xTaskToResume Handle to the task being readied.
1314  *
1315  * @return pdTRUE if resuming the task should result in a context switch,
1316  * otherwise pdFALSE. This is used by the ISR to determine if a context switch
1317  * may be required following the ISR.
1318  *
1319  * \defgroup vTaskResumeFromISR vTaskResumeFromISR
1320  * \ingroup TaskCtrl
1321  */
1322 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume ) PRIVILEGED_FUNCTION;
1323 
1324 #if ( configUSE_CORE_AFFINITY == 1 )
1325 
1326 /**
1327  * @brief Sets the core affinity mask for a task.
1328  *
1329  * It sets the cores on which a task can run. configUSE_CORE_AFFINITY must
1330  * be defined as 1 for this function to be available.
1331  *
1332  * @param xTask The handle of the task to set the core affinity mask for.
1333  * Passing NULL will set the core affinity mask for the calling task.
1334  *
1335  * @param uxCoreAffinityMask A bitwise value that indicates the cores on
1336  * which the task can run. Cores are numbered from 0 to configNUMBER_OF_CORES - 1.
1337  * For example, to ensure that a task can run on core 0 and core 1, set
1338  * uxCoreAffinityMask to 0x03.
1339  *
1340  * Example usage:
1341  *
1342  * // The function that creates task.
1343  * void vAFunction( void )
1344  * {
1345  * TaskHandle_t xHandle;
1346  * UBaseType_t uxCoreAffinityMask;
1347  *
1348  *      // Create a task, storing the handle.
1349  *      xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &( xHandle ) );
1350  *
1351  *      // Define the core affinity mask such that this task can only run
1352  *      // on core 0 and core 2.
1353  *      uxCoreAffinityMask = ( ( 1 << 0 ) | ( 1 << 2 ) );
1354  *
1355  *      //Set the core affinity mask for the task.
1356  *      vTaskCoreAffinitySet( xHandle, uxCoreAffinityMask );
1357  * }
1358  */
1359     void vTaskCoreAffinitySet( const TaskHandle_t xTask,
1360                                UBaseType_t uxCoreAffinityMask );
1361 #endif
1362 
1363 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1364 
1365 /**
1366  * @brief Gets the core affinity mask for a task.
1367  *
1368  * configUSE_CORE_AFFINITY must be defined as 1 for this function to be
1369  * available.
1370  *
1371  * @param xTask The handle of the task to get the core affinity mask for.
1372  * Passing NULL will get the core affinity mask for the calling task.
1373  *
1374  * @return The core affinity mask which is a bitwise value that indicates
1375  * the cores on which a task can run. Cores are numbered from 0 to
1376  * configNUMBER_OF_CORES - 1. For example, if a task can run on core 0 and core 1,
1377  * the core affinity mask is 0x03.
1378  *
1379  * Example usage:
1380  *
1381  * // Task handle of the networking task - it is populated elsewhere.
1382  * TaskHandle_t xNetworkingTaskHandle;
1383  *
1384  * void vAFunction( void )
1385  * {
1386  * TaskHandle_t xHandle;
1387  * UBaseType_t uxNetworkingCoreAffinityMask;
1388  *
1389  *     // Create a task, storing the handle.
1390  *     xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &( xHandle ) );
1391  *
1392  *     //Get the core affinity mask for the networking task.
1393  *     uxNetworkingCoreAffinityMask = vTaskCoreAffinityGet( xNetworkingTaskHandle );
1394  *
1395  *     // Here is a hypothetical scenario, just for the example. Assume that we
1396  *     // have 2 cores - Core 0 and core 1. We want to pin the application task to
1397  *     // the core different than the networking task to ensure that the
1398  *     // application task does not interfere with networking.
1399  *     if( ( uxNetworkingCoreAffinityMask & ( 1 << 0 ) ) != 0 )
1400  *     {
1401  *         // The networking task can run on core 0, pin our task to core 1.
1402  *         vTaskCoreAffinitySet( xHandle, ( 1 << 1 ) );
1403  *     }
1404  *     else
1405  *     {
1406  *         // Otherwise, pin our task to core 0.
1407  *         vTaskCoreAffinitySet( xHandle, ( 1 << 0 ) );
1408  *     }
1409  * }
1410  */
1411     UBaseType_t vTaskCoreAffinityGet( ConstTaskHandle_t xTask );
1412 #endif
1413 
1414 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
1415 
1416 /**
1417  * @brief Disables preemption for a task.
1418  *
1419  * @param xTask The handle of the task to disable preemption. Passing NULL
1420  * disables preemption for the calling task.
1421  *
1422  * Example usage:
1423  *
1424  * void vTaskCode( void *pvParameters )
1425  * {
1426  *     // Silence warnings about unused parameters.
1427  *     ( void ) pvParameters;
1428  *
1429  *     for( ;; )
1430  *     {
1431  *         // ... Perform some function here.
1432  *
1433  *         // Disable preemption for this task.
1434  *         vTaskPreemptionDisable( NULL );
1435  *
1436  *         // The task will not be preempted when it is executing in this portion ...
1437  *
1438  *         // ... until the preemption is enabled again.
1439  *         vTaskPreemptionEnable( NULL );
1440  *
1441  *         // The task can be preempted when it is executing in this portion.
1442  *     }
1443  * }
1444  */
1445     void vTaskPreemptionDisable( const TaskHandle_t xTask );
1446 #endif
1447 
1448 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
1449 
1450 /**
1451  * @brief Enables preemption for a task.
1452  *
1453  * @param xTask The handle of the task to enable preemption. Passing NULL
1454  * enables preemption for the calling task.
1455  *
1456  * Example usage:
1457  *
1458  * void vTaskCode( void *pvParameters )
1459  * {
1460  *     // Silence warnings about unused parameters.
1461  *     ( void ) pvParameters;
1462  *
1463  *     for( ;; )
1464  *     {
1465  *         // ... Perform some function here.
1466  *
1467  *         // Disable preemption for this task.
1468  *         vTaskPreemptionDisable( NULL );
1469  *
1470  *         // The task will not be preempted when it is executing in this portion ...
1471  *
1472  *         // ... until the preemption is enabled again.
1473  *         vTaskPreemptionEnable( NULL );
1474  *
1475  *         // The task can be preempted when it is executing in this portion.
1476  *     }
1477  * }
1478  */
1479     void vTaskPreemptionEnable( const TaskHandle_t xTask );
1480 #endif
1481 
1482 /*-----------------------------------------------------------
1483 * SCHEDULER CONTROL
1484 *----------------------------------------------------------*/
1485 
1486 /**
1487  * task. h
1488  * @code{c}
1489  * void vTaskStartScheduler( void );
1490  * @endcode
1491  *
1492  * Starts the real time kernel tick processing.  After calling the kernel
1493  * has control over which tasks are executed and when.
1494  *
1495  * See the demo application file main.c for an example of creating
1496  * tasks and starting the kernel.
1497  *
1498  * Example usage:
1499  * @code{c}
1500  * void vAFunction( void )
1501  * {
1502  *   // Create at least one task before starting the kernel.
1503  *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
1504  *
1505  *   // Start the real time kernel with preemption.
1506  *   vTaskStartScheduler ();
1507  *
1508  *   // Will not get here unless a task calls vTaskEndScheduler ()
1509  * }
1510  * @endcode
1511  *
1512  * \defgroup vTaskStartScheduler vTaskStartScheduler
1513  * \ingroup SchedulerControl
1514  */
1515 void vTaskStartScheduler( void ) PRIVILEGED_FUNCTION;
1516 
1517 /**
1518  * task. h
1519  * @code{c}
1520  * void vTaskEndScheduler( void );
1521  * @endcode
1522  *
1523  * NOTE:  At the time of writing only the x86 real mode port, which runs on a PC
1524  * in place of DOS, implements this function.
1525  *
1526  * Stops the real time kernel tick.  All created tasks will be automatically
1527  * deleted and multitasking (either preemptive or cooperative) will
1528  * stop.  Execution then resumes from the point where vTaskStartScheduler ()
1529  * was called, as if vTaskStartScheduler () had just returned.
1530  *
1531  * See the demo application file main. c in the demo/PC directory for an
1532  * example that uses vTaskEndScheduler ().
1533  *
1534  * vTaskEndScheduler () requires an exit function to be defined within the
1535  * portable layer (see vPortEndScheduler () in port. c for the PC port).  This
1536  * performs hardware specific operations such as stopping the kernel tick.
1537  *
1538  * vTaskEndScheduler () will cause all of the resources allocated by the
1539  * kernel to be freed - but will not free resources allocated by application
1540  * tasks.
1541  *
1542  * Example usage:
1543  * @code{c}
1544  * void vTaskCode( void * pvParameters )
1545  * {
1546  *   for( ;; )
1547  *   {
1548  *       // Task code goes here.
1549  *
1550  *       // At some point we want to end the real time kernel processing
1551  *       // so call ...
1552  *       vTaskEndScheduler ();
1553  *   }
1554  * }
1555  *
1556  * void vAFunction( void )
1557  * {
1558  *   // Create at least one task before starting the kernel.
1559  *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
1560  *
1561  *   // Start the real time kernel with preemption.
1562  *   vTaskStartScheduler ();
1563  *
1564  *   // Will only get here when the vTaskCode () task has called
1565  *   // vTaskEndScheduler ().  When we get here we are back to single task
1566  *   // execution.
1567  * }
1568  * @endcode
1569  *
1570  * \defgroup vTaskEndScheduler vTaskEndScheduler
1571  * \ingroup SchedulerControl
1572  */
1573 void vTaskEndScheduler( void ) PRIVILEGED_FUNCTION;
1574 
1575 /**
1576  * task. h
1577  * @code{c}
1578  * void vTaskSuspendAll( void );
1579  * @endcode
1580  *
1581  * Suspends the scheduler without disabling interrupts.  Context switches will
1582  * not occur while the scheduler is suspended.
1583  *
1584  * After calling vTaskSuspendAll () the calling task will continue to execute
1585  * without risk of being swapped out until a call to xTaskResumeAll () has been
1586  * made.
1587  *
1588  * API functions that have the potential to cause a context switch (for example,
1589  * xTaskDelayUntil(), xQueueSend(), etc.) must not be called while the scheduler
1590  * is suspended.
1591  *
1592  * Example usage:
1593  * @code{c}
1594  * void vTask1( void * pvParameters )
1595  * {
1596  *   for( ;; )
1597  *   {
1598  *       // Task code goes here.
1599  *
1600  *       // ...
1601  *
1602  *       // At some point the task wants to perform a long operation during
1603  *       // which it does not want to get swapped out.  It cannot use
1604  *       // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
1605  *       // operation may cause interrupts to be missed - including the
1606  *       // ticks.
1607  *
1608  *       // Prevent the real time kernel swapping out the task.
1609  *       vTaskSuspendAll ();
1610  *
1611  *       // Perform the operation here.  There is no need to use critical
1612  *       // sections as we have all the microcontroller processing time.
1613  *       // During this time interrupts will still operate and the kernel
1614  *       // tick count will be maintained.
1615  *
1616  *       // ...
1617  *
1618  *       // The operation is complete.  Restart the kernel.
1619  *       xTaskResumeAll ();
1620  *   }
1621  * }
1622  * @endcode
1623  * \defgroup vTaskSuspendAll vTaskSuspendAll
1624  * \ingroup SchedulerControl
1625  */
1626 void vTaskSuspendAll( void ) PRIVILEGED_FUNCTION;
1627 
1628 /**
1629  * task. h
1630  * @code{c}
1631  * BaseType_t xTaskResumeAll( void );
1632  * @endcode
1633  *
1634  * Resumes scheduler activity after it was suspended by a call to
1635  * vTaskSuspendAll().
1636  *
1637  * xTaskResumeAll() only resumes the scheduler.  It does not unsuspend tasks
1638  * that were previously suspended by a call to vTaskSuspend().
1639  *
1640  * @return If resuming the scheduler caused a context switch then pdTRUE is
1641  *         returned, otherwise pdFALSE is returned.
1642  *
1643  * Example usage:
1644  * @code{c}
1645  * void vTask1( void * pvParameters )
1646  * {
1647  *   for( ;; )
1648  *   {
1649  *       // Task code goes here.
1650  *
1651  *       // ...
1652  *
1653  *       // At some point the task wants to perform a long operation during
1654  *       // which it does not want to get swapped out.  It cannot use
1655  *       // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
1656  *       // operation may cause interrupts to be missed - including the
1657  *       // ticks.
1658  *
1659  *       // Prevent the real time kernel swapping out the task.
1660  *       vTaskSuspendAll ();
1661  *
1662  *       // Perform the operation here.  There is no need to use critical
1663  *       // sections as we have all the microcontroller processing time.
1664  *       // During this time interrupts will still operate and the real
1665  *       // time kernel tick count will be maintained.
1666  *
1667  *       // ...
1668  *
1669  *       // The operation is complete.  Restart the kernel.  We want to force
1670  *       // a context switch - but there is no point if resuming the scheduler
1671  *       // caused a context switch already.
1672  *       if( !xTaskResumeAll () )
1673  *       {
1674  *            taskYIELD ();
1675  *       }
1676  *   }
1677  * }
1678  * @endcode
1679  * \defgroup xTaskResumeAll xTaskResumeAll
1680  * \ingroup SchedulerControl
1681  */
1682 BaseType_t xTaskResumeAll( void ) PRIVILEGED_FUNCTION;
1683 
1684 /*-----------------------------------------------------------
1685 * TASK UTILITIES
1686 *----------------------------------------------------------*/
1687 
1688 /**
1689  * task. h
1690  * @code{c}
1691  * TickType_t xTaskGetTickCount( void );
1692  * @endcode
1693  *
1694  * @return The count of ticks since vTaskStartScheduler was called.
1695  *
1696  * \defgroup xTaskGetTickCount xTaskGetTickCount
1697  * \ingroup TaskUtils
1698  */
1699 TickType_t xTaskGetTickCount( void ) PRIVILEGED_FUNCTION;
1700 
1701 /**
1702  * task. h
1703  * @code{c}
1704  * TickType_t xTaskGetTickCountFromISR( void );
1705  * @endcode
1706  *
1707  * @return The count of ticks since vTaskStartScheduler was called.
1708  *
1709  * This is a version of xTaskGetTickCount() that is safe to be called from an
1710  * ISR - provided that TickType_t is the natural word size of the
1711  * microcontroller being used or interrupt nesting is either not supported or
1712  * not being used.
1713  *
1714  * \defgroup xTaskGetTickCountFromISR xTaskGetTickCountFromISR
1715  * \ingroup TaskUtils
1716  */
1717 TickType_t xTaskGetTickCountFromISR( void ) PRIVILEGED_FUNCTION;
1718 
1719 /**
1720  * task. h
1721  * @code{c}
1722  * uint16_t uxTaskGetNumberOfTasks( void );
1723  * @endcode
1724  *
1725  * @return The number of tasks that the real time kernel is currently managing.
1726  * This includes all ready, blocked and suspended tasks.  A task that
1727  * has been deleted but not yet freed by the idle task will also be
1728  * included in the count.
1729  *
1730  * \defgroup uxTaskGetNumberOfTasks uxTaskGetNumberOfTasks
1731  * \ingroup TaskUtils
1732  */
1733 UBaseType_t uxTaskGetNumberOfTasks( void ) PRIVILEGED_FUNCTION;
1734 
1735 /**
1736  * task. h
1737  * @code{c}
1738  * char *pcTaskGetName( TaskHandle_t xTaskToQuery );
1739  * @endcode
1740  *
1741  * @return The text (human readable) name of the task referenced by the handle
1742  * xTaskToQuery.  A task can query its own name by either passing in its own
1743  * handle, or by setting xTaskToQuery to NULL.
1744  *
1745  * \defgroup pcTaskGetName pcTaskGetName
1746  * \ingroup TaskUtils
1747  */
1748 char * pcTaskGetName( TaskHandle_t xTaskToQuery ) PRIVILEGED_FUNCTION;
1749 
1750 /**
1751  * task. h
1752  * @code{c}
1753  * TaskHandle_t xTaskGetHandle( const char *pcNameToQuery );
1754  * @endcode
1755  *
1756  * NOTE:  This function takes a relatively long time to complete and should be
1757  * used sparingly.
1758  *
1759  * @return The handle of the task that has the human readable name pcNameToQuery.
1760  * NULL is returned if no matching name is found.  INCLUDE_xTaskGetHandle
1761  * must be set to 1 in FreeRTOSConfig.h for pcTaskGetHandle() to be available.
1762  *
1763  * \defgroup pcTaskGetHandle pcTaskGetHandle
1764  * \ingroup TaskUtils
1765  */
1766 #if ( INCLUDE_xTaskGetHandle == 1 )
1767     TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) PRIVILEGED_FUNCTION;
1768 #endif
1769 
1770 /**
1771  * task. h
1772  * @code{c}
1773  * BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask,
1774  *                                   StackType_t ** ppuxStackBuffer,
1775  *                                   StaticTask_t ** ppxTaskBuffer );
1776  * @endcode
1777  *
1778  * Retrieve pointers to a statically created task's data structure
1779  * buffer and stack buffer. These are the same buffers that are supplied
1780  * at the time of creation.
1781  *
1782  * @param xTask The task for which to retrieve the buffers.
1783  *
1784  * @param ppuxStackBuffer Used to return a pointer to the task's stack buffer.
1785  *
1786  * @param ppxTaskBuffer Used to return a pointer to the task's data structure
1787  * buffer.
1788  *
1789  * @return pdTRUE if buffers were retrieved, pdFALSE otherwise.
1790  *
1791  * \defgroup xTaskGetStaticBuffers xTaskGetStaticBuffers
1792  * \ingroup TaskUtils
1793  */
1794 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
1795     BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask,
1796                                       StackType_t ** ppuxStackBuffer,
1797                                       StaticTask_t ** ppxTaskBuffer ) PRIVILEGED_FUNCTION;
1798 #endif /* configSUPPORT_STATIC_ALLOCATION */
1799 
1800 /**
1801  * task.h
1802  * @code{c}
1803  * UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask );
1804  * @endcode
1805  *
1806  * INCLUDE_uxTaskGetStackHighWaterMark must be set to 1 in FreeRTOSConfig.h for
1807  * this function to be available.
1808  *
1809  * Returns the high water mark of the stack associated with xTask.  That is,
1810  * the minimum free stack space there has been (in words, so on a 32 bit machine
1811  * a value of 1 means 4 bytes) since the task started.  The smaller the returned
1812  * number the closer the task has come to overflowing its stack.
1813  *
1814  * uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
1815  * same except for their return type.  Using configSTACK_DEPTH_TYPE allows the
1816  * user to determine the return type.  It gets around the problem of the value
1817  * overflowing on 8-bit types without breaking backward compatibility for
1818  * applications that expect an 8-bit return type.
1819  *
1820  * @param xTask Handle of the task associated with the stack to be checked.
1821  * Set xTask to NULL to check the stack of the calling task.
1822  *
1823  * @return The smallest amount of free stack space there has been (in words, so
1824  * actual spaces on the stack rather than bytes) since the task referenced by
1825  * xTask was created.
1826  */
1827 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
1828     UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
1829 #endif
1830 
1831 /**
1832  * task.h
1833  * @code{c}
1834  * configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask );
1835  * @endcode
1836  *
1837  * INCLUDE_uxTaskGetStackHighWaterMark2 must be set to 1 in FreeRTOSConfig.h for
1838  * this function to be available.
1839  *
1840  * Returns the high water mark of the stack associated with xTask.  That is,
1841  * the minimum free stack space there has been (in words, so on a 32 bit machine
1842  * a value of 1 means 4 bytes) since the task started.  The smaller the returned
1843  * number the closer the task has come to overflowing its stack.
1844  *
1845  * uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
1846  * same except for their return type.  Using configSTACK_DEPTH_TYPE allows the
1847  * user to determine the return type.  It gets around the problem of the value
1848  * overflowing on 8-bit types without breaking backward compatibility for
1849  * applications that expect an 8-bit return type.
1850  *
1851  * @param xTask Handle of the task associated with the stack to be checked.
1852  * Set xTask to NULL to check the stack of the calling task.
1853  *
1854  * @return The smallest amount of free stack space there has been (in words, so
1855  * actual spaces on the stack rather than bytes) since the task referenced by
1856  * xTask was created.
1857  */
1858 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
1859     configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
1860 #endif
1861 
1862 /* When using trace macros it is sometimes necessary to include task.h before
1863  * FreeRTOS.h.  When this is done TaskHookFunction_t will not yet have been defined,
1864  * so the following two prototypes will cause a compilation error.  This can be
1865  * fixed by simply guarding against the inclusion of these two prototypes unless
1866  * they are explicitly required by the configUSE_APPLICATION_TASK_TAG configuration
1867  * constant. */
1868 #ifdef configUSE_APPLICATION_TASK_TAG
1869     #if configUSE_APPLICATION_TASK_TAG == 1
1870 
1871 /**
1872  * task.h
1873  * @code{c}
1874  * void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction );
1875  * @endcode
1876  *
1877  * Sets pxHookFunction to be the task hook function used by the task xTask.
1878  * Passing xTask as NULL has the effect of setting the calling tasks hook
1879  * function.
1880  */
1881         void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
1882                                          TaskHookFunction_t pxHookFunction ) PRIVILEGED_FUNCTION;
1883 
1884 /**
1885  * task.h
1886  * @code{c}
1887  * void xTaskGetApplicationTaskTag( TaskHandle_t xTask );
1888  * @endcode
1889  *
1890  * Returns the pxHookFunction value assigned to the task xTask.  Do not
1891  * call from an interrupt service routine - call
1892  * xTaskGetApplicationTaskTagFromISR() instead.
1893  */
1894         TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
1895 
1896 /**
1897  * task.h
1898  * @code{c}
1899  * void xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask );
1900  * @endcode
1901  *
1902  * Returns the pxHookFunction value assigned to the task xTask.  Can
1903  * be called from an interrupt service routine.
1904  */
1905         TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
1906     #endif /* configUSE_APPLICATION_TASK_TAG ==1 */
1907 #endif /* ifdef configUSE_APPLICATION_TASK_TAG */
1908 
1909 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
1910 
1911 /* Each task contains an array of pointers that is dimensioned by the
1912  * configNUM_THREAD_LOCAL_STORAGE_POINTERS setting in FreeRTOSConfig.h.  The
1913  * kernel does not use the pointers itself, so the application writer can use
1914  * the pointers for any purpose they wish.  The following two functions are
1915  * used to set and query a pointer respectively. */
1916     void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
1917                                             BaseType_t xIndex,
1918                                             void * pvValue ) PRIVILEGED_FUNCTION;
1919     void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
1920                                                BaseType_t xIndex ) PRIVILEGED_FUNCTION;
1921 
1922 #endif
1923 
1924 #if ( configCHECK_FOR_STACK_OVERFLOW > 0 )
1925 
1926 /**
1927  * task.h
1928  * @code{c}
1929  * void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName);
1930  * @endcode
1931  *
1932  * The application stack overflow hook is called when a stack overflow is detected for a task.
1933  *
1934  * Details on stack overflow detection can be found here: https://www.FreeRTOS.org/Stacks-and-stack-overflow-checking.html
1935  *
1936  * @param xTask the task that just exceeded its stack boundaries.
1937  * @param pcTaskName A character string containing the name of the offending task.
1938  */
1939     /* MISRA Ref 8.6.1 [External linkage] */
1940     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-86 */
1941     /* coverity[misra_c_2012_rule_8_6_violation] */
1942     void vApplicationStackOverflowHook( TaskHandle_t xTask,
1943                                         char * pcTaskName );
1944 
1945 #endif
1946 
1947 #if ( configUSE_IDLE_HOOK == 1 )
1948 
1949 /**
1950  * task.h
1951  * @code{c}
1952  * void vApplicationIdleHook( void );
1953  * @endcode
1954  *
1955  * The application idle hook is called by the idle task.
1956  * This allows the application designer to add background functionality without
1957  * the overhead of a separate task.
1958  * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES, CALL A FUNCTION THAT MIGHT BLOCK.
1959  */
1960     /* MISRA Ref 8.6.1 [External linkage] */
1961     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-86 */
1962     /* coverity[misra_c_2012_rule_8_6_violation] */
1963     void vApplicationIdleHook( void );
1964 
1965 #endif
1966 
1967 
1968 #if  ( configUSE_TICK_HOOK != 0 )
1969 
1970 /**
1971  *  task.h
1972  * @code{c}
1973  * void vApplicationTickHook( void );
1974  * @endcode
1975  *
1976  * This hook function is called in the system tick handler after any OS work is completed.
1977  */
1978     /* MISRA Ref 8.6.1 [External linkage] */
1979     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-86 */
1980     /* coverity[misra_c_2012_rule_8_6_violation] */
1981     void vApplicationTickHook( void );
1982 
1983 #endif
1984 
1985 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
1986 
1987 /**
1988  * task.h
1989  * @code{c}
1990  * void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer, StackType_t ** ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize )
1991  * @endcode
1992  *
1993  * This function is used to provide a statically allocated block of memory to FreeRTOS to hold the Idle Task TCB.  This function is required when
1994  * configSUPPORT_STATIC_ALLOCATION is set.  For more information see this URI: https://www.FreeRTOS.org/a00110.html#configSUPPORT_STATIC_ALLOCATION
1995  *
1996  * @param ppxIdleTaskTCBBuffer A handle to a statically allocated TCB buffer
1997  * @param ppxIdleTaskStackBuffer A handle to a statically allocated Stack buffer for the idle task
1998  * @param pulIdleTaskStackSize A pointer to the number of elements that will fit in the allocated stack buffer
1999  */
2000     void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
2001                                         StackType_t ** ppxIdleTaskStackBuffer,
2002                                         uint32_t * pulIdleTaskStackSize );
2003 
2004 /**
2005  * task.h
2006  * @code{c}
2007  * void vApplicationGetPassiveIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer, StackType_t ** ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize, BaseType_t xCoreID )
2008  * @endcode
2009  *
2010  * This function is used to provide a statically allocated block of memory to FreeRTOS to hold the Idle Tasks TCB.  This function is required when
2011  * configSUPPORT_STATIC_ALLOCATION is set.  For more information see this URI: https://www.FreeRTOS.org/a00110.html#configSUPPORT_STATIC_ALLOCATION
2012  *
2013  * In the FreeRTOS SMP, there are a total of configNUMBER_OF_CORES idle tasks:
2014  *  1. 1 Active idle task which does all the housekeeping.
2015  *  2. ( configNUMBER_OF_CORES - 1 ) Passive idle tasks which do nothing.
2016  * These idle tasks are created to ensure that each core has an idle task to run when
2017  * no other task is available to run.
2018  *
2019  * The function vApplicationGetPassiveIdleTaskMemory is called with passive idle
2020  * task index 0, 1 ... ( configNUMBER_OF_CORES - 2 ) to get memory for passive idle
2021  * tasks.
2022  *
2023  * @param ppxIdleTaskTCBBuffer A handle to a statically allocated TCB buffer
2024  * @param ppxIdleTaskStackBuffer A handle to a statically allocated Stack buffer for the idle task
2025  * @param pulIdleTaskStackSize A pointer to the number of elements that will fit in the allocated stack buffer
2026  * @param xPassiveIdleTaskIndex The passive idle task index of the idle task buffer
2027  */
2028     #if ( configNUMBER_OF_CORES > 1 )
2029         void vApplicationGetPassiveIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
2030                                                    StackType_t ** ppxIdleTaskStackBuffer,
2031                                                    uint32_t * pulIdleTaskStackSize,
2032                                                    BaseType_t xPassiveIdleTaskIndex );
2033     #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
2034 #endif /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
2035 
2036 /**
2037  * task.h
2038  * @code{c}
2039  * BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter );
2040  * @endcode
2041  *
2042  * Calls the hook function associated with xTask.  Passing xTask as NULL has
2043  * the effect of calling the Running tasks (the calling task) hook function.
2044  *
2045  * pvParameter is passed to the hook function for the task to interpret as it
2046  * wants.  The return value is the value returned by the task hook function
2047  * registered by the user.
2048  */
2049 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
2050     BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
2051                                              void * pvParameter ) PRIVILEGED_FUNCTION;
2052 #endif
2053 
2054 /**
2055  * xTaskGetIdleTaskHandle() is only available if
2056  * INCLUDE_xTaskGetIdleTaskHandle is set to 1 in FreeRTOSConfig.h.
2057  *
2058  * In single-core FreeRTOS, this function simply returns the handle of the idle
2059  * task. It is not valid to call xTaskGetIdleTaskHandle() before the scheduler
2060  * has been started.
2061  *
2062  * In the FreeRTOS SMP, there are a total of configNUMBER_OF_CORES idle tasks:
2063  *  1. 1 Active idle task which does all the housekeeping.
2064  *  2. ( configNUMBER_OF_CORES - 1 ) Passive idle tasks which do nothing.
2065  * These idle tasks are created to ensure that each core has an idle task to run when
2066  * no other task is available to run. Call xTaskGetIdleTaskHandle() or
2067  * xTaskGetIdleTaskHandleForCore() with xCoreID set to 0  to get the Active
2068  * idle task handle. Call xTaskGetIdleTaskHandleForCore() with xCoreID set to
2069  * 1,2 ... ( configNUMBER_OF_CORES - 1 ) to get the Passive idle task handles.
2070  */
2071 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
2072     #if ( configNUMBER_OF_CORES == 1 )
2073         TaskHandle_t xTaskGetIdleTaskHandle( void ) PRIVILEGED_FUNCTION;
2074     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2075 
2076     TaskHandle_t xTaskGetIdleTaskHandleForCore( BaseType_t xCoreID ) PRIVILEGED_FUNCTION;
2077 #endif /* #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) */
2078 
2079 /**
2080  * configUSE_TRACE_FACILITY must be defined as 1 in FreeRTOSConfig.h for
2081  * uxTaskGetSystemState() to be available.
2082  *
2083  * uxTaskGetSystemState() populates an TaskStatus_t structure for each task in
2084  * the system.  TaskStatus_t structures contain, among other things, members
2085  * for the task handle, task name, task priority, task state, and total amount
2086  * of run time consumed by the task.  See the TaskStatus_t structure
2087  * definition in this file for the full member list.
2088  *
2089  * NOTE:  This function is intended for debugging use only as its use results in
2090  * the scheduler remaining suspended for an extended period.
2091  *
2092  * @param pxTaskStatusArray A pointer to an array of TaskStatus_t structures.
2093  * The array must contain at least one TaskStatus_t structure for each task
2094  * that is under the control of the RTOS.  The number of tasks under the control
2095  * of the RTOS can be determined using the uxTaskGetNumberOfTasks() API function.
2096  *
2097  * @param uxArraySize The size of the array pointed to by the pxTaskStatusArray
2098  * parameter.  The size is specified as the number of indexes in the array, or
2099  * the number of TaskStatus_t structures contained in the array, not by the
2100  * number of bytes in the array.
2101  *
2102  * @param pulTotalRunTime If configGENERATE_RUN_TIME_STATS is set to 1 in
2103  * FreeRTOSConfig.h then *pulTotalRunTime is set by uxTaskGetSystemState() to the
2104  * total run time (as defined by the run time stats clock, see
2105  * https://www.FreeRTOS.org/rtos-run-time-stats.html) since the target booted.
2106  * pulTotalRunTime can be set to NULL to omit the total run time information.
2107  *
2108  * @return The number of TaskStatus_t structures that were populated by
2109  * uxTaskGetSystemState().  This should equal the number returned by the
2110  * uxTaskGetNumberOfTasks() API function, but will be zero if the value passed
2111  * in the uxArraySize parameter was too small.
2112  *
2113  * Example usage:
2114  * @code{c}
2115  *  // This example demonstrates how a human readable table of run time stats
2116  *  // information is generated from raw data provided by uxTaskGetSystemState().
2117  *  // The human readable table is written to pcWriteBuffer
2118  *  void vTaskGetRunTimeStats( char *pcWriteBuffer )
2119  *  {
2120  *  TaskStatus_t *pxTaskStatusArray;
2121  *  volatile UBaseType_t uxArraySize, x;
2122  *  configRUN_TIME_COUNTER_TYPE ulTotalRunTime, ulStatsAsPercentage;
2123  *
2124  *      // Make sure the write buffer does not contain a string.
2125  * pcWriteBuffer = 0x00;
2126  *
2127  *      // Take a snapshot of the number of tasks in case it changes while this
2128  *      // function is executing.
2129  *      uxArraySize = uxTaskGetNumberOfTasks();
2130  *
2131  *      // Allocate a TaskStatus_t structure for each task.  An array could be
2132  *      // allocated statically at compile time.
2133  *      pxTaskStatusArray = pvPortMalloc( uxArraySize * sizeof( TaskStatus_t ) );
2134  *
2135  *      if( pxTaskStatusArray != NULL )
2136  *      {
2137  *          // Generate raw status information about each task.
2138  *          uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalRunTime );
2139  *
2140  *          // For percentage calculations.
2141  *          ulTotalRunTime /= 100UL;
2142  *
2143  *          // Avoid divide by zero errors.
2144  *          if( ulTotalRunTime > 0 )
2145  *          {
2146  *              // For each populated position in the pxTaskStatusArray array,
2147  *              // format the raw data as human readable ASCII data
2148  *              for( x = 0; x < uxArraySize; x++ )
2149  *              {
2150  *                  // What percentage of the total run time has the task used?
2151  *                  // This will always be rounded down to the nearest integer.
2152  *                  // ulTotalRunTimeDiv100 has already been divided by 100.
2153  *                  ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalRunTime;
2154  *
2155  *                  if( ulStatsAsPercentage > 0UL )
2156  *                  {
2157  *                      sprintf( pcWriteBuffer, "%s\t\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
2158  *                  }
2159  *                  else
2160  *                  {
2161  *                      // If the percentage is zero here then the task has
2162  *                      // consumed less than 1% of the total run time.
2163  *                      sprintf( pcWriteBuffer, "%s\t\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter );
2164  *                  }
2165  *
2166  *                  pcWriteBuffer += strlen( ( char * ) pcWriteBuffer );
2167  *              }
2168  *          }
2169  *
2170  *          // The array is no longer needed, free the memory it consumes.
2171  *          vPortFree( pxTaskStatusArray );
2172  *      }
2173  *  }
2174  *  @endcode
2175  */
2176 #if ( configUSE_TRACE_FACILITY == 1 )
2177     UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
2178                                       const UBaseType_t uxArraySize,
2179                                       configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime ) PRIVILEGED_FUNCTION;
2180 #endif
2181 
2182 /**
2183  * task. h
2184  * @code{c}
2185  * void vTaskListTasks( char *pcWriteBuffer, size_t uxBufferLength );
2186  * @endcode
2187  *
2188  * configUSE_TRACE_FACILITY and configUSE_STATS_FORMATTING_FUNCTIONS must
2189  * both be defined as 1 for this function to be available.  See the
2190  * configuration section of the FreeRTOS.org website for more information.
2191  *
2192  * NOTE 1: This function will disable interrupts for its duration.  It is
2193  * not intended for normal application runtime use but as a debug aid.
2194  *
2195  * Lists all the current tasks, along with their current state and stack
2196  * usage high water mark.
2197  *
2198  * Tasks are reported as blocked ('B'), ready ('R'), deleted ('D') or
2199  * suspended ('S').
2200  *
2201  * PLEASE NOTE:
2202  *
2203  * This function is provided for convenience only, and is used by many of the
2204  * demo applications.  Do not consider it to be part of the scheduler.
2205  *
2206  * vTaskListTasks() calls uxTaskGetSystemState(), then formats part of the
2207  * uxTaskGetSystemState() output into a human readable table that displays task:
2208  * names, states, priority, stack usage and task number.
2209  * Stack usage specified as the number of unused StackType_t words stack can hold
2210  * on top of stack - not the number of bytes.
2211  *
2212  * vTaskListTasks() has a dependency on the snprintf() C library function that might
2213  * bloat the code size, use a lot of stack, and provide different results on
2214  * different platforms.  An alternative, tiny, third party, and limited
2215  * functionality implementation of snprintf() is provided in many of the
2216  * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note
2217  * printf-stdarg.c does not provide a full snprintf() implementation!).
2218  *
2219  * It is recommended that production systems call uxTaskGetSystemState()
2220  * directly to get access to raw stats data, rather than indirectly through a
2221  * call to vTaskListTasks().
2222  *
2223  * @param pcWriteBuffer A buffer into which the above mentioned details
2224  * will be written, in ASCII form.  This buffer is assumed to be large
2225  * enough to contain the generated report.  Approximately 40 bytes per
2226  * task should be sufficient.
2227  *
2228  * @param uxBufferLength Length of the pcWriteBuffer.
2229  *
2230  * \defgroup vTaskListTasks vTaskListTasks
2231  * \ingroup TaskUtils
2232  */
2233 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
2234     void vTaskListTasks( char * pcWriteBuffer,
2235                          size_t uxBufferLength ) PRIVILEGED_FUNCTION;
2236 #endif
2237 
2238 /**
2239  * task. h
2240  * @code{c}
2241  * void vTaskList( char *pcWriteBuffer );
2242  * @endcode
2243  *
2244  * configUSE_TRACE_FACILITY and configUSE_STATS_FORMATTING_FUNCTIONS must
2245  * both be defined as 1 for this function to be available.  See the
2246  * configuration section of the FreeRTOS.org website for more information.
2247  *
2248  * WARN: This function assumes that the pcWriteBuffer is of length
2249  * configSTATS_BUFFER_MAX_LENGTH. This function is there only for
2250  * backward compatibility. New applications are recommended to
2251  * use vTaskListTasks and supply the length of the pcWriteBuffer explicitly.
2252  *
2253  * NOTE 1: This function will disable interrupts for its duration.  It is
2254  * not intended for normal application runtime use but as a debug aid.
2255  *
2256  * Lists all the current tasks, along with their current state and stack
2257  * usage high water mark.
2258  *
2259  * Tasks are reported as blocked ('B'), ready ('R'), deleted ('D') or
2260  * suspended ('S').
2261  *
2262  * PLEASE NOTE:
2263  *
2264  * This function is provided for convenience only, and is used by many of the
2265  * demo applications.  Do not consider it to be part of the scheduler.
2266  *
2267  * vTaskList() calls uxTaskGetSystemState(), then formats part of the
2268  * uxTaskGetSystemState() output into a human readable table that displays task:
2269  * names, states, priority, stack usage and task number.
2270  * Stack usage specified as the number of unused StackType_t words stack can hold
2271  * on top of stack - not the number of bytes.
2272  *
2273  * vTaskList() has a dependency on the snprintf() C library function that might
2274  * bloat the code size, use a lot of stack, and provide different results on
2275  * different platforms.  An alternative, tiny, third party, and limited
2276  * functionality implementation of snprintf() is provided in many of the
2277  * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note
2278  * printf-stdarg.c does not provide a full snprintf() implementation!).
2279  *
2280  * It is recommended that production systems call uxTaskGetSystemState()
2281  * directly to get access to raw stats data, rather than indirectly through a
2282  * call to vTaskList().
2283  *
2284  * @param pcWriteBuffer A buffer into which the above mentioned details
2285  * will be written, in ASCII form.  This buffer is assumed to be large
2286  * enough to contain the generated report.  Approximately 40 bytes per
2287  * task should be sufficient.
2288  *
2289  * \defgroup vTaskList vTaskList
2290  * \ingroup TaskUtils
2291  */
2292 #define vTaskList( pcWriteBuffer )    vTaskListTasks( pcWriteBuffer, configSTATS_BUFFER_MAX_LENGTH )
2293 
2294 /**
2295  * task. h
2296  * @code{c}
2297  * void vTaskGetRunTimeStatistics( char *pcWriteBuffer, size_t uxBufferLength );
2298  * @endcode
2299  *
2300  * configGENERATE_RUN_TIME_STATS and configUSE_STATS_FORMATTING_FUNCTIONS
2301  * must both be defined as 1 for this function to be available.  The application
2302  * must also then provide definitions for
2303  * portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and portGET_RUN_TIME_COUNTER_VALUE()
2304  * to configure a peripheral timer/counter and return the timers current count
2305  * value respectively.  The counter should be at least 10 times the frequency of
2306  * the tick count.
2307  *
2308  * NOTE 1: This function will disable interrupts for its duration.  It is
2309  * not intended for normal application runtime use but as a debug aid.
2310  *
2311  * Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total
2312  * accumulated execution time being stored for each task.  The resolution
2313  * of the accumulated time value depends on the frequency of the timer
2314  * configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro.
2315  * Calling vTaskGetRunTimeStatistics() writes the total execution time of each
2316  * task into a buffer, both as an absolute count value and as a percentage
2317  * of the total system execution time.
2318  *
2319  * NOTE 2:
2320  *
2321  * This function is provided for convenience only, and is used by many of the
2322  * demo applications.  Do not consider it to be part of the scheduler.
2323  *
2324  * vTaskGetRunTimeStatistics() calls uxTaskGetSystemState(), then formats part of
2325  * the uxTaskGetSystemState() output into a human readable table that displays the
2326  * amount of time each task has spent in the Running state in both absolute and
2327  * percentage terms.
2328  *
2329  * vTaskGetRunTimeStatistics() has a dependency on the snprintf() C library function
2330  * that might bloat the code size, use a lot of stack, and provide different
2331  * results on different platforms.  An alternative, tiny, third party, and
2332  * limited functionality implementation of snprintf() is provided in many of the
2333  * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note
2334  * printf-stdarg.c does not provide a full snprintf() implementation!).
2335  *
2336  * It is recommended that production systems call uxTaskGetSystemState() directly
2337  * to get access to raw stats data, rather than indirectly through a call to
2338  * vTaskGetRunTimeStatistics().
2339  *
2340  * @param pcWriteBuffer A buffer into which the execution times will be
2341  * written, in ASCII form.  This buffer is assumed to be large enough to
2342  * contain the generated report.  Approximately 40 bytes per task should
2343  * be sufficient.
2344  *
2345  * @param uxBufferLength Length of the pcWriteBuffer.
2346  *
2347  * \defgroup vTaskGetRunTimeStatistics vTaskGetRunTimeStatistics
2348  * \ingroup TaskUtils
2349  */
2350 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configUSE_TRACE_FACILITY == 1 ) )
2351     void vTaskGetRunTimeStatistics( char * pcWriteBuffer,
2352                                     size_t uxBufferLength ) PRIVILEGED_FUNCTION;
2353 #endif
2354 
2355 /**
2356  * task. h
2357  * @code{c}
2358  * void vTaskGetRunTimeStats( char *pcWriteBuffer );
2359  * @endcode
2360  *
2361  * configGENERATE_RUN_TIME_STATS and configUSE_STATS_FORMATTING_FUNCTIONS
2362  * must both be defined as 1 for this function to be available.  The application
2363  * must also then provide definitions for
2364  * portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and portGET_RUN_TIME_COUNTER_VALUE()
2365  * to configure a peripheral timer/counter and return the timers current count
2366  * value respectively.  The counter should be at least 10 times the frequency of
2367  * the tick count.
2368  *
2369  * WARN: This function assumes that the pcWriteBuffer is of length
2370  * configSTATS_BUFFER_MAX_LENGTH. This function is there only for
2371  * backward compatiblity. New applications are recommended to use
2372  * vTaskGetRunTimeStatistics and supply the length of the pcWriteBuffer
2373  * explicitly.
2374  *
2375  * NOTE 1: This function will disable interrupts for its duration.  It is
2376  * not intended for normal application runtime use but as a debug aid.
2377  *
2378  * Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total
2379  * accumulated execution time being stored for each task.  The resolution
2380  * of the accumulated time value depends on the frequency of the timer
2381  * configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro.
2382  * Calling vTaskGetRunTimeStats() writes the total execution time of each
2383  * task into a buffer, both as an absolute count value and as a percentage
2384  * of the total system execution time.
2385  *
2386  * NOTE 2:
2387  *
2388  * This function is provided for convenience only, and is used by many of the
2389  * demo applications.  Do not consider it to be part of the scheduler.
2390  *
2391  * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part of the
2392  * uxTaskGetSystemState() output into a human readable table that displays the
2393  * amount of time each task has spent in the Running state in both absolute and
2394  * percentage terms.
2395  *
2396  * vTaskGetRunTimeStats() has a dependency on the snprintf() C library function
2397  * that might bloat the code size, use a lot of stack, and provide different
2398  * results on different platforms.  An alternative, tiny, third party, and
2399  * limited functionality implementation of snprintf() is provided in many of the
2400  * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note
2401  * printf-stdarg.c does not provide a full snprintf() implementation!).
2402  *
2403  * It is recommended that production systems call uxTaskGetSystemState() directly
2404  * to get access to raw stats data, rather than indirectly through a call to
2405  * vTaskGetRunTimeStats().
2406  *
2407  * @param pcWriteBuffer A buffer into which the execution times will be
2408  * written, in ASCII form.  This buffer is assumed to be large enough to
2409  * contain the generated report.  Approximately 40 bytes per task should
2410  * be sufficient.
2411  *
2412  * \defgroup vTaskGetRunTimeStats vTaskGetRunTimeStats
2413  * \ingroup TaskUtils
2414  */
2415 #define vTaskGetRunTimeStats( pcWriteBuffer )    vTaskGetRunTimeStatistics( pcWriteBuffer, configSTATS_BUFFER_MAX_LENGTH )
2416 
2417 /**
2418  * task. h
2419  * @code{c}
2420  * configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimeCounter( const TaskHandle_t xTask );
2421  * configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimePercent( const TaskHandle_t xTask );
2422  * @endcode
2423  *
2424  * configGENERATE_RUN_TIME_STATS must be defined as 1 for these functions to be
2425  * available.  The application must also then provide definitions for
2426  * portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and
2427  * portGET_RUN_TIME_COUNTER_VALUE() to configure a peripheral timer/counter and
2428  * return the timers current count value respectively.  The counter should be
2429  * at least 10 times the frequency of the tick count.
2430  *
2431  * Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total
2432  * accumulated execution time being stored for each task.  The resolution
2433  * of the accumulated time value depends on the frequency of the timer
2434  * configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro.
2435  * While uxTaskGetSystemState() and vTaskGetRunTimeStats() writes the total
2436  * execution time of each task into a buffer, ulTaskGetRunTimeCounter()
2437  * returns the total execution time of just one task and
2438  * ulTaskGetRunTimePercent() returns the percentage of the CPU time used by
2439  * just one task.
2440  *
2441  * @return The total run time of the given task or the percentage of the total
2442  * run time consumed by the given task.  This is the amount of time the task
2443  * has actually been executing.  The unit of time is dependent on the frequency
2444  * configured using the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and
2445  * portGET_RUN_TIME_COUNTER_VALUE() macros.
2446  *
2447  * \defgroup ulTaskGetRunTimeCounter ulTaskGetRunTimeCounter
2448  * \ingroup TaskUtils
2449  */
2450 #if ( configGENERATE_RUN_TIME_STATS == 1 )
2451     configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimeCounter( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
2452     configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimePercent( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
2453 #endif
2454 
2455 /**
2456  * task. h
2457  * @code{c}
2458  * configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void );
2459  * configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void );
2460  * @endcode
2461  *
2462  * configGENERATE_RUN_TIME_STATS must be defined as 1 for these functions to be
2463  * available.  The application must also then provide definitions for
2464  * portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and
2465  * portGET_RUN_TIME_COUNTER_VALUE() to configure a peripheral timer/counter and
2466  * return the timers current count value respectively.  The counter should be
2467  * at least 10 times the frequency of the tick count.
2468  *
2469  * Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total
2470  * accumulated execution time being stored for each task.  The resolution
2471  * of the accumulated time value depends on the frequency of the timer
2472  * configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro.
2473  * While uxTaskGetSystemState() and vTaskGetRunTimeStats() writes the total
2474  * execution time of each task into a buffer, ulTaskGetIdleRunTimeCounter()
2475  * returns the total execution time of just the idle task and
2476  * ulTaskGetIdleRunTimePercent() returns the percentage of the CPU time used by
2477  * just the idle task.
2478  *
2479  * Note the amount of idle time is only a good measure of the slack time in a
2480  * system if there are no other tasks executing at the idle priority, tickless
2481  * idle is not used, and configIDLE_SHOULD_YIELD is set to 0.
2482  *
2483  * @return The total run time of the idle task or the percentage of the total
2484  * run time consumed by the idle task.  This is the amount of time the
2485  * idle task has actually been executing.  The unit of time is dependent on the
2486  * frequency configured using the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and
2487  * portGET_RUN_TIME_COUNTER_VALUE() macros.
2488  *
2489  * \defgroup ulTaskGetIdleRunTimeCounter ulTaskGetIdleRunTimeCounter
2490  * \ingroup TaskUtils
2491  */
2492 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
2493     configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void ) PRIVILEGED_FUNCTION;
2494     configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void ) PRIVILEGED_FUNCTION;
2495 #endif
2496 
2497 /**
2498  * task. h
2499  * @code{c}
2500  * BaseType_t xTaskNotifyIndexed( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction );
2501  * BaseType_t xTaskNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction );
2502  * @endcode
2503  *
2504  * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
2505  *
2506  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these
2507  * functions to be available.
2508  *
2509  * Sends a direct to task notification to a task, with an optional value and
2510  * action.
2511  *
2512  * Each task has a private array of "notification values" (or 'notifications'),
2513  * each of which is a 32-bit unsigned integer (uint32_t).  The constant
2514  * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the
2515  * array, and (for backward compatibility) defaults to 1 if left undefined.
2516  * Prior to FreeRTOS V10.4.0 there was only one notification value per task.
2517  *
2518  * Events can be sent to a task using an intermediary object.  Examples of such
2519  * objects are queues, semaphores, mutexes and event groups.  Task notifications
2520  * are a method of sending an event directly to a task without the need for such
2521  * an intermediary object.
2522  *
2523  * A notification sent to a task can optionally perform an action, such as
2524  * update, overwrite or increment one of the task's notification values.  In
2525  * that way task notifications can be used to send data to a task, or be used as
2526  * light weight and fast binary or counting semaphores.
2527  *
2528  * A task can use xTaskNotifyWaitIndexed() or ulTaskNotifyTakeIndexed() to
2529  * [optionally] block to wait for a notification to be pending.  The task does
2530  * not consume any CPU time while it is in the Blocked state.
2531  *
2532  * A notification sent to a task will remain pending until it is cleared by the
2533  * task calling xTaskNotifyWaitIndexed() or ulTaskNotifyTakeIndexed() (or their
2534  * un-indexed equivalents).  If the task was already in the Blocked state to
2535  * wait for a notification when the notification arrives then the task will
2536  * automatically be removed from the Blocked state (unblocked) and the
2537  * notification cleared.
2538  *
2539  * **NOTE** Each notification within the array operates independently - a task
2540  * can only block on one notification within the array at a time and will not be
2541  * unblocked by a notification sent to any other array index.
2542  *
2543  * Backward compatibility information:
2544  * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and
2545  * all task notification API functions operated on that value. Replacing the
2546  * single notification value with an array of notification values necessitated a
2547  * new set of API functions that could address specific notifications within the
2548  * array.  xTaskNotify() is the original API function, and remains backward
2549  * compatible by always operating on the notification value at index 0 in the
2550  * array. Calling xTaskNotify() is equivalent to calling xTaskNotifyIndexed()
2551  * with the uxIndexToNotify parameter set to 0.
2552  *
2553  * @param xTaskToNotify The handle of the task being notified.  The handle to a
2554  * task can be returned from the xTaskCreate() API function used to create the
2555  * task, and the handle of the currently running task can be obtained by calling
2556  * xTaskGetCurrentTaskHandle().
2557  *
2558  * @param uxIndexToNotify The index within the target task's array of
2559  * notification values to which the notification is to be sent.  uxIndexToNotify
2560  * must be less than configTASK_NOTIFICATION_ARRAY_ENTRIES.  xTaskNotify() does
2561  * not have this parameter and always sends notifications to index 0.
2562  *
2563  * @param ulValue Data that can be sent with the notification.  How the data is
2564  * used depends on the value of the eAction parameter.
2565  *
2566  * @param eAction Specifies how the notification updates the task's notification
2567  * value, if at all.  Valid values for eAction are as follows:
2568  *
2569  * eSetBits -
2570  * The target notification value is bitwise ORed with ulValue.
2571  * xTaskNotifyIndexed() always returns pdPASS in this case.
2572  *
2573  * eIncrement -
2574  * The target notification value is incremented.  ulValue is not used and
2575  * xTaskNotifyIndexed() always returns pdPASS in this case.
2576  *
2577  * eSetValueWithOverwrite -
2578  * The target notification value is set to the value of ulValue, even if the
2579  * task being notified had not yet processed the previous notification at the
2580  * same array index (the task already had a notification pending at that index).
2581  * xTaskNotifyIndexed() always returns pdPASS in this case.
2582  *
2583  * eSetValueWithoutOverwrite -
2584  * If the task being notified did not already have a notification pending at the
2585  * same array index then the target notification value is set to ulValue and
2586  * xTaskNotifyIndexed() will return pdPASS.  If the task being notified already
2587  * had a notification pending at the same array index then no action is
2588  * performed and pdFAIL is returned.
2589  *
2590  * eNoAction -
2591  * The task receives a notification at the specified array index without the
2592  * notification value at that index being updated.  ulValue is not used and
2593  * xTaskNotifyIndexed() always returns pdPASS in this case.
2594  *
2595  * pulPreviousNotificationValue -
2596  * Can be used to pass out the subject task's notification value before any
2597  * bits are modified by the notify function.
2598  *
2599  * @return Dependent on the value of eAction.  See the description of the
2600  * eAction parameter.
2601  *
2602  * \defgroup xTaskNotifyIndexed xTaskNotifyIndexed
2603  * \ingroup TaskNotifications
2604  */
2605 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
2606                                UBaseType_t uxIndexToNotify,
2607                                uint32_t ulValue,
2608                                eNotifyAction eAction,
2609                                uint32_t * pulPreviousNotificationValue ) PRIVILEGED_FUNCTION;
2610 #define xTaskNotify( xTaskToNotify, ulValue, eAction ) \
2611     xTaskGenericNotify( ( xTaskToNotify ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( ulValue ), ( eAction ), NULL )
2612 #define xTaskNotifyIndexed( xTaskToNotify, uxIndexToNotify, ulValue, eAction ) \
2613     xTaskGenericNotify( ( xTaskToNotify ), ( uxIndexToNotify ), ( ulValue ), ( eAction ), NULL )
2614 
2615 /**
2616  * task. h
2617  * @code{c}
2618  * BaseType_t xTaskNotifyAndQueryIndexed( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotifyValue );
2619  * BaseType_t xTaskNotifyAndQuery( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotifyValue );
2620  * @endcode
2621  *
2622  * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
2623  *
2624  * xTaskNotifyAndQueryIndexed() performs the same operation as
2625  * xTaskNotifyIndexed() with the addition that it also returns the subject
2626  * task's prior notification value (the notification value at the time the
2627  * function is called rather than when the function returns) in the additional
2628  * pulPreviousNotifyValue parameter.
2629  *
2630  * xTaskNotifyAndQuery() performs the same operation as xTaskNotify() with the
2631  * addition that it also returns the subject task's prior notification value
2632  * (the notification value as it was at the time the function is called, rather
2633  * than when the function returns) in the additional pulPreviousNotifyValue
2634  * parameter.
2635  *
2636  * \defgroup xTaskNotifyAndQueryIndexed xTaskNotifyAndQueryIndexed
2637  * \ingroup TaskNotifications
2638  */
2639 #define xTaskNotifyAndQuery( xTaskToNotify, ulValue, eAction, pulPreviousNotifyValue ) \
2640     xTaskGenericNotify( ( xTaskToNotify ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( ulValue ), ( eAction ), ( pulPreviousNotifyValue ) )
2641 #define xTaskNotifyAndQueryIndexed( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotifyValue ) \
2642     xTaskGenericNotify( ( xTaskToNotify ), ( uxIndexToNotify ), ( ulValue ), ( eAction ), ( pulPreviousNotifyValue ) )
2643 
2644 /**
2645  * task. h
2646  * @code{c}
2647  * BaseType_t xTaskNotifyIndexedFromISR( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, BaseType_t *pxHigherPriorityTaskWoken );
2648  * BaseType_t xTaskNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, BaseType_t *pxHigherPriorityTaskWoken );
2649  * @endcode
2650  *
2651  * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
2652  *
2653  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these
2654  * functions to be available.
2655  *
2656  * A version of xTaskNotifyIndexed() that can be used from an interrupt service
2657  * routine (ISR).
2658  *
2659  * Each task has a private array of "notification values" (or 'notifications'),
2660  * each of which is a 32-bit unsigned integer (uint32_t).  The constant
2661  * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the
2662  * array, and (for backward compatibility) defaults to 1 if left undefined.
2663  * Prior to FreeRTOS V10.4.0 there was only one notification value per task.
2664  *
2665  * Events can be sent to a task using an intermediary object.  Examples of such
2666  * objects are queues, semaphores, mutexes and event groups.  Task notifications
2667  * are a method of sending an event directly to a task without the need for such
2668  * an intermediary object.
2669  *
2670  * A notification sent to a task can optionally perform an action, such as
2671  * update, overwrite or increment one of the task's notification values.  In
2672  * that way task notifications can be used to send data to a task, or be used as
2673  * light weight and fast binary or counting semaphores.
2674  *
2675  * A task can use xTaskNotifyWaitIndexed() to [optionally] block to wait for a
2676  * notification to be pending, or ulTaskNotifyTakeIndexed() to [optionally] block
2677  * to wait for a notification value to have a non-zero value.  The task does
2678  * not consume any CPU time while it is in the Blocked state.
2679  *
2680  * A notification sent to a task will remain pending until it is cleared by the
2681  * task calling xTaskNotifyWaitIndexed() or ulTaskNotifyTakeIndexed() (or their
2682  * un-indexed equivalents).  If the task was already in the Blocked state to
2683  * wait for a notification when the notification arrives then the task will
2684  * automatically be removed from the Blocked state (unblocked) and the
2685  * notification cleared.
2686  *
2687  * **NOTE** Each notification within the array operates independently - a task
2688  * can only block on one notification within the array at a time and will not be
2689  * unblocked by a notification sent to any other array index.
2690  *
2691  * Backward compatibility information:
2692  * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and
2693  * all task notification API functions operated on that value. Replacing the
2694  * single notification value with an array of notification values necessitated a
2695  * new set of API functions that could address specific notifications within the
2696  * array.  xTaskNotifyFromISR() is the original API function, and remains
2697  * backward compatible by always operating on the notification value at index 0
2698  * within the array. Calling xTaskNotifyFromISR() is equivalent to calling
2699  * xTaskNotifyIndexedFromISR() with the uxIndexToNotify parameter set to 0.
2700  *
2701  * @param uxIndexToNotify The index within the target task's array of
2702  * notification values to which the notification is to be sent.  uxIndexToNotify
2703  * must be less than configTASK_NOTIFICATION_ARRAY_ENTRIES.  xTaskNotifyFromISR()
2704  * does not have this parameter and always sends notifications to index 0.
2705  *
2706  * @param xTaskToNotify The handle of the task being notified.  The handle to a
2707  * task can be returned from the xTaskCreate() API function used to create the
2708  * task, and the handle of the currently running task can be obtained by calling
2709  * xTaskGetCurrentTaskHandle().
2710  *
2711  * @param ulValue Data that can be sent with the notification.  How the data is
2712  * used depends on the value of the eAction parameter.
2713  *
2714  * @param eAction Specifies how the notification updates the task's notification
2715  * value, if at all.  Valid values for eAction are as follows:
2716  *
2717  * eSetBits -
2718  * The task's notification value is bitwise ORed with ulValue.  xTaskNotify()
2719  * always returns pdPASS in this case.
2720  *
2721  * eIncrement -
2722  * The task's notification value is incremented.  ulValue is not used and
2723  * xTaskNotify() always returns pdPASS in this case.
2724  *
2725  * eSetValueWithOverwrite -
2726  * The task's notification value is set to the value of ulValue, even if the
2727  * task being notified had not yet processed the previous notification (the
2728  * task already had a notification pending).  xTaskNotify() always returns
2729  * pdPASS in this case.
2730  *
2731  * eSetValueWithoutOverwrite -
2732  * If the task being notified did not already have a notification pending then
2733  * the task's notification value is set to ulValue and xTaskNotify() will
2734  * return pdPASS.  If the task being notified already had a notification
2735  * pending then no action is performed and pdFAIL is returned.
2736  *
2737  * eNoAction -
2738  * The task receives a notification without its notification value being
2739  * updated.  ulValue is not used and xTaskNotify() always returns pdPASS in
2740  * this case.
2741  *
2742  * @param pxHigherPriorityTaskWoken  xTaskNotifyFromISR() will set
2743  * *pxHigherPriorityTaskWoken to pdTRUE if sending the notification caused the
2744  * task to which the notification was sent to leave the Blocked state, and the
2745  * unblocked task has a priority higher than the currently running task.  If
2746  * xTaskNotifyFromISR() sets this value to pdTRUE then a context switch should
2747  * be requested before the interrupt is exited.  How a context switch is
2748  * requested from an ISR is dependent on the port - see the documentation page
2749  * for the port in use.
2750  *
2751  * @return Dependent on the value of eAction.  See the description of the
2752  * eAction parameter.
2753  *
2754  * \defgroup xTaskNotifyIndexedFromISR xTaskNotifyIndexedFromISR
2755  * \ingroup TaskNotifications
2756  */
2757 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
2758                                       UBaseType_t uxIndexToNotify,
2759                                       uint32_t ulValue,
2760                                       eNotifyAction eAction,
2761                                       uint32_t * pulPreviousNotificationValue,
2762                                       BaseType_t * pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
2763 #define xTaskNotifyFromISR( xTaskToNotify, ulValue, eAction, pxHigherPriorityTaskWoken ) \
2764     xTaskGenericNotifyFromISR( ( xTaskToNotify ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( ulValue ), ( eAction ), NULL, ( pxHigherPriorityTaskWoken ) )
2765 #define xTaskNotifyIndexedFromISR( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pxHigherPriorityTaskWoken ) \
2766     xTaskGenericNotifyFromISR( ( xTaskToNotify ), ( uxIndexToNotify ), ( ulValue ), ( eAction ), NULL, ( pxHigherPriorityTaskWoken ) )
2767 
2768 /**
2769  * task. h
2770  * @code{c}
2771  * BaseType_t xTaskNotifyAndQueryIndexedFromISR( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue, BaseType_t *pxHigherPriorityTaskWoken );
2772  * BaseType_t xTaskNotifyAndQueryFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue, BaseType_t *pxHigherPriorityTaskWoken );
2773  * @endcode
2774  *
2775  * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
2776  *
2777  * xTaskNotifyAndQueryIndexedFromISR() performs the same operation as
2778  * xTaskNotifyIndexedFromISR() with the addition that it also returns the
2779  * subject task's prior notification value (the notification value at the time
2780  * the function is called rather than at the time the function returns) in the
2781  * additional pulPreviousNotifyValue parameter.
2782  *
2783  * xTaskNotifyAndQueryFromISR() performs the same operation as
2784  * xTaskNotifyFromISR() with the addition that it also returns the subject
2785  * task's prior notification value (the notification value at the time the
2786  * function is called rather than at the time the function returns) in the
2787  * additional pulPreviousNotifyValue parameter.
2788  *
2789  * \defgroup xTaskNotifyAndQueryIndexedFromISR xTaskNotifyAndQueryIndexedFromISR
2790  * \ingroup TaskNotifications
2791  */
2792 #define xTaskNotifyAndQueryIndexedFromISR( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken ) \
2793     xTaskGenericNotifyFromISR( ( xTaskToNotify ), ( uxIndexToNotify ), ( ulValue ), ( eAction ), ( pulPreviousNotificationValue ), ( pxHigherPriorityTaskWoken ) )
2794 #define xTaskNotifyAndQueryFromISR( xTaskToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken ) \
2795     xTaskGenericNotifyFromISR( ( xTaskToNotify ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( ulValue ), ( eAction ), ( pulPreviousNotificationValue ), ( pxHigherPriorityTaskWoken ) )
2796 
2797 /**
2798  * task. h
2799  * @code{c}
2800  * BaseType_t xTaskNotifyWaitIndexed( UBaseType_t uxIndexToWaitOn, uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait );
2801  *
2802  * BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait );
2803  * @endcode
2804  *
2805  * Waits for a direct to task notification to be pending at a given index within
2806  * an array of direct to task notifications.
2807  *
2808  * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
2809  *
2810  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
2811  * function to be available.
2812  *
2813  * Each task has a private array of "notification values" (or 'notifications'),
2814  * each of which is a 32-bit unsigned integer (uint32_t).  The constant
2815  * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the
2816  * array, and (for backward compatibility) defaults to 1 if left undefined.
2817  * Prior to FreeRTOS V10.4.0 there was only one notification value per task.
2818  *
2819  * Events can be sent to a task using an intermediary object.  Examples of such
2820  * objects are queues, semaphores, mutexes and event groups.  Task notifications
2821  * are a method of sending an event directly to a task without the need for such
2822  * an intermediary object.
2823  *
2824  * A notification sent to a task can optionally perform an action, such as
2825  * update, overwrite or increment one of the task's notification values.  In
2826  * that way task notifications can be used to send data to a task, or be used as
2827  * light weight and fast binary or counting semaphores.
2828  *
2829  * A notification sent to a task will remain pending until it is cleared by the
2830  * task calling xTaskNotifyWaitIndexed() or ulTaskNotifyTakeIndexed() (or their
2831  * un-indexed equivalents).  If the task was already in the Blocked state to
2832  * wait for a notification when the notification arrives then the task will
2833  * automatically be removed from the Blocked state (unblocked) and the
2834  * notification cleared.
2835  *
2836  * A task can use xTaskNotifyWaitIndexed() to [optionally] block to wait for a
2837  * notification to be pending, or ulTaskNotifyTakeIndexed() to [optionally] block
2838  * to wait for a notification value to have a non-zero value.  The task does
2839  * not consume any CPU time while it is in the Blocked state.
2840  *
2841  * **NOTE** Each notification within the array operates independently - a task
2842  * can only block on one notification within the array at a time and will not be
2843  * unblocked by a notification sent to any other array index.
2844  *
2845  * Backward compatibility information:
2846  * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and
2847  * all task notification API functions operated on that value. Replacing the
2848  * single notification value with an array of notification values necessitated a
2849  * new set of API functions that could address specific notifications within the
2850  * array.  xTaskNotifyWait() is the original API function, and remains backward
2851  * compatible by always operating on the notification value at index 0 in the
2852  * array. Calling xTaskNotifyWait() is equivalent to calling
2853  * xTaskNotifyWaitIndexed() with the uxIndexToWaitOn parameter set to 0.
2854  *
2855  * @param uxIndexToWaitOn The index within the calling task's array of
2856  * notification values on which the calling task will wait for a notification to
2857  * be received.  uxIndexToWaitOn must be less than
2858  * configTASK_NOTIFICATION_ARRAY_ENTRIES.  xTaskNotifyWait() does
2859  * not have this parameter and always waits for notifications on index 0.
2860  *
2861  * @param ulBitsToClearOnEntry Bits that are set in ulBitsToClearOnEntry value
2862  * will be cleared in the calling task's notification value before the task
2863  * checks to see if any notifications are pending, and optionally blocks if no
2864  * notifications are pending.  Setting ulBitsToClearOnEntry to ULONG_MAX (if
2865  * limits.h is included) or 0xffffffffUL (if limits.h is not included) will have
2866  * the effect of resetting the task's notification value to 0.  Setting
2867  * ulBitsToClearOnEntry to 0 will leave the task's notification value unchanged.
2868  *
2869  * @param ulBitsToClearOnExit If a notification is pending or received before
2870  * the calling task exits the xTaskNotifyWait() function then the task's
2871  * notification value (see the xTaskNotify() API function) is passed out using
2872  * the pulNotificationValue parameter.  Then any bits that are set in
2873  * ulBitsToClearOnExit will be cleared in the task's notification value (note
2874  * *pulNotificationValue is set before any bits are cleared).  Setting
2875  * ulBitsToClearOnExit to ULONG_MAX (if limits.h is included) or 0xffffffffUL
2876  * (if limits.h is not included) will have the effect of resetting the task's
2877  * notification value to 0 before the function exits.  Setting
2878  * ulBitsToClearOnExit to 0 will leave the task's notification value unchanged
2879  * when the function exits (in which case the value passed out in
2880  * pulNotificationValue will match the task's notification value).
2881  *
2882  * @param pulNotificationValue Used to pass the task's notification value out
2883  * of the function.  Note the value passed out will not be effected by the
2884  * clearing of any bits caused by ulBitsToClearOnExit being non-zero.
2885  *
2886  * @param xTicksToWait The maximum amount of time that the task should wait in
2887  * the Blocked state for a notification to be received, should a notification
2888  * not already be pending when xTaskNotifyWait() was called.  The task
2889  * will not consume any processing time while it is in the Blocked state.  This
2890  * is specified in kernel ticks, the macro pdMS_TO_TICKS( value_in_ms ) can be
2891  * used to convert a time specified in milliseconds to a time specified in
2892  * ticks.
2893  *
2894  * @return If a notification was received (including notifications that were
2895  * already pending when xTaskNotifyWait was called) then pdPASS is
2896  * returned.  Otherwise pdFAIL is returned.
2897  *
2898  * \defgroup xTaskNotifyWaitIndexed xTaskNotifyWaitIndexed
2899  * \ingroup TaskNotifications
2900  */
2901 BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWaitOn,
2902                                    uint32_t ulBitsToClearOnEntry,
2903                                    uint32_t ulBitsToClearOnExit,
2904                                    uint32_t * pulNotificationValue,
2905                                    TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
2906 #define xTaskNotifyWait( ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait ) \
2907     xTaskGenericNotifyWait( tskDEFAULT_INDEX_TO_NOTIFY, ( ulBitsToClearOnEntry ), ( ulBitsToClearOnExit ), ( pulNotificationValue ), ( xTicksToWait ) )
2908 #define xTaskNotifyWaitIndexed( uxIndexToWaitOn, ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait ) \
2909     xTaskGenericNotifyWait( ( uxIndexToWaitOn ), ( ulBitsToClearOnEntry ), ( ulBitsToClearOnExit ), ( pulNotificationValue ), ( xTicksToWait ) )
2910 
2911 /**
2912  * task. h
2913  * @code{c}
2914  * BaseType_t xTaskNotifyGiveIndexed( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify );
2915  * BaseType_t xTaskNotifyGive( TaskHandle_t xTaskToNotify );
2916  * @endcode
2917  *
2918  * Sends a direct to task notification to a particular index in the target
2919  * task's notification array in a manner similar to giving a counting semaphore.
2920  *
2921  * See https://www.FreeRTOS.org/RTOS-task-notifications.html for more details.
2922  *
2923  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these
2924  * macros to be available.
2925  *
2926  * Each task has a private array of "notification values" (or 'notifications'),
2927  * each of which is a 32-bit unsigned integer (uint32_t).  The constant
2928  * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the
2929  * array, and (for backward compatibility) defaults to 1 if left undefined.
2930  * Prior to FreeRTOS V10.4.0 there was only one notification value per task.
2931  *
2932  * Events can be sent to a task using an intermediary object.  Examples of such
2933  * objects are queues, semaphores, mutexes and event groups.  Task notifications
2934  * are a method of sending an event directly to a task without the need for such
2935  * an intermediary object.
2936  *
2937  * A notification sent to a task can optionally perform an action, such as
2938  * update, overwrite or increment one of the task's notification values.  In
2939  * that way task notifications can be used to send data to a task, or be used as
2940  * light weight and fast binary or counting semaphores.
2941  *
2942  * xTaskNotifyGiveIndexed() is a helper macro intended for use when task
2943  * notifications are used as light weight and faster binary or counting
2944  * semaphore equivalents.  Actual FreeRTOS semaphores are given using the
2945  * xSemaphoreGive() API function, the equivalent action that instead uses a task
2946  * notification is xTaskNotifyGiveIndexed().
2947  *
2948  * When task notifications are being used as a binary or counting semaphore
2949  * equivalent then the task being notified should wait for the notification
2950  * using the ulTaskNotifyTakeIndexed() API function rather than the
2951  * xTaskNotifyWaitIndexed() API function.
2952  *
2953  * **NOTE** Each notification within the array operates independently - a task
2954  * can only block on one notification within the array at a time and will not be
2955  * unblocked by a notification sent to any other array index.
2956  *
2957  * Backward compatibility information:
2958  * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and
2959  * all task notification API functions operated on that value. Replacing the
2960  * single notification value with an array of notification values necessitated a
2961  * new set of API functions that could address specific notifications within the
2962  * array.  xTaskNotifyGive() is the original API function, and remains backward
2963  * compatible by always operating on the notification value at index 0 in the
2964  * array. Calling xTaskNotifyGive() is equivalent to calling
2965  * xTaskNotifyGiveIndexed() with the uxIndexToNotify parameter set to 0.
2966  *
2967  * @param xTaskToNotify The handle of the task being notified.  The handle to a
2968  * task can be returned from the xTaskCreate() API function used to create the
2969  * task, and the handle of the currently running task can be obtained by calling
2970  * xTaskGetCurrentTaskHandle().
2971  *
2972  * @param uxIndexToNotify The index within the target task's array of
2973  * notification values to which the notification is to be sent.  uxIndexToNotify
2974  * must be less than configTASK_NOTIFICATION_ARRAY_ENTRIES.  xTaskNotifyGive()
2975  * does not have this parameter and always sends notifications to index 0.
2976  *
2977  * @return xTaskNotifyGive() is a macro that calls xTaskNotify() with the
2978  * eAction parameter set to eIncrement - so pdPASS is always returned.
2979  *
2980  * \defgroup xTaskNotifyGiveIndexed xTaskNotifyGiveIndexed
2981  * \ingroup TaskNotifications
2982  */
2983 #define xTaskNotifyGive( xTaskToNotify ) \
2984     xTaskGenericNotify( ( xTaskToNotify ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( 0 ), eIncrement, NULL )
2985 #define xTaskNotifyGiveIndexed( xTaskToNotify, uxIndexToNotify ) \
2986     xTaskGenericNotify( ( xTaskToNotify ), ( uxIndexToNotify ), ( 0 ), eIncrement, NULL )
2987 
2988 /**
2989  * task. h
2990  * @code{c}
2991  * void vTaskNotifyGiveIndexedFromISR( TaskHandle_t xTaskHandle, UBaseType_t uxIndexToNotify, BaseType_t *pxHigherPriorityTaskWoken );
2992  * void vTaskNotifyGiveFromISR( TaskHandle_t xTaskHandle, BaseType_t *pxHigherPriorityTaskWoken );
2993  * @endcode
2994  *
2995  * A version of xTaskNotifyGiveIndexed() that can be called from an interrupt
2996  * service routine (ISR).
2997  *
2998  * See https://www.FreeRTOS.org/RTOS-task-notifications.html for more details.
2999  *
3000  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this macro
3001  * to be available.
3002  *
3003  * Each task has a private array of "notification values" (or 'notifications'),
3004  * each of which is a 32-bit unsigned integer (uint32_t).  The constant
3005  * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the
3006  * array, and (for backward compatibility) defaults to 1 if left undefined.
3007  * Prior to FreeRTOS V10.4.0 there was only one notification value per task.
3008  *
3009  * Events can be sent to a task using an intermediary object.  Examples of such
3010  * objects are queues, semaphores, mutexes and event groups.  Task notifications
3011  * are a method of sending an event directly to a task without the need for such
3012  * an intermediary object.
3013  *
3014  * A notification sent to a task can optionally perform an action, such as
3015  * update, overwrite or increment one of the task's notification values.  In
3016  * that way task notifications can be used to send data to a task, or be used as
3017  * light weight and fast binary or counting semaphores.
3018  *
3019  * vTaskNotifyGiveIndexedFromISR() is intended for use when task notifications
3020  * are used as light weight and faster binary or counting semaphore equivalents.
3021  * Actual FreeRTOS semaphores are given from an ISR using the
3022  * xSemaphoreGiveFromISR() API function, the equivalent action that instead uses
3023  * a task notification is vTaskNotifyGiveIndexedFromISR().
3024  *
3025  * When task notifications are being used as a binary or counting semaphore
3026  * equivalent then the task being notified should wait for the notification
3027  * using the ulTaskNotifyTakeIndexed() API function rather than the
3028  * xTaskNotifyWaitIndexed() API function.
3029  *
3030  * **NOTE** Each notification within the array operates independently - a task
3031  * can only block on one notification within the array at a time and will not be
3032  * unblocked by a notification sent to any other array index.
3033  *
3034  * Backward compatibility information:
3035  * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and
3036  * all task notification API functions operated on that value. Replacing the
3037  * single notification value with an array of notification values necessitated a
3038  * new set of API functions that could address specific notifications within the
3039  * array.  xTaskNotifyFromISR() is the original API function, and remains
3040  * backward compatible by always operating on the notification value at index 0
3041  * within the array. Calling xTaskNotifyGiveFromISR() is equivalent to calling
3042  * xTaskNotifyGiveIndexedFromISR() with the uxIndexToNotify parameter set to 0.
3043  *
3044  * @param xTaskToNotify The handle of the task being notified.  The handle to a
3045  * task can be returned from the xTaskCreate() API function used to create the
3046  * task, and the handle of the currently running task can be obtained by calling
3047  * xTaskGetCurrentTaskHandle().
3048  *
3049  * @param uxIndexToNotify The index within the target task's array of
3050  * notification values to which the notification is to be sent.  uxIndexToNotify
3051  * must be less than configTASK_NOTIFICATION_ARRAY_ENTRIES.
3052  * xTaskNotifyGiveFromISR() does not have this parameter and always sends
3053  * notifications to index 0.
3054  *
3055  * @param pxHigherPriorityTaskWoken  vTaskNotifyGiveFromISR() will set
3056  * *pxHigherPriorityTaskWoken to pdTRUE if sending the notification caused the
3057  * task to which the notification was sent to leave the Blocked state, and the
3058  * unblocked task has a priority higher than the currently running task.  If
3059  * vTaskNotifyGiveFromISR() sets this value to pdTRUE then a context switch
3060  * should be requested before the interrupt is exited.  How a context switch is
3061  * requested from an ISR is dependent on the port - see the documentation page
3062  * for the port in use.
3063  *
3064  * \defgroup vTaskNotifyGiveIndexedFromISR vTaskNotifyGiveIndexedFromISR
3065  * \ingroup TaskNotifications
3066  */
3067 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
3068                                     UBaseType_t uxIndexToNotify,
3069                                     BaseType_t * pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
3070 #define vTaskNotifyGiveFromISR( xTaskToNotify, pxHigherPriorityTaskWoken ) \
3071     vTaskGenericNotifyGiveFromISR( ( xTaskToNotify ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( pxHigherPriorityTaskWoken ) )
3072 #define vTaskNotifyGiveIndexedFromISR( xTaskToNotify, uxIndexToNotify, pxHigherPriorityTaskWoken ) \
3073     vTaskGenericNotifyGiveFromISR( ( xTaskToNotify ), ( uxIndexToNotify ), ( pxHigherPriorityTaskWoken ) )
3074 
3075 /**
3076  * task. h
3077  * @code{c}
3078  * uint32_t ulTaskNotifyTakeIndexed( UBaseType_t uxIndexToWaitOn, BaseType_t xClearCountOnExit, TickType_t xTicksToWait );
3079  *
3080  * uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait );
3081  * @endcode
3082  *
3083  * Waits for a direct to task notification on a particular index in the calling
3084  * task's notification array in a manner similar to taking a counting semaphore.
3085  *
3086  * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
3087  *
3088  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
3089  * function to be available.
3090  *
3091  * Each task has a private array of "notification values" (or 'notifications'),
3092  * each of which is a 32-bit unsigned integer (uint32_t).  The constant
3093  * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the
3094  * array, and (for backward compatibility) defaults to 1 if left undefined.
3095  * Prior to FreeRTOS V10.4.0 there was only one notification value per task.
3096  *
3097  * Events can be sent to a task using an intermediary object.  Examples of such
3098  * objects are queues, semaphores, mutexes and event groups.  Task notifications
3099  * are a method of sending an event directly to a task without the need for such
3100  * an intermediary object.
3101  *
3102  * A notification sent to a task can optionally perform an action, such as
3103  * update, overwrite or increment one of the task's notification values.  In
3104  * that way task notifications can be used to send data to a task, or be used as
3105  * light weight and fast binary or counting semaphores.
3106  *
3107  * ulTaskNotifyTakeIndexed() is intended for use when a task notification is
3108  * used as a faster and lighter weight binary or counting semaphore alternative.
3109  * Actual FreeRTOS semaphores are taken using the xSemaphoreTake() API function,
3110  * the equivalent action that instead uses a task notification is
3111  * ulTaskNotifyTakeIndexed().
3112  *
3113  * When a task is using its notification value as a binary or counting semaphore
3114  * other tasks should send notifications to it using the xTaskNotifyGiveIndexed()
3115  * macro, or xTaskNotifyIndex() function with the eAction parameter set to
3116  * eIncrement.
3117  *
3118  * ulTaskNotifyTakeIndexed() can either clear the task's notification value at
3119  * the array index specified by the uxIndexToWaitOn parameter to zero on exit,
3120  * in which case the notification value acts like a binary semaphore, or
3121  * decrement the notification value on exit, in which case the notification
3122  * value acts like a counting semaphore.
3123  *
3124  * A task can use ulTaskNotifyTakeIndexed() to [optionally] block to wait for
3125  * a notification.  The task does not consume any CPU time while it is in the
3126  * Blocked state.
3127  *
3128  * Where as xTaskNotifyWaitIndexed() will return when a notification is pending,
3129  * ulTaskNotifyTakeIndexed() will return when the task's notification value is
3130  * not zero.
3131  *
3132  * **NOTE** Each notification within the array operates independently - a task
3133  * can only block on one notification within the array at a time and will not be
3134  * unblocked by a notification sent to any other array index.
3135  *
3136  * Backward compatibility information:
3137  * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and
3138  * all task notification API functions operated on that value. Replacing the
3139  * single notification value with an array of notification values necessitated a
3140  * new set of API functions that could address specific notifications within the
3141  * array.  ulTaskNotifyTake() is the original API function, and remains backward
3142  * compatible by always operating on the notification value at index 0 in the
3143  * array. Calling ulTaskNotifyTake() is equivalent to calling
3144  * ulTaskNotifyTakeIndexed() with the uxIndexToWaitOn parameter set to 0.
3145  *
3146  * @param uxIndexToWaitOn The index within the calling task's array of
3147  * notification values on which the calling task will wait for a notification to
3148  * be non-zero.  uxIndexToWaitOn must be less than
3149  * configTASK_NOTIFICATION_ARRAY_ENTRIES.  xTaskNotifyTake() does
3150  * not have this parameter and always waits for notifications on index 0.
3151  *
3152  * @param xClearCountOnExit if xClearCountOnExit is pdFALSE then the task's
3153  * notification value is decremented when the function exits.  In this way the
3154  * notification value acts like a counting semaphore.  If xClearCountOnExit is
3155  * not pdFALSE then the task's notification value is cleared to zero when the
3156  * function exits.  In this way the notification value acts like a binary
3157  * semaphore.
3158  *
3159  * @param xTicksToWait The maximum amount of time that the task should wait in
3160  * the Blocked state for the task's notification value to be greater than zero,
3161  * should the count not already be greater than zero when
3162  * ulTaskNotifyTake() was called.  The task will not consume any processing
3163  * time while it is in the Blocked state.  This is specified in kernel ticks,
3164  * the macro pdMS_TO_TICKS( value_in_ms ) can be used to convert a time
3165  * specified in milliseconds to a time specified in ticks.
3166  *
3167  * @return The task's notification count before it is either cleared to zero or
3168  * decremented (see the xClearCountOnExit parameter).
3169  *
3170  * \defgroup ulTaskNotifyTakeIndexed ulTaskNotifyTakeIndexed
3171  * \ingroup TaskNotifications
3172  */
3173 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWaitOn,
3174                                   BaseType_t xClearCountOnExit,
3175                                   TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
3176 #define ulTaskNotifyTake( xClearCountOnExit, xTicksToWait ) \
3177     ulTaskGenericNotifyTake( ( tskDEFAULT_INDEX_TO_NOTIFY ), ( xClearCountOnExit ), ( xTicksToWait ) )
3178 #define ulTaskNotifyTakeIndexed( uxIndexToWaitOn, xClearCountOnExit, xTicksToWait ) \
3179     ulTaskGenericNotifyTake( ( uxIndexToWaitOn ), ( xClearCountOnExit ), ( xTicksToWait ) )
3180 
3181 /**
3182  * task. h
3183  * @code{c}
3184  * BaseType_t xTaskNotifyStateClearIndexed( TaskHandle_t xTask, UBaseType_t uxIndexToCLear );
3185  *
3186  * BaseType_t xTaskNotifyStateClear( TaskHandle_t xTask );
3187  * @endcode
3188  *
3189  * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
3190  *
3191  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these
3192  * functions to be available.
3193  *
3194  * Each task has a private array of "notification values" (or 'notifications'),
3195  * each of which is a 32-bit unsigned integer (uint32_t).  The constant
3196  * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the
3197  * array, and (for backward compatibility) defaults to 1 if left undefined.
3198  * Prior to FreeRTOS V10.4.0 there was only one notification value per task.
3199  *
3200  * If a notification is sent to an index within the array of notifications then
3201  * the notification at that index is said to be 'pending' until it is read or
3202  * explicitly cleared by the receiving task.  xTaskNotifyStateClearIndexed()
3203  * is the function that clears a pending notification without reading the
3204  * notification value.  The notification value at the same array index is not
3205  * altered.  Set xTask to NULL to clear the notification state of the calling
3206  * task.
3207  *
3208  * Backward compatibility information:
3209  * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and
3210  * all task notification API functions operated on that value. Replacing the
3211  * single notification value with an array of notification values necessitated a
3212  * new set of API functions that could address specific notifications within the
3213  * array.  xTaskNotifyStateClear() is the original API function, and remains
3214  * backward compatible by always operating on the notification value at index 0
3215  * within the array. Calling xTaskNotifyStateClear() is equivalent to calling
3216  * xTaskNotifyStateClearIndexed() with the uxIndexToNotify parameter set to 0.
3217  *
3218  * @param xTask The handle of the RTOS task that will have a notification state
3219  * cleared.  Set xTask to NULL to clear a notification state in the calling
3220  * task.  To obtain a task's handle create the task using xTaskCreate() and
3221  * make use of the pxCreatedTask parameter, or create the task using
3222  * xTaskCreateStatic() and store the returned value, or use the task's name in
3223  * a call to xTaskGetHandle().
3224  *
3225  * @param uxIndexToClear The index within the target task's array of
3226  * notification values to act upon.  For example, setting uxIndexToClear to 1
3227  * will clear the state of the notification at index 1 within the array.
3228  * uxIndexToClear must be less than configTASK_NOTIFICATION_ARRAY_ENTRIES.
3229  * ulTaskNotifyStateClear() does not have this parameter and always acts on the
3230  * notification at index 0.
3231  *
3232  * @return pdTRUE if the task's notification state was set to
3233  * eNotWaitingNotification, otherwise pdFALSE.
3234  *
3235  * \defgroup xTaskNotifyStateClearIndexed xTaskNotifyStateClearIndexed
3236  * \ingroup TaskNotifications
3237  */
3238 BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
3239                                          UBaseType_t uxIndexToClear ) PRIVILEGED_FUNCTION;
3240 #define xTaskNotifyStateClear( xTask ) \
3241     xTaskGenericNotifyStateClear( ( xTask ), ( tskDEFAULT_INDEX_TO_NOTIFY ) )
3242 #define xTaskNotifyStateClearIndexed( xTask, uxIndexToClear ) \
3243     xTaskGenericNotifyStateClear( ( xTask ), ( uxIndexToClear ) )
3244 
3245 /**
3246  * task. h
3247  * @code{c}
3248  * uint32_t ulTaskNotifyValueClearIndexed( TaskHandle_t xTask, UBaseType_t uxIndexToClear, uint32_t ulBitsToClear );
3249  *
3250  * uint32_t ulTaskNotifyValueClear( TaskHandle_t xTask, uint32_t ulBitsToClear );
3251  * @endcode
3252  *
3253  * See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
3254  *
3255  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these
3256  * functions to be available.
3257  *
3258  * Each task has a private array of "notification values" (or 'notifications'),
3259  * each of which is a 32-bit unsigned integer (uint32_t).  The constant
3260  * configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes in the
3261  * array, and (for backward compatibility) defaults to 1 if left undefined.
3262  * Prior to FreeRTOS V10.4.0 there was only one notification value per task.
3263  *
3264  * ulTaskNotifyValueClearIndexed() clears the bits specified by the
3265  * ulBitsToClear bit mask in the notification value at array index uxIndexToClear
3266  * of the task referenced by xTask.
3267  *
3268  * Backward compatibility information:
3269  * Prior to FreeRTOS V10.4.0 each task had a single "notification value", and
3270  * all task notification API functions operated on that value. Replacing the
3271  * single notification value with an array of notification values necessitated a
3272  * new set of API functions that could address specific notifications within the
3273  * array.  ulTaskNotifyValueClear() is the original API function, and remains
3274  * backward compatible by always operating on the notification value at index 0
3275  * within the array. Calling ulTaskNotifyValueClear() is equivalent to calling
3276  * ulTaskNotifyValueClearIndexed() with the uxIndexToClear parameter set to 0.
3277  *
3278  * @param xTask The handle of the RTOS task that will have bits in one of its
3279  * notification values cleared. Set xTask to NULL to clear bits in a
3280  * notification value of the calling task.  To obtain a task's handle create the
3281  * task using xTaskCreate() and make use of the pxCreatedTask parameter, or
3282  * create the task using xTaskCreateStatic() and store the returned value, or
3283  * use the task's name in a call to xTaskGetHandle().
3284  *
3285  * @param uxIndexToClear The index within the target task's array of
3286  * notification values in which to clear the bits.  uxIndexToClear
3287  * must be less than configTASK_NOTIFICATION_ARRAY_ENTRIES.
3288  * ulTaskNotifyValueClear() does not have this parameter and always clears bits
3289  * in the notification value at index 0.
3290  *
3291  * @param ulBitsToClear Bit mask of the bits to clear in the notification value of
3292  * xTask. Set a bit to 1 to clear the corresponding bits in the task's notification
3293  * value. Set ulBitsToClear to 0xffffffff (UINT_MAX on 32-bit architectures) to clear
3294  * the notification value to 0.  Set ulBitsToClear to 0 to query the task's
3295  * notification value without clearing any bits.
3296  *
3297  *
3298  * @return The value of the target task's notification value before the bits
3299  * specified by ulBitsToClear were cleared.
3300  * \defgroup ulTaskNotifyValueClear ulTaskNotifyValueClear
3301  * \ingroup TaskNotifications
3302  */
3303 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
3304                                         UBaseType_t uxIndexToClear,
3305                                         uint32_t ulBitsToClear ) PRIVILEGED_FUNCTION;
3306 #define ulTaskNotifyValueClear( xTask, ulBitsToClear ) \
3307     ulTaskGenericNotifyValueClear( ( xTask ), ( tskDEFAULT_INDEX_TO_NOTIFY ), ( ulBitsToClear ) )
3308 #define ulTaskNotifyValueClearIndexed( xTask, uxIndexToClear, ulBitsToClear ) \
3309     ulTaskGenericNotifyValueClear( ( xTask ), ( uxIndexToClear ), ( ulBitsToClear ) )
3310 
3311 /**
3312  * task.h
3313  * @code{c}
3314  * void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut );
3315  * @endcode
3316  *
3317  * Capture the current time for future use with xTaskCheckForTimeOut().
3318  *
3319  * @param pxTimeOut Pointer to a timeout object into which the current time
3320  * is to be captured.  The captured time includes the tick count and the number
3321  * of times the tick count has overflowed since the system first booted.
3322  * \defgroup vTaskSetTimeOutState vTaskSetTimeOutState
3323  * \ingroup TaskCtrl
3324  */
3325 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ) PRIVILEGED_FUNCTION;
3326 
3327 /**
3328  * task.h
3329  * @code{c}
3330  * BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait );
3331  * @endcode
3332  *
3333  * Determines if pxTicksToWait ticks has passed since a time was captured
3334  * using a call to vTaskSetTimeOutState().  The captured time includes the tick
3335  * count and the number of times the tick count has overflowed.
3336  *
3337  * @param pxTimeOut The time status as captured previously using
3338  * vTaskSetTimeOutState. If the timeout has not yet occurred, it is updated
3339  * to reflect the current time status.
3340  * @param pxTicksToWait The number of ticks to check for timeout i.e. if
3341  * pxTicksToWait ticks have passed since pxTimeOut was last updated (either by
3342  * vTaskSetTimeOutState() or xTaskCheckForTimeOut()), the timeout has occurred.
3343  * If the timeout has not occurred, pxTicksToWait is updated to reflect the
3344  * number of remaining ticks.
3345  *
3346  * @return If timeout has occurred, pdTRUE is returned. Otherwise pdFALSE is
3347  * returned and pxTicksToWait is updated to reflect the number of remaining
3348  * ticks.
3349  *
3350  * @see https://www.FreeRTOS.org/xTaskCheckForTimeOut.html
3351  *
3352  * Example Usage:
3353  * @code{c}
3354  *  // Driver library function used to receive uxWantedBytes from an Rx buffer
3355  *  // that is filled by a UART interrupt. If there are not enough bytes in the
3356  *  // Rx buffer then the task enters the Blocked state until it is notified that
3357  *  // more data has been placed into the buffer. If there is still not enough
3358  *  // data then the task re-enters the Blocked state, and xTaskCheckForTimeOut()
3359  *  // is used to re-calculate the Block time to ensure the total amount of time
3360  *  // spent in the Blocked state does not exceed MAX_TIME_TO_WAIT. This
3361  *  // continues until either the buffer contains at least uxWantedBytes bytes,
3362  *  // or the total amount of time spent in the Blocked state reaches
3363  *  // MAX_TIME_TO_WAIT - at which point the task reads however many bytes are
3364  *  // available up to a maximum of uxWantedBytes.
3365  *
3366  *  size_t xUART_Receive( uint8_t *pucBuffer, size_t uxWantedBytes )
3367  *  {
3368  *  size_t uxReceived = 0;
3369  *  TickType_t xTicksToWait = MAX_TIME_TO_WAIT;
3370  *  TimeOut_t xTimeOut;
3371  *
3372  *      // Initialize xTimeOut.  This records the time at which this function
3373  *      // was entered.
3374  *      vTaskSetTimeOutState( &xTimeOut );
3375  *
3376  *      // Loop until the buffer contains the wanted number of bytes, or a
3377  *      // timeout occurs.
3378  *      while( UART_bytes_in_rx_buffer( pxUARTInstance ) < uxWantedBytes )
3379  *      {
3380  *          // The buffer didn't contain enough data so this task is going to
3381  *          // enter the Blocked state. Adjusting xTicksToWait to account for
3382  *          // any time that has been spent in the Blocked state within this
3383  *          // function so far to ensure the total amount of time spent in the
3384  *          // Blocked state does not exceed MAX_TIME_TO_WAIT.
3385  *          if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) != pdFALSE )
3386  *          {
3387  *              //Timed out before the wanted number of bytes were available,
3388  *              // exit the loop.
3389  *              break;
3390  *          }
3391  *
3392  *          // Wait for a maximum of xTicksToWait ticks to be notified that the
3393  *          // receive interrupt has placed more data into the buffer.
3394  *          ulTaskNotifyTake( pdTRUE, xTicksToWait );
3395  *      }
3396  *
3397  *      // Attempt to read uxWantedBytes from the receive buffer into pucBuffer.
3398  *      // The actual number of bytes read (which might be less than
3399  *      // uxWantedBytes) is returned.
3400  *      uxReceived = UART_read_from_receive_buffer( pxUARTInstance,
3401  *                                                  pucBuffer,
3402  *                                                  uxWantedBytes );
3403  *
3404  *      return uxReceived;
3405  *  }
3406  * @endcode
3407  * \defgroup xTaskCheckForTimeOut xTaskCheckForTimeOut
3408  * \ingroup TaskCtrl
3409  */
3410 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
3411                                  TickType_t * const pxTicksToWait ) PRIVILEGED_FUNCTION;
3412 
3413 /**
3414  * task.h
3415  * @code{c}
3416  * BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp );
3417  * @endcode
3418  *
3419  * This function corrects the tick count value after the application code has held
3420  * interrupts disabled for an extended period resulting in tick interrupts having
3421  * been missed.
3422  *
3423  * This function is similar to vTaskStepTick(), however, unlike
3424  * vTaskStepTick(), xTaskCatchUpTicks() may move the tick count forward past a
3425  * time at which a task should be removed from the blocked state.  That means
3426  * tasks may have to be removed from the blocked state as the tick count is
3427  * moved.
3428  *
3429  * @param xTicksToCatchUp The number of tick interrupts that have been missed due to
3430  * interrupts being disabled.  Its value is not computed automatically, so must be
3431  * computed by the application writer.
3432  *
3433  * @return pdTRUE if moving the tick count forward resulted in a task leaving the
3434  * blocked state and a context switch being performed.  Otherwise pdFALSE.
3435  *
3436  * \defgroup xTaskCatchUpTicks xTaskCatchUpTicks
3437  * \ingroup TaskCtrl
3438  */
3439 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp ) PRIVILEGED_FUNCTION;
3440 
3441 
3442 /*-----------------------------------------------------------
3443 * SCHEDULER INTERNALS AVAILABLE FOR PORTING PURPOSES
3444 *----------------------------------------------------------*/
3445 
3446 #if ( configNUMBER_OF_CORES == 1 )
3447     #define taskYIELD_WITHIN_API()    portYIELD_WITHIN_API()
3448 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3449     #define taskYIELD_WITHIN_API()    vTaskYieldWithinAPI()
3450 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3451 
3452 /*
3453  * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS ONLY
3454  * INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
3455  * AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
3456  *
3457  * Called from the real time kernel tick (either preemptive or cooperative),
3458  * this increments the tick count and checks if any tasks that are blocked
3459  * for a finite period required removing from a blocked list and placing on
3460  * a ready list.  If a non-zero value is returned then a context switch is
3461  * required because either:
3462  *   + A task was removed from a blocked list because its timeout had expired,
3463  *     or
3464  *   + Time slicing is in use and there is a task of equal priority to the
3465  *     currently running task.
3466  */
3467 BaseType_t xTaskIncrementTick( void ) PRIVILEGED_FUNCTION;
3468 
3469 /*
3470  * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS AN
3471  * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
3472  *
3473  * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
3474  *
3475  * Removes the calling task from the ready list and places it both
3476  * on the list of tasks waiting for a particular event, and the
3477  * list of delayed tasks.  The task will be removed from both lists
3478  * and replaced on the ready list should either the event occur (and
3479  * there be no higher priority tasks waiting on the same event) or
3480  * the delay period expires.
3481  *
3482  * The 'unordered' version replaces the event list item value with the
3483  * xItemValue value, and inserts the list item at the end of the list.
3484  *
3485  * The 'ordered' version uses the existing event list item value (which is the
3486  * owning task's priority) to insert the list item into the event list in task
3487  * priority order.
3488  *
3489  * @param pxEventList The list containing tasks that are blocked waiting
3490  * for the event to occur.
3491  *
3492  * @param xItemValue The item value to use for the event list item when the
3493  * event list is not ordered by task priority.
3494  *
3495  * @param xTicksToWait The maximum amount of time that the task should wait
3496  * for the event to occur.  This is specified in kernel ticks, the constant
3497  * portTICK_PERIOD_MS can be used to convert kernel ticks into a real time
3498  * period.
3499  */
3500 void vTaskPlaceOnEventList( List_t * const pxEventList,
3501                             const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
3502 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
3503                                      const TickType_t xItemValue,
3504                                      const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
3505 
3506 /*
3507  * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS AN
3508  * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
3509  *
3510  * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
3511  *
3512  * This function performs nearly the same function as vTaskPlaceOnEventList().
3513  * The difference being that this function does not permit tasks to block
3514  * indefinitely, whereas vTaskPlaceOnEventList() does.
3515  *
3516  */
3517 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
3518                                       TickType_t xTicksToWait,
3519                                       const BaseType_t xWaitIndefinitely ) PRIVILEGED_FUNCTION;
3520 
3521 /*
3522  * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS AN
3523  * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
3524  *
3525  * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
3526  *
3527  * Removes a task from both the specified event list and the list of blocked
3528  * tasks, and places it on a ready queue.
3529  *
3530  * xTaskRemoveFromEventList()/vTaskRemoveFromUnorderedEventList() will be called
3531  * if either an event occurs to unblock a task, or the block timeout period
3532  * expires.
3533  *
3534  * xTaskRemoveFromEventList() is used when the event list is in task priority
3535  * order.  It removes the list item from the head of the event list as that will
3536  * have the highest priority owning task of all the tasks on the event list.
3537  * vTaskRemoveFromUnorderedEventList() is used when the event list is not
3538  * ordered and the event list items hold something other than the owning tasks
3539  * priority.  In this case the event list item value is updated to the value
3540  * passed in the xItemValue parameter.
3541  *
3542  * @return pdTRUE if the task being removed has a higher priority than the task
3543  * making the call, otherwise pdFALSE.
3544  */
3545 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList ) PRIVILEGED_FUNCTION;
3546 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
3547                                         const TickType_t xItemValue ) PRIVILEGED_FUNCTION;
3548 
3549 /*
3550  * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS ONLY
3551  * INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
3552  * AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
3553  *
3554  * Sets the pointer to the current TCB to the TCB of the highest priority task
3555  * that is ready to run.
3556  */
3557 #if ( configNUMBER_OF_CORES == 1 )
3558     portDONT_DISCARD void vTaskSwitchContext( void ) PRIVILEGED_FUNCTION;
3559 #else
3560     portDONT_DISCARD void vTaskSwitchContext( BaseType_t xCoreID ) PRIVILEGED_FUNCTION;
3561 #endif
3562 
3563 /*
3564  * THESE FUNCTIONS MUST NOT BE USED FROM APPLICATION CODE.  THEY ARE USED BY
3565  * THE EVENT BITS MODULE.
3566  */
3567 TickType_t uxTaskResetEventItemValue( void ) PRIVILEGED_FUNCTION;
3568 
3569 /*
3570  * Return the handle of the calling task.
3571  */
3572 TaskHandle_t xTaskGetCurrentTaskHandle( void ) PRIVILEGED_FUNCTION;
3573 
3574 /*
3575  * Return the handle of the task running on specified core.
3576  */
3577 #if ( configNUMBER_OF_CORES > 1 )
3578     TaskHandle_t xTaskGetCurrentTaskHandleForCore( BaseType_t xCoreID ) PRIVILEGED_FUNCTION;
3579 #endif
3580 
3581 /*
3582  * Shortcut used by the queue implementation to prevent unnecessary call to
3583  * taskYIELD();
3584  */
3585 void vTaskMissedYield( void ) PRIVILEGED_FUNCTION;
3586 
3587 /*
3588  * Returns the scheduler state as taskSCHEDULER_RUNNING,
3589  * taskSCHEDULER_NOT_STARTED or taskSCHEDULER_SUSPENDED.
3590  */
3591 BaseType_t xTaskGetSchedulerState( void ) PRIVILEGED_FUNCTION;
3592 
3593 /*
3594  * Raises the priority of the mutex holder to that of the calling task should
3595  * the mutex holder have a priority less than the calling task.
3596  */
3597 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) PRIVILEGED_FUNCTION;
3598 
3599 /*
3600  * Set the priority of a task back to its proper priority in the case that it
3601  * inherited a higher priority while it was holding a semaphore.
3602  */
3603 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder ) PRIVILEGED_FUNCTION;
3604 
3605 /*
3606  * If a higher priority task attempting to obtain a mutex caused a lower
3607  * priority task to inherit the higher priority task's priority - but the higher
3608  * priority task then timed out without obtaining the mutex, then the lower
3609  * priority task will disinherit the priority again - but only down as far as
3610  * the highest priority task that is still waiting for the mutex (if there were
3611  * more than one task waiting for the mutex).
3612  */
3613 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
3614                                           UBaseType_t uxHighestPriorityWaitingTask ) PRIVILEGED_FUNCTION;
3615 
3616 /*
3617  * Get the uxTaskNumber assigned to the task referenced by the xTask parameter.
3618  */
3619 #if ( configUSE_TRACE_FACILITY == 1 )
3620     UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
3621 #endif
3622 
3623 /*
3624  * Set the uxTaskNumber of the task referenced by the xTask parameter to
3625  * uxHandle.
3626  */
3627 #if ( configUSE_TRACE_FACILITY == 1 )
3628     void vTaskSetTaskNumber( TaskHandle_t xTask,
3629                              const UBaseType_t uxHandle ) PRIVILEGED_FUNCTION;
3630 #endif
3631 
3632 /*
3633  * Only available when configUSE_TICKLESS_IDLE is set to 1.
3634  * If tickless mode is being used, or a low power mode is implemented, then
3635  * the tick interrupt will not execute during idle periods.  When this is the
3636  * case, the tick count value maintained by the scheduler needs to be kept up
3637  * to date with the actual execution time by being skipped forward by a time
3638  * equal to the idle period.
3639  */
3640 #if ( configUSE_TICKLESS_IDLE != 0 )
3641     void vTaskStepTick( TickType_t xTicksToJump ) PRIVILEGED_FUNCTION;
3642 #endif
3643 
3644 /*
3645  * Only available when configUSE_TICKLESS_IDLE is set to 1.
3646  * Provided for use within portSUPPRESS_TICKS_AND_SLEEP() to allow the port
3647  * specific sleep function to determine if it is ok to proceed with the sleep,
3648  * and if it is ok to proceed, if it is ok to sleep indefinitely.
3649  *
3650  * This function is necessary because portSUPPRESS_TICKS_AND_SLEEP() is only
3651  * called with the scheduler suspended, not from within a critical section.  It
3652  * is therefore possible for an interrupt to request a context switch between
3653  * portSUPPRESS_TICKS_AND_SLEEP() and the low power mode actually being
3654  * entered.  eTaskConfirmSleepModeStatus() should be called from a short
3655  * critical section between the timer being stopped and the sleep mode being
3656  * entered to ensure it is ok to proceed into the sleep mode.
3657  */
3658 #if ( configUSE_TICKLESS_IDLE != 0 )
3659     eSleepModeStatus eTaskConfirmSleepModeStatus( void ) PRIVILEGED_FUNCTION;
3660 #endif
3661 
3662 /*
3663  * For internal use only.  Increment the mutex held count when a mutex is
3664  * taken and return the handle of the task that has taken the mutex.
3665  */
3666 TaskHandle_t pvTaskIncrementMutexHeldCount( void ) PRIVILEGED_FUNCTION;
3667 
3668 /*
3669  * For internal use only.  Same as vTaskSetTimeOutState(), but without a critical
3670  * section.
3671  */
3672 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut ) PRIVILEGED_FUNCTION;
3673 
3674 /*
3675  * For internal use only. Same as portYIELD_WITHIN_API() in single core FreeRTOS.
3676  * For SMP this is not defined by the port.
3677  */
3678 #if ( configNUMBER_OF_CORES > 1 )
3679     void vTaskYieldWithinAPI( void );
3680 #endif
3681 
3682 /*
3683  * This function is only intended for use when implementing a port of the scheduler
3684  * and is only available when portCRITICAL_NESTING_IN_TCB is set to 1 or configNUMBER_OF_CORES
3685  * is greater than 1. This function can be used in the implementation of portENTER_CRITICAL
3686  * if port wants to maintain critical nesting count in TCB in single core FreeRTOS.
3687  * It should be used in the implementation of portENTER_CRITICAL if port is running a
3688  * multiple core FreeRTOS.
3689  */
3690 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) || ( configNUMBER_OF_CORES > 1 ) )
3691     void vTaskEnterCritical( void );
3692 #endif
3693 
3694 /*
3695  * This function is only intended for use when implementing a port of the scheduler
3696  * and is only available when portCRITICAL_NESTING_IN_TCB is set to 1 or configNUMBER_OF_CORES
3697  * is greater than 1. This function can be used in the implementation of portEXIT_CRITICAL
3698  * if port wants to maintain critical nesting count in TCB in single core FreeRTOS.
3699  * It should be used in the implementation of portEXIT_CRITICAL if port is running a
3700  * multiple core FreeRTOS.
3701  */
3702 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) || ( configNUMBER_OF_CORES > 1 ) )
3703     void vTaskExitCritical( void );
3704 #endif
3705 
3706 /*
3707  * This function is only intended for use when implementing a port of the scheduler
3708  * and is only available when configNUMBER_OF_CORES is greater than 1. This function
3709  * should be used in the implementation of portENTER_CRITICAL_FROM_ISR if port is
3710  * running a multiple core FreeRTOS.
3711  */
3712 #if ( configNUMBER_OF_CORES > 1 )
3713     UBaseType_t vTaskEnterCriticalFromISR( void );
3714 #endif
3715 
3716 /*
3717  * This function is only intended for use when implementing a port of the scheduler
3718  * and is only available when configNUMBER_OF_CORES is greater than 1. This function
3719  * should be used in the implementation of portEXIT_CRITICAL_FROM_ISR if port is
3720  * running a multiple core FreeRTOS.
3721  */
3722 #if ( configNUMBER_OF_CORES > 1 )
3723     void vTaskExitCriticalFromISR( UBaseType_t uxSavedInterruptStatus );
3724 #endif
3725 
3726 #if ( portUSING_MPU_WRAPPERS == 1 )
3727 
3728 /*
3729  * For internal use only.  Get MPU settings associated with a task.
3730  */
3731     xMPU_SETTINGS * xTaskGetMPUSettings( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
3732 
3733 #endif /* portUSING_MPU_WRAPPERS */
3734 
3735 
3736 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )
3737 
3738 /*
3739  * For internal use only.  Grant/Revoke a task's access to a kernel object.
3740  */
3741     void vGrantAccessToKernelObject( TaskHandle_t xExternalTaskHandle,
3742                                      int32_t lExternalKernelObjectHandle ) PRIVILEGED_FUNCTION;
3743     void vRevokeAccessToKernelObject( TaskHandle_t xExternalTaskHandle,
3744                                       int32_t lExternalKernelObjectHandle ) PRIVILEGED_FUNCTION;
3745 
3746 /*
3747  * For internal use only.  Grant/Revoke a task's access to a kernel object.
3748  */
3749     void vPortGrantAccessToKernelObject( TaskHandle_t xInternalTaskHandle,
3750                                          int32_t lInternalIndexOfKernelObject ) PRIVILEGED_FUNCTION;
3751     void vPortRevokeAccessToKernelObject( TaskHandle_t xInternalTaskHandle,
3752                                           int32_t lInternalIndexOfKernelObject ) PRIVILEGED_FUNCTION;
3753 
3754 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */
3755 
3756 /* *INDENT-OFF* */
3757 #ifdef __cplusplus
3758     }
3759 #endif
3760 /* *INDENT-ON* */
3761 #endif /* INC_TASK_H */
3762