xref: /Kernel-v10.6.2/include/timers.h (revision ef7b253b56c9788077f5ecd6c9deb4021923d646)
1 /*
2  * FreeRTOS Kernel V10.6.2
3  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
4  *
5  * SPDX-License-Identifier: MIT
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in all
15  * copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * https://www.FreeRTOS.org
25  * https://github.com/FreeRTOS
26  *
27  */
28 
29 
30 #ifndef TIMERS_H
31 #define TIMERS_H
32 
33 #ifndef INC_FREERTOS_H
34     #error "include FreeRTOS.h must appear in source files before include timers.h"
35 #endif
36 
37 /*lint -save -e537 This headers are only multiply included if the application code
38  * happens to also be including task.h. */
39 #include "task.h"
40 /*lint -restore */
41 
42 /* *INDENT-OFF* */
43 #ifdef __cplusplus
44     extern "C" {
45 #endif
46 /* *INDENT-ON* */
47 
48 /*-----------------------------------------------------------
49 * MACROS AND DEFINITIONS
50 *----------------------------------------------------------*/
51 
52 /* IDs for commands that can be sent/received on the timer queue.  These are to
53  * be used solely through the macros that make up the public software timer API,
54  * as defined below.  The commands that are sent from interrupts must use the
55  * highest numbers as tmrFIRST_FROM_ISR_COMMAND is used to determine if the task
56  * or interrupt version of the queue send function should be used. */
57 #define tmrCOMMAND_EXECUTE_CALLBACK_FROM_ISR    ( ( BaseType_t ) -2 )
58 #define tmrCOMMAND_EXECUTE_CALLBACK             ( ( BaseType_t ) -1 )
59 #define tmrCOMMAND_START_DONT_TRACE             ( ( BaseType_t ) 0 )
60 #define tmrCOMMAND_START                        ( ( BaseType_t ) 1 )
61 #define tmrCOMMAND_RESET                        ( ( BaseType_t ) 2 )
62 #define tmrCOMMAND_STOP                         ( ( BaseType_t ) 3 )
63 #define tmrCOMMAND_CHANGE_PERIOD                ( ( BaseType_t ) 4 )
64 #define tmrCOMMAND_DELETE                       ( ( BaseType_t ) 5 )
65 
66 #define tmrFIRST_FROM_ISR_COMMAND               ( ( BaseType_t ) 6 )
67 #define tmrCOMMAND_START_FROM_ISR               ( ( BaseType_t ) 6 )
68 #define tmrCOMMAND_RESET_FROM_ISR               ( ( BaseType_t ) 7 )
69 #define tmrCOMMAND_STOP_FROM_ISR                ( ( BaseType_t ) 8 )
70 #define tmrCOMMAND_CHANGE_PERIOD_FROM_ISR       ( ( BaseType_t ) 9 )
71 
72 
73 /**
74  * Type by which software timers are referenced.  For example, a call to
75  * xTimerCreate() returns an TimerHandle_t variable that can then be used to
76  * reference the subject timer in calls to other software timer API functions
77  * (for example, xTimerStart(), xTimerReset(), etc.).
78  */
79 struct tmrTimerControl; /* The old naming convention is used to prevent breaking kernel aware debuggers. */
80 typedef struct tmrTimerControl * TimerHandle_t;
81 
82 /*
83  * Defines the prototype to which timer callback functions must conform.
84  */
85 typedef void (* TimerCallbackFunction_t)( TimerHandle_t xTimer );
86 
87 /*
88  * Defines the prototype to which functions used with the
89  * xTimerPendFunctionCallFromISR() function must conform.
90  */
91 typedef void (* PendedFunction_t)( void *,
92                                    uint32_t );
93 
94 /**
95  * TimerHandle_t xTimerCreate(  const char * const pcTimerName,
96  *                              TickType_t xTimerPeriodInTicks,
97  *                              BaseType_t xAutoReload,
98  *                              void * pvTimerID,
99  *                              TimerCallbackFunction_t pxCallbackFunction );
100  *
101  * Creates a new software timer instance, and returns a handle by which the
102  * created software timer can be referenced.
103  *
104  * Internally, within the FreeRTOS implementation, software timers use a block
105  * of memory, in which the timer data structure is stored.  If a software timer
106  * is created using xTimerCreate() then the required memory is automatically
107  * dynamically allocated inside the xTimerCreate() function.  (see
108  * https://www.FreeRTOS.org/a00111.html).  If a software timer is created using
109  * xTimerCreateStatic() then the application writer must provide the memory that
110  * will get used by the software timer.  xTimerCreateStatic() therefore allows a
111  * software timer to be created without using any dynamic memory allocation.
112  *
113  * Timers are created in the dormant state.  The xTimerStart(), xTimerReset(),
114  * xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and
115  * xTimerChangePeriodFromISR() API functions can all be used to transition a
116  * timer into the active state.
117  *
118  * @param pcTimerName A text name that is assigned to the timer.  This is done
119  * purely to assist debugging.  The kernel itself only ever references a timer
120  * by its handle, and never by its name.
121  *
122  * @param xTimerPeriodInTicks The timer period.  The time is defined in tick
123  * periods so the constant portTICK_PERIOD_MS can be used to convert a time that
124  * has been specified in milliseconds.  For example, if the timer must expire
125  * after 100 ticks, then xTimerPeriodInTicks should be set to 100.
126  * Alternatively, if the timer must expire after 500ms, then xPeriod can be set
127  * to ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than or
128  * equal to 1000.  Time timer period must be greater than 0.
129  *
130  * @param xAutoReload If xAutoReload is set to pdTRUE then the timer will
131  * expire repeatedly with a frequency set by the xTimerPeriodInTicks parameter.
132  * If xAutoReload is set to pdFALSE then the timer will be a one-shot timer and
133  * enter the dormant state after it expires.
134  *
135  * @param pvTimerID An identifier that is assigned to the timer being created.
136  * Typically this would be used in the timer callback function to identify which
137  * timer expired when the same callback function is assigned to more than one
138  * timer.
139  *
140  * @param pxCallbackFunction The function to call when the timer expires.
141  * Callback functions must have the prototype defined by TimerCallbackFunction_t,
142  * which is "void vCallbackFunction( TimerHandle_t xTimer );".
143  *
144  * @return If the timer is successfully created then a handle to the newly
145  * created timer is returned.  If the timer cannot be created because there is
146  * insufficient FreeRTOS heap remaining to allocate the timer
147  * structures then NULL is returned.
148  *
149  * Example usage:
150  * @verbatim
151  * #define NUM_TIMERS 5
152  *
153  * // An array to hold handles to the created timers.
154  * TimerHandle_t xTimers[ NUM_TIMERS ];
155  *
156  * // An array to hold a count of the number of times each timer expires.
157  * int32_t lExpireCounters[ NUM_TIMERS ] = { 0 };
158  *
159  * // Define a callback function that will be used by multiple timer instances.
160  * // The callback function does nothing but count the number of times the
161  * // associated timer expires, and stop the timer once the timer has expired
162  * // 10 times.
163  * void vTimerCallback( TimerHandle_t pxTimer )
164  * {
165  * int32_t lArrayIndex;
166  * const int32_t xMaxExpiryCountBeforeStopping = 10;
167  *
168  *     // Optionally do something if the pxTimer parameter is NULL.
169  *     configASSERT( pxTimer );
170  *
171  *     // Which timer expired?
172  *     lArrayIndex = ( int32_t ) pvTimerGetTimerID( pxTimer );
173  *
174  *     // Increment the number of times that pxTimer has expired.
175  *     lExpireCounters[ lArrayIndex ] += 1;
176  *
177  *     // If the timer has expired 10 times then stop it from running.
178  *     if( lExpireCounters[ lArrayIndex ] == xMaxExpiryCountBeforeStopping )
179  *     {
180  *         // Do not use a block time if calling a timer API function from a
181  *         // timer callback function, as doing so could cause a deadlock!
182  *         xTimerStop( pxTimer, 0 );
183  *     }
184  * }
185  *
186  * void main( void )
187  * {
188  * int32_t x;
189  *
190  *     // Create then start some timers.  Starting the timers before the scheduler
191  *     // has been started means the timers will start running immediately that
192  *     // the scheduler starts.
193  *     for( x = 0; x < NUM_TIMERS; x++ )
194  *     {
195  *         xTimers[ x ] = xTimerCreate(    "Timer",             // Just a text name, not used by the kernel.
196  *                                         ( 100 * ( x + 1 ) ), // The timer period in ticks.
197  *                                         pdTRUE,              // The timers will auto-reload themselves when they expire.
198  *                                         ( void * ) x,        // Assign each timer a unique id equal to its array index.
199  *                                         vTimerCallback       // Each timer calls the same callback when it expires.
200  *                                     );
201  *
202  *         if( xTimers[ x ] == NULL )
203  *         {
204  *             // The timer was not created.
205  *         }
206  *         else
207  *         {
208  *             // Start the timer.  No block time is specified, and even if one was
209  *             // it would be ignored because the scheduler has not yet been
210  *             // started.
211  *             if( xTimerStart( xTimers[ x ], 0 ) != pdPASS )
212  *             {
213  *                 // The timer could not be set into the Active state.
214  *             }
215  *         }
216  *     }
217  *
218  *     // ...
219  *     // Create tasks here.
220  *     // ...
221  *
222  *     // Starting the scheduler will start the timers running as they have already
223  *     // been set into the active state.
224  *     vTaskStartScheduler();
225  *
226  *     // Should not reach here.
227  *     for( ;; );
228  * }
229  * @endverbatim
230  */
231 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
232     TimerHandle_t xTimerCreate( const char * const pcTimerName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
233                                 const TickType_t xTimerPeriodInTicks,
234                                 const BaseType_t xAutoReload,
235                                 void * const pvTimerID,
236                                 TimerCallbackFunction_t pxCallbackFunction ) PRIVILEGED_FUNCTION;
237 #endif
238 
239 /**
240  * TimerHandle_t xTimerCreateStatic(const char * const pcTimerName,
241  *                                  TickType_t xTimerPeriodInTicks,
242  *                                  BaseType_t xAutoReload,
243  *                                  void * pvTimerID,
244  *                                  TimerCallbackFunction_t pxCallbackFunction,
245  *                                  StaticTimer_t *pxTimerBuffer );
246  *
247  * Creates a new software timer instance, and returns a handle by which the
248  * created software timer can be referenced.
249  *
250  * Internally, within the FreeRTOS implementation, software timers use a block
251  * of memory, in which the timer data structure is stored.  If a software timer
252  * is created using xTimerCreate() then the required memory is automatically
253  * dynamically allocated inside the xTimerCreate() function.  (see
254  * https://www.FreeRTOS.org/a00111.html).  If a software timer is created using
255  * xTimerCreateStatic() then the application writer must provide the memory that
256  * will get used by the software timer.  xTimerCreateStatic() therefore allows a
257  * software timer to be created without using any dynamic memory allocation.
258  *
259  * Timers are created in the dormant state.  The xTimerStart(), xTimerReset(),
260  * xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and
261  * xTimerChangePeriodFromISR() API functions can all be used to transition a
262  * timer into the active state.
263  *
264  * @param pcTimerName A text name that is assigned to the timer.  This is done
265  * purely to assist debugging.  The kernel itself only ever references a timer
266  * by its handle, and never by its name.
267  *
268  * @param xTimerPeriodInTicks The timer period.  The time is defined in tick
269  * periods so the constant portTICK_PERIOD_MS can be used to convert a time that
270  * has been specified in milliseconds.  For example, if the timer must expire
271  * after 100 ticks, then xTimerPeriodInTicks should be set to 100.
272  * Alternatively, if the timer must expire after 500ms, then xPeriod can be set
273  * to ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than or
274  * equal to 1000.  The timer period must be greater than 0.
275  *
276  * @param xAutoReload If xAutoReload is set to pdTRUE then the timer will
277  * expire repeatedly with a frequency set by the xTimerPeriodInTicks parameter.
278  * If xAutoReload is set to pdFALSE then the timer will be a one-shot timer and
279  * enter the dormant state after it expires.
280  *
281  * @param pvTimerID An identifier that is assigned to the timer being created.
282  * Typically this would be used in the timer callback function to identify which
283  * timer expired when the same callback function is assigned to more than one
284  * timer.
285  *
286  * @param pxCallbackFunction The function to call when the timer expires.
287  * Callback functions must have the prototype defined by TimerCallbackFunction_t,
288  * which is "void vCallbackFunction( TimerHandle_t xTimer );".
289  *
290  * @param pxTimerBuffer Must point to a variable of type StaticTimer_t, which
291  * will be then be used to hold the software timer's data structures, removing
292  * the need for the memory to be allocated dynamically.
293  *
294  * @return If the timer is created then a handle to the created timer is
295  * returned.  If pxTimerBuffer was NULL then NULL is returned.
296  *
297  * Example usage:
298  * @verbatim
299  *
300  * // The buffer used to hold the software timer's data structure.
301  * static StaticTimer_t xTimerBuffer;
302  *
303  * // A variable that will be incremented by the software timer's callback
304  * // function.
305  * UBaseType_t uxVariableToIncrement = 0;
306  *
307  * // A software timer callback function that increments a variable passed to
308  * // it when the software timer was created.  After the 5th increment the
309  * // callback function stops the software timer.
310  * static void prvTimerCallback( TimerHandle_t xExpiredTimer )
311  * {
312  * UBaseType_t *puxVariableToIncrement;
313  * BaseType_t xReturned;
314  *
315  *     // Obtain the address of the variable to increment from the timer ID.
316  *     puxVariableToIncrement = ( UBaseType_t * ) pvTimerGetTimerID( xExpiredTimer );
317  *
318  *     // Increment the variable to show the timer callback has executed.
319  *     ( *puxVariableToIncrement )++;
320  *
321  *     // If this callback has executed the required number of times, stop the
322  *     // timer.
323  *     if( *puxVariableToIncrement == 5 )
324  *     {
325  *         // This is called from a timer callback so must not block.
326  *         xTimerStop( xExpiredTimer, staticDONT_BLOCK );
327  *     }
328  * }
329  *
330  *
331  * void main( void )
332  * {
333  *     // Create the software time.  xTimerCreateStatic() has an extra parameter
334  *     // than the normal xTimerCreate() API function.  The parameter is a pointer
335  *     // to the StaticTimer_t structure that will hold the software timer
336  *     // structure.  If the parameter is passed as NULL then the structure will be
337  *     // allocated dynamically, just as if xTimerCreate() had been called.
338  *     xTimer = xTimerCreateStatic( "T1",             // Text name for the task.  Helps debugging only.  Not used by FreeRTOS.
339  *                                  xTimerPeriod,     // The period of the timer in ticks.
340  *                                  pdTRUE,           // This is an auto-reload timer.
341  *                                  ( void * ) &uxVariableToIncrement,    // A variable incremented by the software timer's callback function
342  *                                  prvTimerCallback, // The function to execute when the timer expires.
343  *                                  &xTimerBuffer );  // The buffer that will hold the software timer structure.
344  *
345  *     // The scheduler has not started yet so a block time is not used.
346  *     xReturned = xTimerStart( xTimer, 0 );
347  *
348  *     // ...
349  *     // Create tasks here.
350  *     // ...
351  *
352  *     // Starting the scheduler will start the timers running as they have already
353  *     // been set into the active state.
354  *     vTaskStartScheduler();
355  *
356  *     // Should not reach here.
357  *     for( ;; );
358  * }
359  * @endverbatim
360  */
361 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
362     TimerHandle_t xTimerCreateStatic( const char * const pcTimerName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
363                                       const TickType_t xTimerPeriodInTicks,
364                                       const BaseType_t xAutoReload,
365                                       void * const pvTimerID,
366                                       TimerCallbackFunction_t pxCallbackFunction,
367                                       StaticTimer_t * pxTimerBuffer ) PRIVILEGED_FUNCTION;
368 #endif /* configSUPPORT_STATIC_ALLOCATION */
369 
370 /**
371  * void *pvTimerGetTimerID( TimerHandle_t xTimer );
372  *
373  * Returns the ID assigned to the timer.
374  *
375  * IDs are assigned to timers using the pvTimerID parameter of the call to
376  * xTimerCreated() that was used to create the timer, and by calling the
377  * vTimerSetTimerID() API function.
378  *
379  * If the same callback function is assigned to multiple timers then the timer
380  * ID can be used as time specific (timer local) storage.
381  *
382  * @param xTimer The timer being queried.
383  *
384  * @return The ID assigned to the timer being queried.
385  *
386  * Example usage:
387  *
388  * See the xTimerCreate() API function example usage scenario.
389  */
390 void * pvTimerGetTimerID( const TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
391 
392 /**
393  * void vTimerSetTimerID( TimerHandle_t xTimer, void *pvNewID );
394  *
395  * Sets the ID assigned to the timer.
396  *
397  * IDs are assigned to timers using the pvTimerID parameter of the call to
398  * xTimerCreated() that was used to create the timer.
399  *
400  * If the same callback function is assigned to multiple timers then the timer
401  * ID can be used as time specific (timer local) storage.
402  *
403  * @param xTimer The timer being updated.
404  *
405  * @param pvNewID The ID to assign to the timer.
406  *
407  * Example usage:
408  *
409  * See the xTimerCreate() API function example usage scenario.
410  */
411 void vTimerSetTimerID( TimerHandle_t xTimer,
412                        void * pvNewID ) PRIVILEGED_FUNCTION;
413 
414 /**
415  * BaseType_t xTimerIsTimerActive( TimerHandle_t xTimer );
416  *
417  * Queries a timer to see if it is active or dormant.
418  *
419  * A timer will be dormant if:
420  *     1) It has been created but not started, or
421  *     2) It is an expired one-shot timer that has not been restarted.
422  *
423  * Timers are created in the dormant state.  The xTimerStart(), xTimerReset(),
424  * xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and
425  * xTimerChangePeriodFromISR() API functions can all be used to transition a timer into the
426  * active state.
427  *
428  * @param xTimer The timer being queried.
429  *
430  * @return pdFALSE will be returned if the timer is dormant.  A value other than
431  * pdFALSE will be returned if the timer is active.
432  *
433  * Example usage:
434  * @verbatim
435  * // This function assumes xTimer has already been created.
436  * void vAFunction( TimerHandle_t xTimer )
437  * {
438  *     if( xTimerIsTimerActive( xTimer ) != pdFALSE ) // or more simply and equivalently "if( xTimerIsTimerActive( xTimer ) )"
439  *     {
440  *         // xTimer is active, do something.
441  *     }
442  *     else
443  *     {
444  *         // xTimer is not active, do something else.
445  *     }
446  * }
447  * @endverbatim
448  */
449 BaseType_t xTimerIsTimerActive( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
450 
451 /**
452  * TaskHandle_t xTimerGetTimerDaemonTaskHandle( void );
453  *
454  * Simply returns the handle of the timer service/daemon task.  It it not valid
455  * to call xTimerGetTimerDaemonTaskHandle() before the scheduler has been started.
456  */
457 TaskHandle_t xTimerGetTimerDaemonTaskHandle( void ) PRIVILEGED_FUNCTION;
458 
459 /**
460  * BaseType_t xTimerStart( TimerHandle_t xTimer, TickType_t xTicksToWait );
461  *
462  * Timer functionality is provided by a timer service/daemon task.  Many of the
463  * public FreeRTOS timer API functions send commands to the timer service task
464  * through a queue called the timer command queue.  The timer command queue is
465  * private to the kernel itself and is not directly accessible to application
466  * code.  The length of the timer command queue is set by the
467  * configTIMER_QUEUE_LENGTH configuration constant.
468  *
469  * xTimerStart() starts a timer that was previously created using the
470  * xTimerCreate() API function.  If the timer had already been started and was
471  * already in the active state, then xTimerStart() has equivalent functionality
472  * to the xTimerReset() API function.
473  *
474  * Starting a timer ensures the timer is in the active state.  If the timer
475  * is not stopped, deleted, or reset in the mean time, the callback function
476  * associated with the timer will get called 'n' ticks after xTimerStart() was
477  * called, where 'n' is the timers defined period.
478  *
479  * It is valid to call xTimerStart() before the scheduler has been started, but
480  * when this is done the timer will not actually start until the scheduler is
481  * started, and the timers expiry time will be relative to when the scheduler is
482  * started, not relative to when xTimerStart() was called.
483  *
484  * The configUSE_TIMERS configuration constant must be set to 1 for xTimerStart()
485  * to be available.
486  *
487  * @param xTimer The handle of the timer being started/restarted.
488  *
489  * @param xTicksToWait Specifies the time, in ticks, that the calling task should
490  * be held in the Blocked state to wait for the start command to be successfully
491  * sent to the timer command queue, should the queue already be full when
492  * xTimerStart() was called.  xTicksToWait is ignored if xTimerStart() is called
493  * before the scheduler is started.
494  *
495  * @return pdFAIL will be returned if the start command could not be sent to
496  * the timer command queue even after xTicksToWait ticks had passed.  pdPASS will
497  * be returned if the command was successfully sent to the timer command queue.
498  * When the command is actually processed will depend on the priority of the
499  * timer service/daemon task relative to other tasks in the system, although the
500  * timers expiry time is relative to when xTimerStart() is actually called.  The
501  * timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
502  * configuration constant.
503  *
504  * Example usage:
505  *
506  * See the xTimerCreate() API function example usage scenario.
507  *
508  */
509 #define xTimerStart( xTimer, xTicksToWait ) \
510     xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START, ( xTaskGetTickCount() ), NULL, ( xTicksToWait ) )
511 
512 /**
513  * BaseType_t xTimerStop( TimerHandle_t xTimer, TickType_t xTicksToWait );
514  *
515  * Timer functionality is provided by a timer service/daemon task.  Many of the
516  * public FreeRTOS timer API functions send commands to the timer service task
517  * through a queue called the timer command queue.  The timer command queue is
518  * private to the kernel itself and is not directly accessible to application
519  * code.  The length of the timer command queue is set by the
520  * configTIMER_QUEUE_LENGTH configuration constant.
521  *
522  * xTimerStop() stops a timer that was previously started using either of the
523  * The xTimerStart(), xTimerReset(), xTimerStartFromISR(), xTimerResetFromISR(),
524  * xTimerChangePeriod() or xTimerChangePeriodFromISR() API functions.
525  *
526  * Stopping a timer ensures the timer is not in the active state.
527  *
528  * The configUSE_TIMERS configuration constant must be set to 1 for xTimerStop()
529  * to be available.
530  *
531  * @param xTimer The handle of the timer being stopped.
532  *
533  * @param xTicksToWait Specifies the time, in ticks, that the calling task should
534  * be held in the Blocked state to wait for the stop command to be successfully
535  * sent to the timer command queue, should the queue already be full when
536  * xTimerStop() was called.  xTicksToWait is ignored if xTimerStop() is called
537  * before the scheduler is started.
538  *
539  * @return pdFAIL will be returned if the stop command could not be sent to
540  * the timer command queue even after xTicksToWait ticks had passed.  pdPASS will
541  * be returned if the command was successfully sent to the timer command queue.
542  * When the command is actually processed will depend on the priority of the
543  * timer service/daemon task relative to other tasks in the system.  The timer
544  * service/daemon task priority is set by the configTIMER_TASK_PRIORITY
545  * configuration constant.
546  *
547  * Example usage:
548  *
549  * See the xTimerCreate() API function example usage scenario.
550  *
551  */
552 #define xTimerStop( xTimer, xTicksToWait ) \
553     xTimerGenericCommand( ( xTimer ), tmrCOMMAND_STOP, 0U, NULL, ( xTicksToWait ) )
554 
555 /**
556  * BaseType_t xTimerChangePeriod(   TimerHandle_t xTimer,
557  *                                  TickType_t xNewPeriod,
558  *                                  TickType_t xTicksToWait );
559  *
560  * Timer functionality is provided by a timer service/daemon task.  Many of the
561  * public FreeRTOS timer API functions send commands to the timer service task
562  * through a queue called the timer command queue.  The timer command queue is
563  * private to the kernel itself and is not directly accessible to application
564  * code.  The length of the timer command queue is set by the
565  * configTIMER_QUEUE_LENGTH configuration constant.
566  *
567  * xTimerChangePeriod() changes the period of a timer that was previously
568  * created using the xTimerCreate() API function.
569  *
570  * xTimerChangePeriod() can be called to change the period of an active or
571  * dormant state timer.
572  *
573  * The configUSE_TIMERS configuration constant must be set to 1 for
574  * xTimerChangePeriod() to be available.
575  *
576  * @param xTimer The handle of the timer that is having its period changed.
577  *
578  * @param xNewPeriod The new period for xTimer. Timer periods are specified in
579  * tick periods, so the constant portTICK_PERIOD_MS can be used to convert a time
580  * that has been specified in milliseconds.  For example, if the timer must
581  * expire after 100 ticks, then xNewPeriod should be set to 100.  Alternatively,
582  * if the timer must expire after 500ms, then xNewPeriod can be set to
583  * ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than
584  * or equal to 1000.
585  *
586  * @param xTicksToWait Specifies the time, in ticks, that the calling task should
587  * be held in the Blocked state to wait for the change period command to be
588  * successfully sent to the timer command queue, should the queue already be
589  * full when xTimerChangePeriod() was called.  xTicksToWait is ignored if
590  * xTimerChangePeriod() is called before the scheduler is started.
591  *
592  * @return pdFAIL will be returned if the change period command could not be
593  * sent to the timer command queue even after xTicksToWait ticks had passed.
594  * pdPASS will be returned if the command was successfully sent to the timer
595  * command queue.  When the command is actually processed will depend on the
596  * priority of the timer service/daemon task relative to other tasks in the
597  * system.  The timer service/daemon task priority is set by the
598  * configTIMER_TASK_PRIORITY configuration constant.
599  *
600  * Example usage:
601  * @verbatim
602  * // This function assumes xTimer has already been created.  If the timer
603  * // referenced by xTimer is already active when it is called, then the timer
604  * // is deleted.  If the timer referenced by xTimer is not active when it is
605  * // called, then the period of the timer is set to 500ms and the timer is
606  * // started.
607  * void vAFunction( TimerHandle_t xTimer )
608  * {
609  *     if( xTimerIsTimerActive( xTimer ) != pdFALSE ) // or more simply and equivalently "if( xTimerIsTimerActive( xTimer ) )"
610  *     {
611  *         // xTimer is already active - delete it.
612  *         xTimerDelete( xTimer );
613  *     }
614  *     else
615  *     {
616  *         // xTimer is not active, change its period to 500ms.  This will also
617  *         // cause the timer to start.  Block for a maximum of 100 ticks if the
618  *         // change period command cannot immediately be sent to the timer
619  *         // command queue.
620  *         if( xTimerChangePeriod( xTimer, 500 / portTICK_PERIOD_MS, 100 ) == pdPASS )
621  *         {
622  *             // The command was successfully sent.
623  *         }
624  *         else
625  *         {
626  *             // The command could not be sent, even after waiting for 100 ticks
627  *             // to pass.  Take appropriate action here.
628  *         }
629  *     }
630  * }
631  * @endverbatim
632  */
633 #define xTimerChangePeriod( xTimer, xNewPeriod, xTicksToWait ) \
634     xTimerGenericCommand( ( xTimer ), tmrCOMMAND_CHANGE_PERIOD, ( xNewPeriod ), NULL, ( xTicksToWait ) )
635 
636 /**
637  * BaseType_t xTimerDelete( TimerHandle_t xTimer, TickType_t xTicksToWait );
638  *
639  * Timer functionality is provided by a timer service/daemon task.  Many of the
640  * public FreeRTOS timer API functions send commands to the timer service task
641  * through a queue called the timer command queue.  The timer command queue is
642  * private to the kernel itself and is not directly accessible to application
643  * code.  The length of the timer command queue is set by the
644  * configTIMER_QUEUE_LENGTH configuration constant.
645  *
646  * xTimerDelete() deletes a timer that was previously created using the
647  * xTimerCreate() API function.
648  *
649  * The configUSE_TIMERS configuration constant must be set to 1 for
650  * xTimerDelete() to be available.
651  *
652  * @param xTimer The handle of the timer being deleted.
653  *
654  * @param xTicksToWait Specifies the time, in ticks, that the calling task should
655  * be held in the Blocked state to wait for the delete command to be
656  * successfully sent to the timer command queue, should the queue already be
657  * full when xTimerDelete() was called.  xTicksToWait is ignored if xTimerDelete()
658  * is called before the scheduler is started.
659  *
660  * @return pdFAIL will be returned if the delete command could not be sent to
661  * the timer command queue even after xTicksToWait ticks had passed.  pdPASS will
662  * be returned if the command was successfully sent to the timer command queue.
663  * When the command is actually processed will depend on the priority of the
664  * timer service/daemon task relative to other tasks in the system.  The timer
665  * service/daemon task priority is set by the configTIMER_TASK_PRIORITY
666  * configuration constant.
667  *
668  * Example usage:
669  *
670  * See the xTimerChangePeriod() API function example usage scenario.
671  */
672 #define xTimerDelete( xTimer, xTicksToWait ) \
673     xTimerGenericCommand( ( xTimer ), tmrCOMMAND_DELETE, 0U, NULL, ( xTicksToWait ) )
674 
675 /**
676  * BaseType_t xTimerReset( TimerHandle_t xTimer, TickType_t xTicksToWait );
677  *
678  * Timer functionality is provided by a timer service/daemon task.  Many of the
679  * public FreeRTOS timer API functions send commands to the timer service task
680  * through a queue called the timer command queue.  The timer command queue is
681  * private to the kernel itself and is not directly accessible to application
682  * code.  The length of the timer command queue is set by the
683  * configTIMER_QUEUE_LENGTH configuration constant.
684  *
685  * xTimerReset() re-starts a timer that was previously created using the
686  * xTimerCreate() API function.  If the timer had already been started and was
687  * already in the active state, then xTimerReset() will cause the timer to
688  * re-evaluate its expiry time so that it is relative to when xTimerReset() was
689  * called.  If the timer was in the dormant state then xTimerReset() has
690  * equivalent functionality to the xTimerStart() API function.
691  *
692  * Resetting a timer ensures the timer is in the active state.  If the timer
693  * is not stopped, deleted, or reset in the mean time, the callback function
694  * associated with the timer will get called 'n' ticks after xTimerReset() was
695  * called, where 'n' is the timers defined period.
696  *
697  * It is valid to call xTimerReset() before the scheduler has been started, but
698  * when this is done the timer will not actually start until the scheduler is
699  * started, and the timers expiry time will be relative to when the scheduler is
700  * started, not relative to when xTimerReset() was called.
701  *
702  * The configUSE_TIMERS configuration constant must be set to 1 for xTimerReset()
703  * to be available.
704  *
705  * @param xTimer The handle of the timer being reset/started/restarted.
706  *
707  * @param xTicksToWait Specifies the time, in ticks, that the calling task should
708  * be held in the Blocked state to wait for the reset command to be successfully
709  * sent to the timer command queue, should the queue already be full when
710  * xTimerReset() was called.  xTicksToWait is ignored if xTimerReset() is called
711  * before the scheduler is started.
712  *
713  * @return pdFAIL will be returned if the reset command could not be sent to
714  * the timer command queue even after xTicksToWait ticks had passed.  pdPASS will
715  * be returned if the command was successfully sent to the timer command queue.
716  * When the command is actually processed will depend on the priority of the
717  * timer service/daemon task relative to other tasks in the system, although the
718  * timers expiry time is relative to when xTimerStart() is actually called.  The
719  * timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
720  * configuration constant.
721  *
722  * Example usage:
723  * @verbatim
724  * // When a key is pressed, an LCD back-light is switched on.  If 5 seconds pass
725  * // without a key being pressed, then the LCD back-light is switched off.  In
726  * // this case, the timer is a one-shot timer.
727  *
728  * TimerHandle_t xBacklightTimer = NULL;
729  *
730  * // The callback function assigned to the one-shot timer.  In this case the
731  * // parameter is not used.
732  * void vBacklightTimerCallback( TimerHandle_t pxTimer )
733  * {
734  *     // The timer expired, therefore 5 seconds must have passed since a key
735  *     // was pressed.  Switch off the LCD back-light.
736  *     vSetBacklightState( BACKLIGHT_OFF );
737  * }
738  *
739  * // The key press event handler.
740  * void vKeyPressEventHandler( char cKey )
741  * {
742  *     // Ensure the LCD back-light is on, then reset the timer that is
743  *     // responsible for turning the back-light off after 5 seconds of
744  *     // key inactivity.  Wait 10 ticks for the command to be successfully sent
745  *     // if it cannot be sent immediately.
746  *     vSetBacklightState( BACKLIGHT_ON );
747  *     if( xTimerReset( xBacklightTimer, 100 ) != pdPASS )
748  *     {
749  *         // The reset command was not executed successfully.  Take appropriate
750  *         // action here.
751  *     }
752  *
753  *     // Perform the rest of the key processing here.
754  * }
755  *
756  * void main( void )
757  * {
758  * int32_t x;
759  *
760  *     // Create then start the one-shot timer that is responsible for turning
761  *     // the back-light off if no keys are pressed within a 5 second period.
762  *     xBacklightTimer = xTimerCreate( "BacklightTimer",           // Just a text name, not used by the kernel.
763  *                                     ( 5000 / portTICK_PERIOD_MS), // The timer period in ticks.
764  *                                     pdFALSE,                    // The timer is a one-shot timer.
765  *                                     0,                          // The id is not used by the callback so can take any value.
766  *                                     vBacklightTimerCallback     // The callback function that switches the LCD back-light off.
767  *                                   );
768  *
769  *     if( xBacklightTimer == NULL )
770  *     {
771  *         // The timer was not created.
772  *     }
773  *     else
774  *     {
775  *         // Start the timer.  No block time is specified, and even if one was
776  *         // it would be ignored because the scheduler has not yet been
777  *         // started.
778  *         if( xTimerStart( xBacklightTimer, 0 ) != pdPASS )
779  *         {
780  *             // The timer could not be set into the Active state.
781  *         }
782  *     }
783  *
784  *     // ...
785  *     // Create tasks here.
786  *     // ...
787  *
788  *     // Starting the scheduler will start the timer running as it has already
789  *     // been set into the active state.
790  *     vTaskStartScheduler();
791  *
792  *     // Should not reach here.
793  *     for( ;; );
794  * }
795  * @endverbatim
796  */
797 #define xTimerReset( xTimer, xTicksToWait ) \
798     xTimerGenericCommand( ( xTimer ), tmrCOMMAND_RESET, ( xTaskGetTickCount() ), NULL, ( xTicksToWait ) )
799 
800 /**
801  * BaseType_t xTimerStartFromISR(   TimerHandle_t xTimer,
802  *                                  BaseType_t *pxHigherPriorityTaskWoken );
803  *
804  * A version of xTimerStart() that can be called from an interrupt service
805  * routine.
806  *
807  * @param xTimer The handle of the timer being started/restarted.
808  *
809  * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
810  * of its time in the Blocked state, waiting for messages to arrive on the timer
811  * command queue.  Calling xTimerStartFromISR() writes a message to the timer
812  * command queue, so has the potential to transition the timer service/daemon
813  * task out of the Blocked state.  If calling xTimerStartFromISR() causes the
814  * timer service/daemon task to leave the Blocked state, and the timer service/
815  * daemon task has a priority equal to or greater than the currently executing
816  * task (the task that was interrupted), then *pxHigherPriorityTaskWoken will
817  * get set to pdTRUE internally within the xTimerStartFromISR() function.  If
818  * xTimerStartFromISR() sets this value to pdTRUE then a context switch should
819  * be performed before the interrupt exits.
820  *
821  * @return pdFAIL will be returned if the start command could not be sent to
822  * the timer command queue.  pdPASS will be returned if the command was
823  * successfully sent to the timer command queue.  When the command is actually
824  * processed will depend on the priority of the timer service/daemon task
825  * relative to other tasks in the system, although the timers expiry time is
826  * relative to when xTimerStartFromISR() is actually called.  The timer
827  * service/daemon task priority is set by the configTIMER_TASK_PRIORITY
828  * configuration constant.
829  *
830  * Example usage:
831  * @verbatim
832  * // This scenario assumes xBacklightTimer has already been created.  When a
833  * // key is pressed, an LCD back-light is switched on.  If 5 seconds pass
834  * // without a key being pressed, then the LCD back-light is switched off.  In
835  * // this case, the timer is a one-shot timer, and unlike the example given for
836  * // the xTimerReset() function, the key press event handler is an interrupt
837  * // service routine.
838  *
839  * // The callback function assigned to the one-shot timer.  In this case the
840  * // parameter is not used.
841  * void vBacklightTimerCallback( TimerHandle_t pxTimer )
842  * {
843  *     // The timer expired, therefore 5 seconds must have passed since a key
844  *     // was pressed.  Switch off the LCD back-light.
845  *     vSetBacklightState( BACKLIGHT_OFF );
846  * }
847  *
848  * // The key press interrupt service routine.
849  * void vKeyPressEventInterruptHandler( void )
850  * {
851  * BaseType_t xHigherPriorityTaskWoken = pdFALSE;
852  *
853  *     // Ensure the LCD back-light is on, then restart the timer that is
854  *     // responsible for turning the back-light off after 5 seconds of
855  *     // key inactivity.  This is an interrupt service routine so can only
856  *     // call FreeRTOS API functions that end in "FromISR".
857  *     vSetBacklightState( BACKLIGHT_ON );
858  *
859  *     // xTimerStartFromISR() or xTimerResetFromISR() could be called here
860  *     // as both cause the timer to re-calculate its expiry time.
861  *     // xHigherPriorityTaskWoken was initialised to pdFALSE when it was
862  *     // declared (in this function).
863  *     if( xTimerStartFromISR( xBacklightTimer, &xHigherPriorityTaskWoken ) != pdPASS )
864  *     {
865  *         // The start command was not executed successfully.  Take appropriate
866  *         // action here.
867  *     }
868  *
869  *     // Perform the rest of the key processing here.
870  *
871  *     // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
872  *     // should be performed.  The syntax required to perform a context switch
873  *     // from inside an ISR varies from port to port, and from compiler to
874  *     // compiler.  Inspect the demos for the port you are using to find the
875  *     // actual syntax required.
876  *     if( xHigherPriorityTaskWoken != pdFALSE )
877  *     {
878  *         // Call the interrupt safe yield function here (actual function
879  *         // depends on the FreeRTOS port being used).
880  *     }
881  * }
882  * @endverbatim
883  */
884 #define xTimerStartFromISR( xTimer, pxHigherPriorityTaskWoken ) \
885     xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START_FROM_ISR, ( xTaskGetTickCountFromISR() ), ( pxHigherPriorityTaskWoken ), 0U )
886 
887 /**
888  * BaseType_t xTimerStopFromISR(    TimerHandle_t xTimer,
889  *                                  BaseType_t *pxHigherPriorityTaskWoken );
890  *
891  * A version of xTimerStop() that can be called from an interrupt service
892  * routine.
893  *
894  * @param xTimer The handle of the timer being stopped.
895  *
896  * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
897  * of its time in the Blocked state, waiting for messages to arrive on the timer
898  * command queue.  Calling xTimerStopFromISR() writes a message to the timer
899  * command queue, so has the potential to transition the timer service/daemon
900  * task out of the Blocked state.  If calling xTimerStopFromISR() causes the
901  * timer service/daemon task to leave the Blocked state, and the timer service/
902  * daemon task has a priority equal to or greater than the currently executing
903  * task (the task that was interrupted), then *pxHigherPriorityTaskWoken will
904  * get set to pdTRUE internally within the xTimerStopFromISR() function.  If
905  * xTimerStopFromISR() sets this value to pdTRUE then a context switch should
906  * be performed before the interrupt exits.
907  *
908  * @return pdFAIL will be returned if the stop command could not be sent to
909  * the timer command queue.  pdPASS will be returned if the command was
910  * successfully sent to the timer command queue.  When the command is actually
911  * processed will depend on the priority of the timer service/daemon task
912  * relative to other tasks in the system.  The timer service/daemon task
913  * priority is set by the configTIMER_TASK_PRIORITY configuration constant.
914  *
915  * Example usage:
916  * @verbatim
917  * // This scenario assumes xTimer has already been created and started.  When
918  * // an interrupt occurs, the timer should be simply stopped.
919  *
920  * // The interrupt service routine that stops the timer.
921  * void vAnExampleInterruptServiceRoutine( void )
922  * {
923  * BaseType_t xHigherPriorityTaskWoken = pdFALSE;
924  *
925  *     // The interrupt has occurred - simply stop the timer.
926  *     // xHigherPriorityTaskWoken was set to pdFALSE where it was defined
927  *     // (within this function).  As this is an interrupt service routine, only
928  *     // FreeRTOS API functions that end in "FromISR" can be used.
929  *     if( xTimerStopFromISR( xTimer, &xHigherPriorityTaskWoken ) != pdPASS )
930  *     {
931  *         // The stop command was not executed successfully.  Take appropriate
932  *         // action here.
933  *     }
934  *
935  *     // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
936  *     // should be performed.  The syntax required to perform a context switch
937  *     // from inside an ISR varies from port to port, and from compiler to
938  *     // compiler.  Inspect the demos for the port you are using to find the
939  *     // actual syntax required.
940  *     if( xHigherPriorityTaskWoken != pdFALSE )
941  *     {
942  *         // Call the interrupt safe yield function here (actual function
943  *         // depends on the FreeRTOS port being used).
944  *     }
945  * }
946  * @endverbatim
947  */
948 #define xTimerStopFromISR( xTimer, pxHigherPriorityTaskWoken ) \
949     xTimerGenericCommand( ( xTimer ), tmrCOMMAND_STOP_FROM_ISR, 0, ( pxHigherPriorityTaskWoken ), 0U )
950 
951 /**
952  * BaseType_t xTimerChangePeriodFromISR( TimerHandle_t xTimer,
953  *                                       TickType_t xNewPeriod,
954  *                                       BaseType_t *pxHigherPriorityTaskWoken );
955  *
956  * A version of xTimerChangePeriod() that can be called from an interrupt
957  * service routine.
958  *
959  * @param xTimer The handle of the timer that is having its period changed.
960  *
961  * @param xNewPeriod The new period for xTimer. Timer periods are specified in
962  * tick periods, so the constant portTICK_PERIOD_MS can be used to convert a time
963  * that has been specified in milliseconds.  For example, if the timer must
964  * expire after 100 ticks, then xNewPeriod should be set to 100.  Alternatively,
965  * if the timer must expire after 500ms, then xNewPeriod can be set to
966  * ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than
967  * or equal to 1000.
968  *
969  * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
970  * of its time in the Blocked state, waiting for messages to arrive on the timer
971  * command queue.  Calling xTimerChangePeriodFromISR() writes a message to the
972  * timer command queue, so has the potential to transition the timer service/
973  * daemon task out of the Blocked state.  If calling xTimerChangePeriodFromISR()
974  * causes the timer service/daemon task to leave the Blocked state, and the
975  * timer service/daemon task has a priority equal to or greater than the
976  * currently executing task (the task that was interrupted), then
977  * *pxHigherPriorityTaskWoken will get set to pdTRUE internally within the
978  * xTimerChangePeriodFromISR() function.  If xTimerChangePeriodFromISR() sets
979  * this value to pdTRUE then a context switch should be performed before the
980  * interrupt exits.
981  *
982  * @return pdFAIL will be returned if the command to change the timers period
983  * could not be sent to the timer command queue.  pdPASS will be returned if the
984  * command was successfully sent to the timer command queue.  When the command
985  * is actually processed will depend on the priority of the timer service/daemon
986  * task relative to other tasks in the system.  The timer service/daemon task
987  * priority is set by the configTIMER_TASK_PRIORITY configuration constant.
988  *
989  * Example usage:
990  * @verbatim
991  * // This scenario assumes xTimer has already been created and started.  When
992  * // an interrupt occurs, the period of xTimer should be changed to 500ms.
993  *
994  * // The interrupt service routine that changes the period of xTimer.
995  * void vAnExampleInterruptServiceRoutine( void )
996  * {
997  * BaseType_t xHigherPriorityTaskWoken = pdFALSE;
998  *
999  *     // The interrupt has occurred - change the period of xTimer to 500ms.
1000  *     // xHigherPriorityTaskWoken was set to pdFALSE where it was defined
1001  *     // (within this function).  As this is an interrupt service routine, only
1002  *     // FreeRTOS API functions that end in "FromISR" can be used.
1003  *     if( xTimerChangePeriodFromISR( xTimer, &xHigherPriorityTaskWoken ) != pdPASS )
1004  *     {
1005  *         // The command to change the timers period was not executed
1006  *         // successfully.  Take appropriate action here.
1007  *     }
1008  *
1009  *     // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
1010  *     // should be performed.  The syntax required to perform a context switch
1011  *     // from inside an ISR varies from port to port, and from compiler to
1012  *     // compiler.  Inspect the demos for the port you are using to find the
1013  *     // actual syntax required.
1014  *     if( xHigherPriorityTaskWoken != pdFALSE )
1015  *     {
1016  *         // Call the interrupt safe yield function here (actual function
1017  *         // depends on the FreeRTOS port being used).
1018  *     }
1019  * }
1020  * @endverbatim
1021  */
1022 #define xTimerChangePeriodFromISR( xTimer, xNewPeriod, pxHigherPriorityTaskWoken ) \
1023     xTimerGenericCommand( ( xTimer ), tmrCOMMAND_CHANGE_PERIOD_FROM_ISR, ( xNewPeriod ), ( pxHigherPriorityTaskWoken ), 0U )
1024 
1025 /**
1026  * BaseType_t xTimerResetFromISR(   TimerHandle_t xTimer,
1027  *                                  BaseType_t *pxHigherPriorityTaskWoken );
1028  *
1029  * A version of xTimerReset() that can be called from an interrupt service
1030  * routine.
1031  *
1032  * @param xTimer The handle of the timer that is to be started, reset, or
1033  * restarted.
1034  *
1035  * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
1036  * of its time in the Blocked state, waiting for messages to arrive on the timer
1037  * command queue.  Calling xTimerResetFromISR() writes a message to the timer
1038  * command queue, so has the potential to transition the timer service/daemon
1039  * task out of the Blocked state.  If calling xTimerResetFromISR() causes the
1040  * timer service/daemon task to leave the Blocked state, and the timer service/
1041  * daemon task has a priority equal to or greater than the currently executing
1042  * task (the task that was interrupted), then *pxHigherPriorityTaskWoken will
1043  * get set to pdTRUE internally within the xTimerResetFromISR() function.  If
1044  * xTimerResetFromISR() sets this value to pdTRUE then a context switch should
1045  * be performed before the interrupt exits.
1046  *
1047  * @return pdFAIL will be returned if the reset command could not be sent to
1048  * the timer command queue.  pdPASS will be returned if the command was
1049  * successfully sent to the timer command queue.  When the command is actually
1050  * processed will depend on the priority of the timer service/daemon task
1051  * relative to other tasks in the system, although the timers expiry time is
1052  * relative to when xTimerResetFromISR() is actually called.  The timer service/daemon
1053  * task priority is set by the configTIMER_TASK_PRIORITY configuration constant.
1054  *
1055  * Example usage:
1056  * @verbatim
1057  * // This scenario assumes xBacklightTimer has already been created.  When a
1058  * // key is pressed, an LCD back-light is switched on.  If 5 seconds pass
1059  * // without a key being pressed, then the LCD back-light is switched off.  In
1060  * // this case, the timer is a one-shot timer, and unlike the example given for
1061  * // the xTimerReset() function, the key press event handler is an interrupt
1062  * // service routine.
1063  *
1064  * // The callback function assigned to the one-shot timer.  In this case the
1065  * // parameter is not used.
1066  * void vBacklightTimerCallback( TimerHandle_t pxTimer )
1067  * {
1068  *     // The timer expired, therefore 5 seconds must have passed since a key
1069  *     // was pressed.  Switch off the LCD back-light.
1070  *     vSetBacklightState( BACKLIGHT_OFF );
1071  * }
1072  *
1073  * // The key press interrupt service routine.
1074  * void vKeyPressEventInterruptHandler( void )
1075  * {
1076  * BaseType_t xHigherPriorityTaskWoken = pdFALSE;
1077  *
1078  *     // Ensure the LCD back-light is on, then reset the timer that is
1079  *     // responsible for turning the back-light off after 5 seconds of
1080  *     // key inactivity.  This is an interrupt service routine so can only
1081  *     // call FreeRTOS API functions that end in "FromISR".
1082  *     vSetBacklightState( BACKLIGHT_ON );
1083  *
1084  *     // xTimerStartFromISR() or xTimerResetFromISR() could be called here
1085  *     // as both cause the timer to re-calculate its expiry time.
1086  *     // xHigherPriorityTaskWoken was initialised to pdFALSE when it was
1087  *     // declared (in this function).
1088  *     if( xTimerResetFromISR( xBacklightTimer, &xHigherPriorityTaskWoken ) != pdPASS )
1089  *     {
1090  *         // The reset command was not executed successfully.  Take appropriate
1091  *         // action here.
1092  *     }
1093  *
1094  *     // Perform the rest of the key processing here.
1095  *
1096  *     // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
1097  *     // should be performed.  The syntax required to perform a context switch
1098  *     // from inside an ISR varies from port to port, and from compiler to
1099  *     // compiler.  Inspect the demos for the port you are using to find the
1100  *     // actual syntax required.
1101  *     if( xHigherPriorityTaskWoken != pdFALSE )
1102  *     {
1103  *         // Call the interrupt safe yield function here (actual function
1104  *         // depends on the FreeRTOS port being used).
1105  *     }
1106  * }
1107  * @endverbatim
1108  */
1109 #define xTimerResetFromISR( xTimer, pxHigherPriorityTaskWoken ) \
1110     xTimerGenericCommand( ( xTimer ), tmrCOMMAND_RESET_FROM_ISR, ( xTaskGetTickCountFromISR() ), ( pxHigherPriorityTaskWoken ), 0U )
1111 
1112 
1113 /**
1114  * BaseType_t xTimerPendFunctionCallFromISR( PendedFunction_t xFunctionToPend,
1115  *                                          void *pvParameter1,
1116  *                                          uint32_t ulParameter2,
1117  *                                          BaseType_t *pxHigherPriorityTaskWoken );
1118  *
1119  *
1120  * Used from application interrupt service routines to defer the execution of a
1121  * function to the RTOS daemon task (the timer service task, hence this function
1122  * is implemented in timers.c and is prefixed with 'Timer').
1123  *
1124  * Ideally an interrupt service routine (ISR) is kept as short as possible, but
1125  * sometimes an ISR either has a lot of processing to do, or needs to perform
1126  * processing that is not deterministic.  In these cases
1127  * xTimerPendFunctionCallFromISR() can be used to defer processing of a function
1128  * to the RTOS daemon task.
1129  *
1130  * A mechanism is provided that allows the interrupt to return directly to the
1131  * task that will subsequently execute the pended callback function.  This
1132  * allows the callback function to execute contiguously in time with the
1133  * interrupt - just as if the callback had executed in the interrupt itself.
1134  *
1135  * @param xFunctionToPend The function to execute from the timer service/
1136  * daemon task.  The function must conform to the PendedFunction_t
1137  * prototype.
1138  *
1139  * @param pvParameter1 The value of the callback function's first parameter.
1140  * The parameter has a void * type to allow it to be used to pass any type.
1141  * For example, unsigned longs can be cast to a void *, or the void * can be
1142  * used to point to a structure.
1143  *
1144  * @param ulParameter2 The value of the callback function's second parameter.
1145  *
1146  * @param pxHigherPriorityTaskWoken As mentioned above, calling this function
1147  * will result in a message being sent to the timer daemon task.  If the
1148  * priority of the timer daemon task (which is set using
1149  * configTIMER_TASK_PRIORITY in FreeRTOSConfig.h) is higher than the priority of
1150  * the currently running task (the task the interrupt interrupted) then
1151  * *pxHigherPriorityTaskWoken will be set to pdTRUE within
1152  * xTimerPendFunctionCallFromISR(), indicating that a context switch should be
1153  * requested before the interrupt exits.  For that reason
1154  * *pxHigherPriorityTaskWoken must be initialised to pdFALSE.  See the
1155  * example code below.
1156  *
1157  * @return pdPASS is returned if the message was successfully sent to the
1158  * timer daemon task, otherwise pdFALSE is returned.
1159  *
1160  * Example usage:
1161  * @verbatim
1162  *
1163  *  // The callback function that will execute in the context of the daemon task.
1164  *  // Note callback functions must all use this same prototype.
1165  *  void vProcessInterface( void *pvParameter1, uint32_t ulParameter2 )
1166  *  {
1167  *      BaseType_t xInterfaceToService;
1168  *
1169  *      // The interface that requires servicing is passed in the second
1170  *      // parameter.  The first parameter is not used in this case.
1171  *      xInterfaceToService = ( BaseType_t ) ulParameter2;
1172  *
1173  *      // ...Perform the processing here...
1174  *  }
1175  *
1176  *  // An ISR that receives data packets from multiple interfaces
1177  *  void vAnISR( void )
1178  *  {
1179  *      BaseType_t xInterfaceToService, xHigherPriorityTaskWoken;
1180  *
1181  *      // Query the hardware to determine which interface needs processing.
1182  *      xInterfaceToService = prvCheckInterfaces();
1183  *
1184  *      // The actual processing is to be deferred to a task.  Request the
1185  *      // vProcessInterface() callback function is executed, passing in the
1186  *      // number of the interface that needs processing.  The interface to
1187  *      // service is passed in the second parameter.  The first parameter is
1188  *      // not used in this case.
1189  *      xHigherPriorityTaskWoken = pdFALSE;
1190  *      xTimerPendFunctionCallFromISR( vProcessInterface, NULL, ( uint32_t ) xInterfaceToService, &xHigherPriorityTaskWoken );
1191  *
1192  *      // If xHigherPriorityTaskWoken is now set to pdTRUE then a context
1193  *      // switch should be requested.  The macro used is port specific and will
1194  *      // be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() - refer to
1195  *      // the documentation page for the port being used.
1196  *      portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
1197  *
1198  *  }
1199  * @endverbatim
1200  */
1201 BaseType_t xTimerPendFunctionCallFromISR( PendedFunction_t xFunctionToPend,
1202                                           void * pvParameter1,
1203                                           uint32_t ulParameter2,
1204                                           BaseType_t * pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
1205 
1206 /**
1207  * BaseType_t xTimerPendFunctionCall( PendedFunction_t xFunctionToPend,
1208  *                                    void *pvParameter1,
1209  *                                    uint32_t ulParameter2,
1210  *                                    TickType_t xTicksToWait );
1211  *
1212  *
1213  * Used to defer the execution of a function to the RTOS daemon task (the timer
1214  * service task, hence this function is implemented in timers.c and is prefixed
1215  * with 'Timer').
1216  *
1217  * @param xFunctionToPend The function to execute from the timer service/
1218  * daemon task.  The function must conform to the PendedFunction_t
1219  * prototype.
1220  *
1221  * @param pvParameter1 The value of the callback function's first parameter.
1222  * The parameter has a void * type to allow it to be used to pass any type.
1223  * For example, unsigned longs can be cast to a void *, or the void * can be
1224  * used to point to a structure.
1225  *
1226  * @param ulParameter2 The value of the callback function's second parameter.
1227  *
1228  * @param xTicksToWait Calling this function will result in a message being
1229  * sent to the timer daemon task on a queue.  xTicksToWait is the amount of
1230  * time the calling task should remain in the Blocked state (so not using any
1231  * processing time) for space to become available on the timer queue if the
1232  * queue is found to be full.
1233  *
1234  * @return pdPASS is returned if the message was successfully sent to the
1235  * timer daemon task, otherwise pdFALSE is returned.
1236  *
1237  */
1238 BaseType_t xTimerPendFunctionCall( PendedFunction_t xFunctionToPend,
1239                                    void * pvParameter1,
1240                                    uint32_t ulParameter2,
1241                                    TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
1242 
1243 /**
1244  * const char * const pcTimerGetName( TimerHandle_t xTimer );
1245  *
1246  * Returns the name that was assigned to a timer when the timer was created.
1247  *
1248  * @param xTimer The handle of the timer being queried.
1249  *
1250  * @return The name assigned to the timer specified by the xTimer parameter.
1251  */
1252 const char * pcTimerGetName( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
1253 
1254 /**
1255  * void vTimerSetReloadMode( TimerHandle_t xTimer, const BaseType_t xAutoReload );
1256  *
1257  * Updates a timer to be either an auto-reload timer, in which case the timer
1258  * automatically resets itself each time it expires, or a one-shot timer, in
1259  * which case the timer will only expire once unless it is manually restarted.
1260  *
1261  * @param xTimer The handle of the timer being updated.
1262  *
1263  * @param xAutoReload If xAutoReload is set to pdTRUE then the timer will
1264  * expire repeatedly with a frequency set by the timer's period (see the
1265  * xTimerPeriodInTicks parameter of the xTimerCreate() API function).  If
1266  * xAutoReload is set to pdFALSE then the timer will be a one-shot timer and
1267  * enter the dormant state after it expires.
1268  */
1269 void vTimerSetReloadMode( TimerHandle_t xTimer,
1270                           const BaseType_t xAutoReload ) PRIVILEGED_FUNCTION;
1271 
1272 /**
1273  * BaseType_t xTimerGetReloadMode( TimerHandle_t xTimer );
1274  *
1275  * Queries a timer to determine if it is an auto-reload timer, in which case the timer
1276  * automatically resets itself each time it expires, or a one-shot timer, in
1277  * which case the timer will only expire once unless it is manually restarted.
1278  *
1279  * @param xTimer The handle of the timer being queried.
1280  *
1281  * @return If the timer is an auto-reload timer then pdTRUE is returned, otherwise
1282  * pdFALSE is returned.
1283  */
1284 BaseType_t xTimerGetReloadMode( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
1285 
1286 /**
1287  * UBaseType_t uxTimerGetReloadMode( TimerHandle_t xTimer );
1288  *
1289  * Queries a timer to determine if it is an auto-reload timer, in which case the timer
1290  * automatically resets itself each time it expires, or a one-shot timer, in
1291  * which case the timer will only expire once unless it is manually restarted.
1292  *
1293  * @param xTimer The handle of the timer being queried.
1294  *
1295  * @return If the timer is an auto-reload timer then pdTRUE is returned, otherwise
1296  * pdFALSE is returned.
1297  */
1298 UBaseType_t uxTimerGetReloadMode( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
1299 
1300 /**
1301  * TickType_t xTimerGetPeriod( TimerHandle_t xTimer );
1302  *
1303  * Returns the period of a timer.
1304  *
1305  * @param xTimer The handle of the timer being queried.
1306  *
1307  * @return The period of the timer in ticks.
1308  */
1309 TickType_t xTimerGetPeriod( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
1310 
1311 /**
1312  * TickType_t xTimerGetExpiryTime( TimerHandle_t xTimer );
1313  *
1314  * Returns the time in ticks at which the timer will expire.  If this is less
1315  * than the current tick count then the expiry time has overflowed from the
1316  * current time.
1317  *
1318  * @param xTimer The handle of the timer being queried.
1319  *
1320  * @return If the timer is running then the time in ticks at which the timer
1321  * will next expire is returned.  If the timer is not running then the return
1322  * value is undefined.
1323  */
1324 TickType_t xTimerGetExpiryTime( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
1325 
1326 /**
1327  * BaseType_t xTimerGetStaticBuffer( TimerHandle_t xTimer,
1328  *                                   StaticTimer_t ** ppxTimerBuffer );
1329  *
1330  * Retrieve pointer to a statically created timer's data structure
1331  * buffer. This is the same buffer that is supplied at the time of
1332  * creation.
1333  *
1334  * @param xTimer The timer for which to retrieve the buffer.
1335  *
1336  * @param ppxTaskBuffer Used to return a pointer to the timers's data
1337  * structure buffer.
1338  *
1339  * @return pdTRUE if the buffer was retrieved, pdFALSE otherwise.
1340  */
1341 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
1342     BaseType_t xTimerGetStaticBuffer( TimerHandle_t xTimer,
1343                                       StaticTimer_t ** ppxTimerBuffer ) PRIVILEGED_FUNCTION;
1344 #endif /* configSUPPORT_STATIC_ALLOCATION */
1345 
1346 /*
1347  * Functions beyond this part are not part of the public API and are intended
1348  * for use by the kernel only.
1349  */
1350 BaseType_t xTimerCreateTimerTask( void ) PRIVILEGED_FUNCTION;
1351 BaseType_t xTimerGenericCommand( TimerHandle_t xTimer,
1352                                  const BaseType_t xCommandID,
1353                                  const TickType_t xOptionalValue,
1354                                  BaseType_t * const pxHigherPriorityTaskWoken,
1355                                  const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
1356 
1357 #if ( configUSE_TRACE_FACILITY == 1 )
1358     void vTimerSetTimerNumber( TimerHandle_t xTimer,
1359                                UBaseType_t uxTimerNumber ) PRIVILEGED_FUNCTION;
1360     UBaseType_t uxTimerGetTimerNumber( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
1361 #endif
1362 
1363 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
1364 
1365 /**
1366  * task.h
1367  * @code{c}
1368  * void vApplicationGetTimerTaskMemory( StaticTask_t ** ppxTimerTaskTCBBuffer, StackType_t ** ppxTimerTaskStackBuffer, uint32_t *pulTimerTaskStackSize )
1369  * @endcode
1370  *
1371  * This function is used to provide a statically allocated block of memory to FreeRTOS to hold the Timer Task TCB.  This function is required when
1372  * configSUPPORT_STATIC_ALLOCATION is set.  For more information see this URI: https://www.FreeRTOS.org/a00110.html#configSUPPORT_STATIC_ALLOCATION
1373  *
1374  * @param ppxTimerTaskTCBBuffer   A handle to a statically allocated TCB buffer
1375  * @param ppxTimerTaskStackBuffer A handle to a statically allocated Stack buffer for the idle task
1376  * @param pulTimerTaskStackSize   A pointer to the number of elements that will fit in the allocated stack buffer
1377  */
1378     void vApplicationGetTimerTaskMemory( StaticTask_t ** ppxTimerTaskTCBBuffer,
1379                                          StackType_t ** ppxTimerTaskStackBuffer,
1380                                          uint32_t * pulTimerTaskStackSize );
1381 
1382 #endif
1383 
1384 #if ( configUSE_DAEMON_TASK_STARTUP_HOOK != 0 )
1385 
1386 /**
1387  *  timers.h
1388  * @code{c}
1389  * void vApplicationDaemonTaskStartupHook( void );
1390  * @endcode
1391  *
1392  * This hook function is called form the timer task once when the task starts running.
1393  */
1394     void vApplicationDaemonTaskStartupHook( void );
1395 
1396 #endif
1397 
1398 /* *INDENT-OFF* */
1399 #ifdef __cplusplus
1400     }
1401 #endif
1402 /* *INDENT-ON* */
1403 #endif /* TIMERS_H */
1404