1 /*
2  * FreeRTOS Kernel V11.1.0
3  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4  *
5  * SPDX-License-Identifier: MIT
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in all
15  * copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * https://www.FreeRTOS.org
25  * https://github.com/FreeRTOS
26  *
27  */
28 
29 #ifndef CO_ROUTINE_H
30 #define CO_ROUTINE_H
31 
32 #ifndef INC_FREERTOS_H
33     #error "include FreeRTOS.h must appear in source files before include croutine.h"
34 #endif
35 
36 #include "list.h"
37 
38 /* *INDENT-OFF* */
39 #ifdef __cplusplus
40     extern "C" {
41 #endif
42 /* *INDENT-ON* */
43 
44 /* Used to hide the implementation of the co-routine control block.  The
45  * control block structure however has to be included in the header due to
46  * the macro implementation of the co-routine functionality. */
47 typedef void * CoRoutineHandle_t;
48 
49 /* Defines the prototype to which co-routine functions must conform. */
50 typedef void (* crCOROUTINE_CODE)( CoRoutineHandle_t xHandle,
51                                    UBaseType_t uxIndex );
52 
53 typedef struct corCoRoutineControlBlock
54 {
55     crCOROUTINE_CODE pxCoRoutineFunction;
56     ListItem_t xGenericListItem; /**< List item used to place the CRCB in ready and blocked queues. */
57     ListItem_t xEventListItem;   /**< List item used to place the CRCB in event lists. */
58     UBaseType_t uxPriority;      /**< The priority of the co-routine in relation to other co-routines. */
59     UBaseType_t uxIndex;         /**< Used to distinguish between co-routines when multiple co-routines use the same co-routine function. */
60     uint16_t uxState;            /**< Used internally by the co-routine implementation. */
61 } CRCB_t;                        /* Co-routine control block.  Note must be identical in size down to uxPriority with TCB_t. */
62 
63 /**
64  * croutine. h
65  * @code{c}
66  * BaseType_t xCoRoutineCreate(
67  *                               crCOROUTINE_CODE pxCoRoutineCode,
68  *                               UBaseType_t uxPriority,
69  *                               UBaseType_t uxIndex
70  *                             );
71  * @endcode
72  *
73  * Create a new co-routine and add it to the list of co-routines that are
74  * ready to run.
75  *
76  * @param pxCoRoutineCode Pointer to the co-routine function.  Co-routine
77  * functions require special syntax - see the co-routine section of the WEB
78  * documentation for more information.
79  *
80  * @param uxPriority The priority with respect to other co-routines at which
81  *  the co-routine will run.
82  *
83  * @param uxIndex Used to distinguish between different co-routines that
84  * execute the same function.  See the example below and the co-routine section
85  * of the WEB documentation for further information.
86  *
87  * @return pdPASS if the co-routine was successfully created and added to a ready
88  * list, otherwise an error code defined with ProjDefs.h.
89  *
90  * Example usage:
91  * @code{c}
92  * // Co-routine to be created.
93  * void vFlashCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
94  * {
95  * // Variables in co-routines must be declared static if they must maintain value across a blocking call.
96  * // This may not be necessary for const variables.
97  * static const char cLedToFlash[ 2 ] = { 5, 6 };
98  * static const TickType_t uxFlashRates[ 2 ] = { 200, 400 };
99  *
100  *   // Must start every co-routine with a call to crSTART();
101  *   crSTART( xHandle );
102  *
103  *   for( ;; )
104  *   {
105  *       // This co-routine just delays for a fixed period, then toggles
106  *       // an LED.  Two co-routines are created using this function, so
107  *       // the uxIndex parameter is used to tell the co-routine which
108  *       // LED to flash and how int32_t to delay.  This assumes xQueue has
109  *       // already been created.
110  *       vParTestToggleLED( cLedToFlash[ uxIndex ] );
111  *       crDELAY( xHandle, uxFlashRates[ uxIndex ] );
112  *   }
113  *
114  *   // Must end every co-routine with a call to crEND();
115  *   crEND();
116  * }
117  *
118  * // Function that creates two co-routines.
119  * void vOtherFunction( void )
120  * {
121  * uint8_t ucParameterToPass;
122  * TaskHandle_t xHandle;
123  *
124  *   // Create two co-routines at priority 0.  The first is given index 0
125  *   // so (from the code above) toggles LED 5 every 200 ticks.  The second
126  *   // is given index 1 so toggles LED 6 every 400 ticks.
127  *   for( uxIndex = 0; uxIndex < 2; uxIndex++ )
128  *   {
129  *       xCoRoutineCreate( vFlashCoRoutine, 0, uxIndex );
130  *   }
131  * }
132  * @endcode
133  * \defgroup xCoRoutineCreate xCoRoutineCreate
134  * \ingroup Tasks
135  */
136 BaseType_t xCoRoutineCreate( crCOROUTINE_CODE pxCoRoutineCode,
137                              UBaseType_t uxPriority,
138                              UBaseType_t uxIndex );
139 
140 
141 /**
142  * croutine. h
143  * @code{c}
144  * void vCoRoutineSchedule( void );
145  * @endcode
146  *
147  * Run a co-routine.
148  *
149  * vCoRoutineSchedule() executes the highest priority co-routine that is able
150  * to run.  The co-routine will execute until it either blocks, yields or is
151  * preempted by a task.  Co-routines execute cooperatively so one
152  * co-routine cannot be preempted by another, but can be preempted by a task.
153  *
154  * If an application comprises of both tasks and co-routines then
155  * vCoRoutineSchedule should be called from the idle task (in an idle task
156  * hook).
157  *
158  * Example usage:
159  * @code{c}
160  * // This idle task hook will schedule a co-routine each time it is called.
161  * // The rest of the idle task will execute between co-routine calls.
162  * void vApplicationIdleHook( void )
163  * {
164  *  vCoRoutineSchedule();
165  * }
166  *
167  * // Alternatively, if you do not require any other part of the idle task to
168  * // execute, the idle task hook can call vCoRoutineSchedule() within an
169  * // infinite loop.
170  * void vApplicationIdleHook( void )
171  * {
172  *  for( ;; )
173  *  {
174  *      vCoRoutineSchedule();
175  *  }
176  * }
177  * @endcode
178  * \defgroup vCoRoutineSchedule vCoRoutineSchedule
179  * \ingroup Tasks
180  */
181 void vCoRoutineSchedule( void );
182 
183 /**
184  * croutine. h
185  * @code{c}
186  * crSTART( CoRoutineHandle_t xHandle );
187  * @endcode
188  *
189  * This macro MUST always be called at the start of a co-routine function.
190  *
191  * Example usage:
192  * @code{c}
193  * // Co-routine to be created.
194  * void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
195  * {
196  * // Variables in co-routines must be declared static if they must maintain value across a blocking call.
197  * static int32_t ulAVariable;
198  *
199  *   // Must start every co-routine with a call to crSTART();
200  *   crSTART( xHandle );
201  *
202  *   for( ;; )
203  *   {
204  *        // Co-routine functionality goes here.
205  *   }
206  *
207  *   // Must end every co-routine with a call to crEND();
208  *   crEND();
209  * }
210  * @endcode
211  * \defgroup crSTART crSTART
212  * \ingroup Tasks
213  */
214 #define crSTART( pxCRCB )                            \
215     switch( ( ( CRCB_t * ) ( pxCRCB ) )->uxState ) { \
216         case 0:
217 
218 /**
219  * croutine. h
220  * @code{c}
221  * crEND();
222  * @endcode
223  *
224  * This macro MUST always be called at the end of a co-routine function.
225  *
226  * Example usage:
227  * @code{c}
228  * // Co-routine to be created.
229  * void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
230  * {
231  * // Variables in co-routines must be declared static if they must maintain value across a blocking call.
232  * static int32_t ulAVariable;
233  *
234  *   // Must start every co-routine with a call to crSTART();
235  *   crSTART( xHandle );
236  *
237  *   for( ;; )
238  *   {
239  *        // Co-routine functionality goes here.
240  *   }
241  *
242  *   // Must end every co-routine with a call to crEND();
243  *   crEND();
244  * }
245  * @endcode
246  * \defgroup crSTART crSTART
247  * \ingroup Tasks
248  */
249 #define crEND()    }
250 
251 /*
252  * These macros are intended for internal use by the co-routine implementation
253  * only.  The macros should not be used directly by application writers.
254  */
255 #define crSET_STATE0( xHandle )                                       \
256     ( ( CRCB_t * ) ( xHandle ) )->uxState = ( __LINE__ * 2 ); return; \
257     case ( __LINE__ * 2 ):
258 #define crSET_STATE1( xHandle )                                               \
259     ( ( CRCB_t * ) ( xHandle ) )->uxState = ( ( __LINE__ * 2 ) + 1 ); return; \
260     case ( ( __LINE__ * 2 ) + 1 ):
261 
262 /**
263  * croutine. h
264  * @code{c}
265  * crDELAY( CoRoutineHandle_t xHandle, TickType_t xTicksToDelay );
266  * @endcode
267  *
268  * Delay a co-routine for a fixed period of time.
269  *
270  * crDELAY can only be called from the co-routine function itself - not
271  * from within a function called by the co-routine function.  This is because
272  * co-routines do not maintain their own stack.
273  *
274  * @param xHandle The handle of the co-routine to delay.  This is the xHandle
275  * parameter of the co-routine function.
276  *
277  * @param xTickToDelay The number of ticks that the co-routine should delay
278  * for.  The actual amount of time this equates to is defined by
279  * configTICK_RATE_HZ (set in FreeRTOSConfig.h).  The constant portTICK_PERIOD_MS
280  * can be used to convert ticks to milliseconds.
281  *
282  * Example usage:
283  * @code{c}
284  * // Co-routine to be created.
285  * void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
286  * {
287  * // Variables in co-routines must be declared static if they must maintain value across a blocking call.
288  * // This may not be necessary for const variables.
289  * // We are to delay for 200ms.
290  * static const xTickType xDelayTime = 200 / portTICK_PERIOD_MS;
291  *
292  *   // Must start every co-routine with a call to crSTART();
293  *   crSTART( xHandle );
294  *
295  *   for( ;; )
296  *   {
297  *      // Delay for 200ms.
298  *      crDELAY( xHandle, xDelayTime );
299  *
300  *      // Do something here.
301  *   }
302  *
303  *   // Must end every co-routine with a call to crEND();
304  *   crEND();
305  * }
306  * @endcode
307  * \defgroup crDELAY crDELAY
308  * \ingroup Tasks
309  */
310 #define crDELAY( xHandle, xTicksToDelay )                          \
311     do {                                                           \
312         if( ( xTicksToDelay ) > 0 )                                \
313         {                                                          \
314             vCoRoutineAddToDelayedList( ( xTicksToDelay ), NULL ); \
315         }                                                          \
316         crSET_STATE0( ( xHandle ) );                               \
317     } while( 0 )
318 
319 /**
320  * @code{c}
321  * crQUEUE_SEND(
322  *                CoRoutineHandle_t xHandle,
323  *                QueueHandle_t pxQueue,
324  *                void *pvItemToQueue,
325  *                TickType_t xTicksToWait,
326  *                BaseType_t *pxResult
327  *           )
328  * @endcode
329  *
330  * The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine
331  * equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.
332  *
333  * crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas
334  * xQueueSend() and xQueueReceive() can only be used from tasks.
335  *
336  * crQUEUE_SEND can only be called from the co-routine function itself - not
337  * from within a function called by the co-routine function.  This is because
338  * co-routines do not maintain their own stack.
339  *
340  * See the co-routine section of the WEB documentation for information on
341  * passing data between tasks and co-routines and between ISR's and
342  * co-routines.
343  *
344  * @param xHandle The handle of the calling co-routine.  This is the xHandle
345  * parameter of the co-routine function.
346  *
347  * @param pxQueue The handle of the queue on which the data will be posted.
348  * The handle is obtained as the return value when the queue is created using
349  * the xQueueCreate() API function.
350  *
351  * @param pvItemToQueue A pointer to the data being posted onto the queue.
352  * The number of bytes of each queued item is specified when the queue is
353  * created.  This number of bytes is copied from pvItemToQueue into the queue
354  * itself.
355  *
356  * @param xTickToDelay The number of ticks that the co-routine should block
357  * to wait for space to become available on the queue, should space not be
358  * available immediately. The actual amount of time this equates to is defined
359  * by configTICK_RATE_HZ (set in FreeRTOSConfig.h).  The constant
360  * portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see example
361  * below).
362  *
363  * @param pxResult The variable pointed to by pxResult will be set to pdPASS if
364  * data was successfully posted onto the queue, otherwise it will be set to an
365  * error defined within ProjDefs.h.
366  *
367  * Example usage:
368  * @code{c}
369  * // Co-routine function that blocks for a fixed period then posts a number onto
370  * // a queue.
371  * static void prvCoRoutineFlashTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
372  * {
373  * // Variables in co-routines must be declared static if they must maintain value across a blocking call.
374  * static BaseType_t xNumberToPost = 0;
375  * static BaseType_t xResult;
376  *
377  *  // Co-routines must begin with a call to crSTART().
378  *  crSTART( xHandle );
379  *
380  *  for( ;; )
381  *  {
382  *      // This assumes the queue has already been created.
383  *      crQUEUE_SEND( xHandle, xCoRoutineQueue, &xNumberToPost, NO_DELAY, &xResult );
384  *
385  *      if( xResult != pdPASS )
386  *      {
387  *          // The message was not posted!
388  *      }
389  *
390  *      // Increment the number to be posted onto the queue.
391  *      xNumberToPost++;
392  *
393  *      // Delay for 100 ticks.
394  *      crDELAY( xHandle, 100 );
395  *  }
396  *
397  *  // Co-routines must end with a call to crEND().
398  *  crEND();
399  * }
400  * @endcode
401  * \defgroup crQUEUE_SEND crQUEUE_SEND
402  * \ingroup Tasks
403  */
404 #define crQUEUE_SEND( xHandle, pxQueue, pvItemToQueue, xTicksToWait, pxResult )           \
405     do {                                                                                  \
406         *( pxResult ) = xQueueCRSend( ( pxQueue ), ( pvItemToQueue ), ( xTicksToWait ) ); \
407         if( *( pxResult ) == errQUEUE_BLOCKED )                                           \
408         {                                                                                 \
409             crSET_STATE0( ( xHandle ) );                                                  \
410             *pxResult = xQueueCRSend( ( pxQueue ), ( pvItemToQueue ), 0 );                \
411         }                                                                                 \
412         if( *pxResult == errQUEUE_YIELD )                                                 \
413         {                                                                                 \
414             crSET_STATE1( ( xHandle ) );                                                  \
415             *pxResult = pdPASS;                                                           \
416         }                                                                                 \
417     } while( 0 )
418 
419 /**
420  * croutine. h
421  * @code{c}
422  * crQUEUE_RECEIVE(
423  *                   CoRoutineHandle_t xHandle,
424  *                   QueueHandle_t pxQueue,
425  *                   void *pvBuffer,
426  *                   TickType_t xTicksToWait,
427  *                   BaseType_t *pxResult
428  *               )
429  * @endcode
430  *
431  * The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine
432  * equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.
433  *
434  * crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas
435  * xQueueSend() and xQueueReceive() can only be used from tasks.
436  *
437  * crQUEUE_RECEIVE can only be called from the co-routine function itself - not
438  * from within a function called by the co-routine function.  This is because
439  * co-routines do not maintain their own stack.
440  *
441  * See the co-routine section of the WEB documentation for information on
442  * passing data between tasks and co-routines and between ISR's and
443  * co-routines.
444  *
445  * @param xHandle The handle of the calling co-routine.  This is the xHandle
446  * parameter of the co-routine function.
447  *
448  * @param pxQueue The handle of the queue from which the data will be received.
449  * The handle is obtained as the return value when the queue is created using
450  * the xQueueCreate() API function.
451  *
452  * @param pvBuffer The buffer into which the received item is to be copied.
453  * The number of bytes of each queued item is specified when the queue is
454  * created.  This number of bytes is copied into pvBuffer.
455  *
456  * @param xTickToDelay The number of ticks that the co-routine should block
457  * to wait for data to become available from the queue, should data not be
458  * available immediately. The actual amount of time this equates to is defined
459  * by configTICK_RATE_HZ (set in FreeRTOSConfig.h).  The constant
460  * portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see the
461  * crQUEUE_SEND example).
462  *
463  * @param pxResult The variable pointed to by pxResult will be set to pdPASS if
464  * data was successfully retrieved from the queue, otherwise it will be set to
465  * an error code as defined within ProjDefs.h.
466  *
467  * Example usage:
468  * @code{c}
469  * // A co-routine receives the number of an LED to flash from a queue.  It
470  * // blocks on the queue until the number is received.
471  * static void prvCoRoutineFlashWorkTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
472  * {
473  * // Variables in co-routines must be declared static if they must maintain value across a blocking call.
474  * static BaseType_t xResult;
475  * static UBaseType_t uxLEDToFlash;
476  *
477  *  // All co-routines must start with a call to crSTART().
478  *  crSTART( xHandle );
479  *
480  *  for( ;; )
481  *  {
482  *      // Wait for data to become available on the queue.
483  *      crQUEUE_RECEIVE( xHandle, xCoRoutineQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
484  *
485  *      if( xResult == pdPASS )
486  *      {
487  *          // We received the LED to flash - flash it!
488  *          vParTestToggleLED( uxLEDToFlash );
489  *      }
490  *  }
491  *
492  *  crEND();
493  * }
494  * @endcode
495  * \defgroup crQUEUE_RECEIVE crQUEUE_RECEIVE
496  * \ingroup Tasks
497  */
498 #define crQUEUE_RECEIVE( xHandle, pxQueue, pvBuffer, xTicksToWait, pxResult )           \
499     do {                                                                                \
500         *( pxResult ) = xQueueCRReceive( ( pxQueue ), ( pvBuffer ), ( xTicksToWait ) ); \
501         if( *( pxResult ) == errQUEUE_BLOCKED )                                         \
502         {                                                                               \
503             crSET_STATE0( ( xHandle ) );                                                \
504             *( pxResult ) = xQueueCRReceive( ( pxQueue ), ( pvBuffer ), 0 );            \
505         }                                                                               \
506         if( *( pxResult ) == errQUEUE_YIELD )                                           \
507         {                                                                               \
508             crSET_STATE1( ( xHandle ) );                                                \
509             *( pxResult ) = pdPASS;                                                     \
510         }                                                                               \
511     } while( 0 )
512 
513 /**
514  * croutine. h
515  * @code{c}
516  * crQUEUE_SEND_FROM_ISR(
517  *                          QueueHandle_t pxQueue,
518  *                          void *pvItemToQueue,
519  *                          BaseType_t xCoRoutinePreviouslyWoken
520  *                     )
521  * @endcode
522  *
523  * The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the
524  * co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR()
525  * functions used by tasks.
526  *
527  * crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to
528  * pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and
529  * xQueueReceiveFromISR() can only be used to pass data between a task and and
530  * ISR.
531  *
532  * crQUEUE_SEND_FROM_ISR can only be called from an ISR to send data to a queue
533  * that is being used from within a co-routine.
534  *
535  * See the co-routine section of the WEB documentation for information on
536  * passing data between tasks and co-routines and between ISR's and
537  * co-routines.
538  *
539  * @param xQueue The handle to the queue on which the item is to be posted.
540  *
541  * @param pvItemToQueue A pointer to the item that is to be placed on the
542  * queue.  The size of the items the queue will hold was defined when the
543  * queue was created, so this many bytes will be copied from pvItemToQueue
544  * into the queue storage area.
545  *
546  * @param xCoRoutinePreviouslyWoken This is included so an ISR can post onto
547  * the same queue multiple times from a single interrupt.  The first call
548  * should always pass in pdFALSE.  Subsequent calls should pass in
549  * the value returned from the previous call.
550  *
551  * @return pdTRUE if a co-routine was woken by posting onto the queue.  This is
552  * used by the ISR to determine if a context switch may be required following
553  * the ISR.
554  *
555  * Example usage:
556  * @code{c}
557  * // A co-routine that blocks on a queue waiting for characters to be received.
558  * static void vReceivingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
559  * {
560  * char cRxedChar;
561  * BaseType_t xResult;
562  *
563  *   // All co-routines must start with a call to crSTART().
564  *   crSTART( xHandle );
565  *
566  *   for( ;; )
567  *   {
568  *       // Wait for data to become available on the queue.  This assumes the
569  *       // queue xCommsRxQueue has already been created!
570  *       crQUEUE_RECEIVE( xHandle, xCommsRxQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
571  *
572  *       // Was a character received?
573  *       if( xResult == pdPASS )
574  *       {
575  *           // Process the character here.
576  *       }
577  *   }
578  *
579  *   // All co-routines must end with a call to crEND().
580  *   crEND();
581  * }
582  *
583  * // An ISR that uses a queue to send characters received on a serial port to
584  * // a co-routine.
585  * void vUART_ISR( void )
586  * {
587  * char cRxedChar;
588  * BaseType_t xCRWokenByPost = pdFALSE;
589  *
590  *   // We loop around reading characters until there are none left in the UART.
591  *   while( UART_RX_REG_NOT_EMPTY() )
592  *   {
593  *       // Obtain the character from the UART.
594  *       cRxedChar = UART_RX_REG;
595  *
596  *       // Post the character onto a queue.  xCRWokenByPost will be pdFALSE
597  *       // the first time around the loop.  If the post causes a co-routine
598  *       // to be woken (unblocked) then xCRWokenByPost will be set to pdTRUE.
599  *       // In this manner we can ensure that if more than one co-routine is
600  *       // blocked on the queue only one is woken by this ISR no matter how
601  *       // many characters are posted to the queue.
602  *       xCRWokenByPost = crQUEUE_SEND_FROM_ISR( xCommsRxQueue, &cRxedChar, xCRWokenByPost );
603  *   }
604  * }
605  * @endcode
606  * \defgroup crQUEUE_SEND_FROM_ISR crQUEUE_SEND_FROM_ISR
607  * \ingroup Tasks
608  */
609 #define crQUEUE_SEND_FROM_ISR( pxQueue, pvItemToQueue, xCoRoutinePreviouslyWoken ) \
610     xQueueCRSendFromISR( ( pxQueue ), ( pvItemToQueue ), ( xCoRoutinePreviouslyWoken ) )
611 
612 
613 /**
614  * croutine. h
615  * @code{c}
616  * crQUEUE_SEND_FROM_ISR(
617  *                          QueueHandle_t pxQueue,
618  *                          void *pvBuffer,
619  *                          BaseType_t * pxCoRoutineWoken
620  *                     )
621  * @endcode
622  *
623  * The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the
624  * co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR()
625  * functions used by tasks.
626  *
627  * crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to
628  * pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and
629  * xQueueReceiveFromISR() can only be used to pass data between a task and and
630  * ISR.
631  *
632  * crQUEUE_RECEIVE_FROM_ISR can only be called from an ISR to receive data
633  * from a queue that is being used from within a co-routine (a co-routine
634  * posted to the queue).
635  *
636  * See the co-routine section of the WEB documentation for information on
637  * passing data between tasks and co-routines and between ISR's and
638  * co-routines.
639  *
640  * @param xQueue The handle to the queue on which the item is to be posted.
641  *
642  * @param pvBuffer A pointer to a buffer into which the received item will be
643  * placed.  The size of the items the queue will hold was defined when the
644  * queue was created, so this many bytes will be copied from the queue into
645  * pvBuffer.
646  *
647  * @param pxCoRoutineWoken A co-routine may be blocked waiting for space to become
648  * available on the queue.  If crQUEUE_RECEIVE_FROM_ISR causes such a
649  * co-routine to unblock *pxCoRoutineWoken will get set to pdTRUE, otherwise
650  * *pxCoRoutineWoken will remain unchanged.
651  *
652  * @return pdTRUE an item was successfully received from the queue, otherwise
653  * pdFALSE.
654  *
655  * Example usage:
656  * @code{c}
657  * // A co-routine that posts a character to a queue then blocks for a fixed
658  * // period.  The character is incremented each time.
659  * static void vSendingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
660  * {
661  * // cChar holds its value while this co-routine is blocked and must therefore
662  * // be declared static.
663  * static char cCharToTx = 'a';
664  * BaseType_t xResult;
665  *
666  *   // All co-routines must start with a call to crSTART().
667  *   crSTART( xHandle );
668  *
669  *   for( ;; )
670  *   {
671  *       // Send the next character to the queue.
672  *       crQUEUE_SEND( xHandle, xCoRoutineQueue, &cCharToTx, NO_DELAY, &xResult );
673  *
674  *       if( xResult == pdPASS )
675  *       {
676  *           // The character was successfully posted to the queue.
677  *       }
678  *       else
679  *       {
680  *          // Could not post the character to the queue.
681  *       }
682  *
683  *       // Enable the UART Tx interrupt to cause an interrupt in this
684  *       // hypothetical UART.  The interrupt will obtain the character
685  *       // from the queue and send it.
686  *       ENABLE_RX_INTERRUPT();
687  *
688  *       // Increment to the next character then block for a fixed period.
689  *       // cCharToTx will maintain its value across the delay as it is
690  *       // declared static.
691  *       cCharToTx++;
692  *       if( cCharToTx > 'x' )
693  *       {
694  *          cCharToTx = 'a';
695  *       }
696  *       crDELAY( 100 );
697  *   }
698  *
699  *   // All co-routines must end with a call to crEND().
700  *   crEND();
701  * }
702  *
703  * // An ISR that uses a queue to receive characters to send on a UART.
704  * void vUART_ISR( void )
705  * {
706  * char cCharToTx;
707  * BaseType_t xCRWokenByPost = pdFALSE;
708  *
709  *   while( UART_TX_REG_EMPTY() )
710  *   {
711  *       // Are there any characters in the queue waiting to be sent?
712  *       // xCRWokenByPost will automatically be set to pdTRUE if a co-routine
713  *       // is woken by the post - ensuring that only a single co-routine is
714  *       // woken no matter how many times we go around this loop.
715  *       if( crQUEUE_RECEIVE_FROM_ISR( pxQueue, &cCharToTx, &xCRWokenByPost ) )
716  *       {
717  *           SEND_CHARACTER( cCharToTx );
718  *       }
719  *   }
720  * }
721  * @endcode
722  * \defgroup crQUEUE_RECEIVE_FROM_ISR crQUEUE_RECEIVE_FROM_ISR
723  * \ingroup Tasks
724  */
725 #define crQUEUE_RECEIVE_FROM_ISR( pxQueue, pvBuffer, pxCoRoutineWoken ) \
726     xQueueCRReceiveFromISR( ( pxQueue ), ( pvBuffer ), ( pxCoRoutineWoken ) )
727 
728 /*
729  * This function is intended for internal use by the co-routine macros only.
730  * The macro nature of the co-routine implementation requires that the
731  * prototype appears here.  The function should not be used by application
732  * writers.
733  *
734  * Removes the current co-routine from its ready list and places it in the
735  * appropriate delayed list.
736  */
737 void vCoRoutineAddToDelayedList( TickType_t xTicksToDelay,
738                                  List_t * pxEventList );
739 
740 /*
741  * This function is intended for internal use by the queue implementation only.
742  * The function should not be used by application writers.
743  *
744  * Removes the highest priority co-routine from the event list and places it in
745  * the pending ready list.
746  */
747 BaseType_t xCoRoutineRemoveFromEventList( const List_t * pxEventList );
748 
749 
750 /*
751  * This function resets the internal state of the coroutine module. It must be
752  * called by the application before restarting the scheduler.
753  */
754 void vCoRoutineResetState( void ) PRIVILEGED_FUNCTION;
755 
756 /* *INDENT-OFF* */
757 #ifdef __cplusplus
758     }
759 #endif
760 /* *INDENT-ON* */
761 
762 #endif /* CO_ROUTINE_H */
763