1 /*
2 * FreeRTOS Kernel V11.1.0
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4 *
5 * SPDX-License-Identifier: MIT
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
8 * this software and associated documentation files (the "Software"), to deal in
9 * the Software without restriction, including without limitation the rights to
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 * the Software, and to permit persons to whom the Software is furnished to do so,
12 * subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in all
15 * copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * https://www.FreeRTOS.org
25 * https://github.com/FreeRTOS
26 *
27 */
28
29 /*-----------------------------------------------------------
30 * Implementation of functions defined in portable.h for the ARM CM7 port.
31 *----------------------------------------------------------*/
32
33 /* Scheduler includes. */
34 #include "FreeRTOS.h"
35 #include "task.h"
36
37 #ifndef __TARGET_FPU_VFP
38 #error This port can only be used when the project options are configured to enable hardware floating point support.
39 #endif
40
41 #if configMAX_SYSCALL_INTERRUPT_PRIORITY == 0
42 #error configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0. See http: /*www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
43 #endif
44
45 /* The __weak attribute does not work as you might expect with the Keil tools
46 * so the configOVERRIDE_DEFAULT_TICK_CONFIGURATION constant must be set to 1 if
47 * the application writer wants to provide their own implementation of
48 * vPortSetupTimerInterrupt(). Ensure configOVERRIDE_DEFAULT_TICK_CONFIGURATION
49 * is defined. */
50 #ifndef configOVERRIDE_DEFAULT_TICK_CONFIGURATION
51 #define configOVERRIDE_DEFAULT_TICK_CONFIGURATION 0
52 #endif
53
54 /* Constants required to manipulate the core. Registers first... */
55 #define portNVIC_SYSTICK_CTRL_REG ( *( ( volatile uint32_t * ) 0xe000e010 ) )
56 #define portNVIC_SYSTICK_LOAD_REG ( *( ( volatile uint32_t * ) 0xe000e014 ) )
57 #define portNVIC_SYSTICK_CURRENT_VALUE_REG ( *( ( volatile uint32_t * ) 0xe000e018 ) )
58 #define portNVIC_SHPR3_REG ( *( ( volatile uint32_t * ) 0xe000ed20 ) )
59 /* ...then bits in the registers. */
60 #define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL )
61 #define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL )
62 #define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL )
63 #define portNVIC_SYSTICK_COUNT_FLAG_BIT ( 1UL << 16UL )
64 #define portNVIC_PENDSVCLEAR_BIT ( 1UL << 27UL )
65 #define portNVIC_PEND_SYSTICK_SET_BIT ( 1UL << 26UL )
66 #define portNVIC_PEND_SYSTICK_CLEAR_BIT ( 1UL << 25UL )
67
68 #define portMIN_INTERRUPT_PRIORITY ( 255UL )
69 #define portNVIC_PENDSV_PRI ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 16UL )
70 #define portNVIC_SYSTICK_PRI ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 24UL )
71
72 /* Constants required to check the validity of an interrupt priority. */
73 #define portFIRST_USER_INTERRUPT_NUMBER ( 16 )
74 #define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 )
75 #define portAIRCR_REG ( *( ( volatile uint32_t * ) 0xE000ED0C ) )
76 #define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff )
77 #define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 )
78 #define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 )
79 #define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL )
80 #define portPRIGROUP_SHIFT ( 8UL )
81
82 /* Masks off all bits but the VECTACTIVE bits in the ICSR register. */
83 #define portVECTACTIVE_MASK ( 0xFFUL )
84
85 /* Constants required to manipulate the VFP. */
86 #define portFPCCR ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating point context control register. */
87 #define portASPEN_AND_LSPEN_BITS ( 0x3UL << 30UL )
88
89 /* Constants required to set up the initial stack. */
90 #define portINITIAL_XPSR ( 0x01000000 )
91 #define portINITIAL_EXC_RETURN ( 0xfffffffd )
92
93 /* The systick is a 24-bit counter. */
94 #define portMAX_24_BIT_NUMBER ( 0xffffffUL )
95
96 /* A fiddle factor to estimate the number of SysTick counts that would have
97 * occurred while the SysTick counter is stopped during tickless idle
98 * calculations. */
99 #define portMISSED_COUNTS_FACTOR ( 94UL )
100
101 /* For strict compliance with the Cortex-M spec the task start address should
102 * have bit-0 clear, as it is loaded into the PC on exit from an ISR. */
103 #define portSTART_ADDRESS_MASK ( ( StackType_t ) 0xfffffffeUL )
104
105 /* Let the user override the default SysTick clock rate. If defined by the
106 * user, this symbol must equal the SysTick clock rate when the CLK bit is 0 in the
107 * configuration register. */
108 #ifndef configSYSTICK_CLOCK_HZ
109 #define configSYSTICK_CLOCK_HZ ( configCPU_CLOCK_HZ )
110 /* Ensure the SysTick is clocked at the same frequency as the core. */
111 #define portNVIC_SYSTICK_CLK_BIT_CONFIG ( portNVIC_SYSTICK_CLK_BIT )
112 #else
113 /* Select the option to clock SysTick not at the same frequency as the core. */
114 #define portNVIC_SYSTICK_CLK_BIT_CONFIG ( 0 )
115 #endif
116
117 /*
118 * Setup the timer to generate the tick interrupts. The implementation in this
119 * file is weak to allow application writers to change the timer used to
120 * generate the tick interrupt.
121 */
122 void vPortSetupTimerInterrupt( void );
123
124 /*
125 * Exception handlers.
126 */
127 void xPortPendSVHandler( void );
128 void xPortSysTickHandler( void );
129 void vPortSVCHandler( void );
130
131 /*
132 * Start first task is a separate function so it can be tested in isolation.
133 */
134 static void prvStartFirstTask( void );
135
136 /*
137 * Functions defined in portasm.s to enable the VFP.
138 */
139 static void prvEnableVFP( void );
140
141 /*
142 * Used to catch tasks that attempt to return from their implementing function.
143 */
144 static void prvTaskExitError( void );
145
146 /*-----------------------------------------------------------*/
147
148 /* Each task maintains its own interrupt status in the critical nesting
149 * variable. */
150 static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
151
152 /*
153 * The number of SysTick increments that make up one tick period.
154 */
155 #if ( configUSE_TICKLESS_IDLE == 1 )
156 static uint32_t ulTimerCountsForOneTick = 0;
157 #endif /* configUSE_TICKLESS_IDLE */
158
159 /*
160 * The maximum number of tick periods that can be suppressed is limited by the
161 * 24 bit resolution of the SysTick timer.
162 */
163 #if ( configUSE_TICKLESS_IDLE == 1 )
164 static uint32_t xMaximumPossibleSuppressedTicks = 0;
165 #endif /* configUSE_TICKLESS_IDLE */
166
167 /*
168 * Compensate for the CPU cycles that pass while the SysTick is stopped (low
169 * power functionality only.
170 */
171 #if ( configUSE_TICKLESS_IDLE == 1 )
172 static uint32_t ulStoppedTimerCompensation = 0;
173 #endif /* configUSE_TICKLESS_IDLE */
174
175 /*
176 * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
177 * FreeRTOS API functions are not called from interrupts that have been assigned
178 * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
179 */
180 #if ( configASSERT_DEFINED == 1 )
181 static uint8_t ucMaxSysCallPriority = 0;
182 static uint32_t ulMaxPRIGROUPValue = 0;
183 static const volatile uint8_t * const pcInterruptPriorityRegisters = ( uint8_t * ) portNVIC_IP_REGISTERS_OFFSET_16;
184 #endif /* configASSERT_DEFINED */
185
186 /*-----------------------------------------------------------*/
187
188 /*
189 * See header file for description.
190 */
pxPortInitialiseStack(StackType_t * pxTopOfStack,TaskFunction_t pxCode,void * pvParameters)191 StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
192 TaskFunction_t pxCode,
193 void * pvParameters )
194 {
195 /* Simulate the stack frame as it would be created by a context switch
196 * interrupt. */
197
198 /* Offset added to account for the way the MCU uses the stack on entry/exit
199 * of interrupts, and to ensure alignment. */
200 pxTopOfStack--;
201
202 *pxTopOfStack = portINITIAL_XPSR; /* xPSR */
203 pxTopOfStack--;
204 *pxTopOfStack = ( ( StackType_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC */
205 pxTopOfStack--;
206 *pxTopOfStack = ( StackType_t ) prvTaskExitError; /* LR */
207
208 /* Save code space by skipping register initialisation. */
209 pxTopOfStack -= 5; /* R12, R3, R2 and R1. */
210 *pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
211
212 /* A save method is being used that requires each task to maintain its
213 * own exec return value. */
214 pxTopOfStack--;
215 *pxTopOfStack = portINITIAL_EXC_RETURN;
216
217 pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */
218
219 return pxTopOfStack;
220 }
221 /*-----------------------------------------------------------*/
222
prvTaskExitError(void)223 static void prvTaskExitError( void )
224 {
225 /* A function that implements a task must not exit or attempt to return to
226 * its caller as there is nothing to return to. If a task wants to exit it
227 * should instead call vTaskDelete( NULL ).
228 *
229 * Artificially force an assert() to be triggered if configASSERT() is
230 * defined, then stop here so application writers can catch the error. */
231 configASSERT( uxCriticalNesting == ~0UL );
232 portDISABLE_INTERRUPTS();
233
234 for( ; ; )
235 {
236 }
237 }
238 /*-----------------------------------------------------------*/
239
vPortSVCHandler(void)240 __asm void vPortSVCHandler( void )
241 {
242 /* *INDENT-OFF* */
243 PRESERVE8
244
245 /* Get the location of the current TCB. */
246 ldr r3, =pxCurrentTCB
247 ldr r1, [ r3 ]
248 ldr r0, [ r1 ]
249 /* Pop the core registers. */
250 ldmia r0!, { r4-r11, r14 }
251 msr psp, r0
252 isb
253 mov r0, #0
254 msr basepri, r0
255 bx r14
256 /* *INDENT-ON* */
257 }
258 /*-----------------------------------------------------------*/
259
prvStartFirstTask(void)260 __asm void prvStartFirstTask( void )
261 {
262 /* *INDENT-OFF* */
263 PRESERVE8
264
265 /* Use the NVIC offset register to locate the stack. */
266 ldr r0, =0xE000ED08
267 ldr r0, [ r0 ]
268 ldr r0, [ r0 ]
269 /* Set the msp back to the start of the stack. */
270 msr msp, r0
271
272 /* Clear the bit that indicates the FPU is in use in case the FPU was used
273 * before the scheduler was started - which would otherwise result in the
274 * unnecessary leaving of space in the SVC stack for lazy saving of FPU
275 * registers. */
276 mov r0, #0
277 msr control, r0
278 /* Globally enable interrupts. */
279 cpsie i
280 cpsie f
281 dsb
282 isb
283 /* Call SVC to start the first task. */
284 svc 0
285 nop
286 nop
287 /* *INDENT-ON* */
288 }
289 /*-----------------------------------------------------------*/
290
prvEnableVFP(void)291 __asm void prvEnableVFP( void )
292 {
293 /* *INDENT-OFF* */
294 PRESERVE8
295
296 /* The FPU enable bits are in the CPACR. */
297 ldr.w r0, =0xE000ED88
298 ldr r1, [ r0 ]
299
300 /* Enable CP10 and CP11 coprocessors, then save back. */
301 orr r1, r1, #( 0xf << 20 )
302 str r1, [ r0 ]
303 bx r14
304 nop
305 /* *INDENT-ON* */
306 }
307 /*-----------------------------------------------------------*/
308
309 /*
310 * See header file for description.
311 */
xPortStartScheduler(void)312 BaseType_t xPortStartScheduler( void )
313 {
314 #if ( configASSERT_DEFINED == 1 )
315 {
316 volatile uint8_t ucOriginalPriority;
317 volatile uint32_t ulImplementedPrioBits = 0;
318 volatile uint8_t * const pucFirstUserPriorityRegister = ( uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
319 volatile uint8_t ucMaxPriorityValue;
320
321 /* Determine the maximum priority from which ISR safe FreeRTOS API
322 * functions can be called. ISR safe functions are those that end in
323 * "FromISR". FreeRTOS maintains separate thread and ISR API functions to
324 * ensure interrupt entry is as fast and simple as possible.
325 *
326 * Save the interrupt priority value that is about to be clobbered. */
327 ucOriginalPriority = *pucFirstUserPriorityRegister;
328
329 /* Determine the number of priority bits available. First write to all
330 * possible bits. */
331 *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
332
333 /* Read the value back to see how many bits stuck. */
334 ucMaxPriorityValue = *pucFirstUserPriorityRegister;
335
336 /* Use the same mask on the maximum system call priority. */
337 ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
338
339 /* Check that the maximum system call priority is nonzero after
340 * accounting for the number of priority bits supported by the
341 * hardware. A priority of 0 is invalid because setting the BASEPRI
342 * register to 0 unmasks all interrupts, and interrupts with priority 0
343 * cannot be masked using BASEPRI.
344 * See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
345 configASSERT( ucMaxSysCallPriority );
346
347 /* Check that the bits not implemented in hardware are zero in
348 * configMAX_SYSCALL_INTERRUPT_PRIORITY. */
349 configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & ( ~ucMaxPriorityValue ) ) == 0U );
350
351 /* Calculate the maximum acceptable priority group value for the number
352 * of bits read back. */
353
354 while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
355 {
356 ulImplementedPrioBits++;
357 ucMaxPriorityValue <<= ( uint8_t ) 0x01;
358 }
359
360 if( ulImplementedPrioBits == 8 )
361 {
362 /* When the hardware implements 8 priority bits, there is no way for
363 * the software to configure PRIGROUP to not have sub-priorities. As
364 * a result, the least significant bit is always used for sub-priority
365 * and there are 128 preemption priorities and 2 sub-priorities.
366 *
367 * This may cause some confusion in some cases - for example, if
368 * configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
369 * priority interrupts will be masked in Critical Sections as those
370 * are at the same preemption priority. This may appear confusing as
371 * 4 is higher (numerically lower) priority than
372 * configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
373 * have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
374 * to 4, this confusion does not happen and the behaviour remains the same.
375 *
376 * The following assert ensures that the sub-priority bit in the
377 * configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
378 * confusion. */
379 configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
380 ulMaxPRIGROUPValue = 0;
381 }
382 else
383 {
384 ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
385 }
386
387 /* Shift the priority group value back to its position within the AIRCR
388 * register. */
389 ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
390 ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
391
392 /* Restore the clobbered interrupt priority register to its original
393 * value. */
394 *pucFirstUserPriorityRegister = ucOriginalPriority;
395 }
396 #endif /* configASSERT_DEFINED */
397
398 /* Make PendSV and SysTick the lowest priority interrupts. */
399 portNVIC_SHPR3_REG |= portNVIC_PENDSV_PRI;
400 portNVIC_SHPR3_REG |= portNVIC_SYSTICK_PRI;
401
402 /* Start the timer that generates the tick ISR. Interrupts are disabled
403 * here already. */
404 vPortSetupTimerInterrupt();
405
406 /* Initialise the critical nesting count ready for the first task. */
407 uxCriticalNesting = 0;
408
409 /* Ensure the VFP is enabled - it should be anyway. */
410 prvEnableVFP();
411
412 /* Lazy save always. */
413 *( portFPCCR ) |= portASPEN_AND_LSPEN_BITS;
414
415 /* Start the first task. */
416 prvStartFirstTask();
417
418 /* Should not get here! */
419 return 0;
420 }
421 /*-----------------------------------------------------------*/
422
vPortEndScheduler(void)423 void vPortEndScheduler( void )
424 {
425 /* Not implemented in ports where there is nothing to return to.
426 * Artificially force an assert. */
427 configASSERT( uxCriticalNesting == 1000UL );
428 }
429 /*-----------------------------------------------------------*/
430
vPortEnterCritical(void)431 void vPortEnterCritical( void )
432 {
433 portDISABLE_INTERRUPTS();
434 uxCriticalNesting++;
435
436 /* This is not the interrupt safe version of the enter critical function so
437 * assert() if it is being called from an interrupt context. Only API
438 * functions that end in "FromISR" can be used in an interrupt. Only assert if
439 * the critical nesting count is 1 to protect against recursive calls if the
440 * assert function also uses a critical section. */
441 if( uxCriticalNesting == 1 )
442 {
443 configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
444 }
445 }
446 /*-----------------------------------------------------------*/
447
vPortExitCritical(void)448 void vPortExitCritical( void )
449 {
450 configASSERT( uxCriticalNesting );
451 uxCriticalNesting--;
452
453 if( uxCriticalNesting == 0 )
454 {
455 portENABLE_INTERRUPTS();
456 }
457 }
458 /*-----------------------------------------------------------*/
459
xPortPendSVHandler(void)460 __asm void xPortPendSVHandler( void )
461 {
462 extern uxCriticalNesting;
463 extern pxCurrentTCB;
464 extern vTaskSwitchContext;
465
466 /* *INDENT-OFF* */
467 PRESERVE8
468
469 mrs r0, psp
470 isb
471 /* Get the location of the current TCB. */
472 ldr r3, =pxCurrentTCB
473 ldr r2, [ r3 ]
474
475 /* Is the task using the FPU context? If so, push high vfp registers. */
476 tst r14, #0x10
477 it eq
478 vstmdbeq r0!, {s16-s31}
479
480 /* Save the core registers. */
481 stmdb r0!, {r4-r11, r14 }
482
483 /* Save the new top of stack into the first member of the TCB. */
484 str r0, [ r2 ]
485
486 stmdb sp!, { r0, r3 }
487 mov r0, #configMAX_SYSCALL_INTERRUPT_PRIORITY
488 cpsid i
489 msr basepri, r0
490 dsb
491 isb
492 cpsie i
493 bl vTaskSwitchContext
494 mov r0, #0
495 msr basepri, r0
496 ldmia sp!, { r0, r3 }
497
498 /* The first item in pxCurrentTCB is the task top of stack. */
499 ldr r1, [ r3 ]
500 ldr r0, [ r1 ]
501
502 /* Pop the core registers. */
503 ldmia r0!, { r4-r11, r14 }
504
505 /* Is the task using the FPU context? If so, pop the high vfp registers
506 * too. */
507 tst r14, #0x10
508 it eq
509 vldmiaeq r0!, { s16-s31 }
510
511 msr psp, r0
512 isb
513 #ifdef WORKAROUND_PMU_CM001 /* XMC4000 specific errata */
514 #if WORKAROUND_PMU_CM001 == 1
515 push { r14 }
516 pop { pc }
517 nop
518 #endif
519 #endif
520
521 bx r14
522 /* *INDENT-ON* */
523 }
524 /*-----------------------------------------------------------*/
525
xPortSysTickHandler(void)526 void xPortSysTickHandler( void )
527 {
528 /* The SysTick runs at the lowest interrupt priority, so when this interrupt
529 * executes all interrupts must be unmasked. There is therefore no need to
530 * save and then restore the interrupt mask value as its value is already
531 * known - therefore the slightly faster vPortRaiseBASEPRI() function is used
532 * in place of portSET_INTERRUPT_MASK_FROM_ISR(). */
533 vPortRaiseBASEPRI();
534 traceISR_ENTER();
535 {
536 /* Increment the RTOS tick. */
537 if( xTaskIncrementTick() != pdFALSE )
538 {
539 traceISR_EXIT_TO_SCHEDULER();
540
541 /* A context switch is required. Context switching is performed in
542 * the PendSV interrupt. Pend the PendSV interrupt. */
543 portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
544 }
545 else
546 {
547 traceISR_EXIT();
548 }
549 }
550
551 vPortClearBASEPRIFromISR();
552 }
553 /*-----------------------------------------------------------*/
554
555 #if ( configUSE_TICKLESS_IDLE == 1 )
556
vPortSuppressTicksAndSleep(TickType_t xExpectedIdleTime)557 __weak void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
558 {
559 uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickDecrementsLeft;
560 TickType_t xModifiableIdleTime;
561
562 /* Make sure the SysTick reload value does not overflow the counter. */
563 if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
564 {
565 xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
566 }
567
568 /* Enter a critical section but don't use the taskENTER_CRITICAL()
569 * method as that will mask interrupts that should exit sleep mode. */
570 __disable_irq();
571 __dsb( portSY_FULL_READ_WRITE );
572 __isb( portSY_FULL_READ_WRITE );
573
574 /* If a context switch is pending or a task is waiting for the scheduler
575 * to be unsuspended then abandon the low power entry. */
576 if( eTaskConfirmSleepModeStatus() == eAbortSleep )
577 {
578 /* Re-enable interrupts - see comments above the __disable_irq()
579 * call above. */
580 __enable_irq();
581 }
582 else
583 {
584 /* Stop the SysTick momentarily. The time the SysTick is stopped for
585 * is accounted for as best it can be, but using the tickless mode will
586 * inevitably result in some tiny drift of the time maintained by the
587 * kernel with respect to calendar time. */
588 portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
589
590 /* Use the SysTick current-value register to determine the number of
591 * SysTick decrements remaining until the next tick interrupt. If the
592 * current-value register is zero, then there are actually
593 * ulTimerCountsForOneTick decrements remaining, not zero, because the
594 * SysTick requests the interrupt when decrementing from 1 to 0. */
595 ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
596
597 if( ulSysTickDecrementsLeft == 0 )
598 {
599 ulSysTickDecrementsLeft = ulTimerCountsForOneTick;
600 }
601
602 /* Calculate the reload value required to wait xExpectedIdleTime
603 * tick periods. -1 is used because this code normally executes part
604 * way through the first tick period. But if the SysTick IRQ is now
605 * pending, then clear the IRQ, suppressing the first tick, and correct
606 * the reload value to reflect that the second tick period is already
607 * underway. The expected idle time is always at least two ticks. */
608 ulReloadValue = ulSysTickDecrementsLeft + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
609
610 if( ( portNVIC_INT_CTRL_REG & portNVIC_PEND_SYSTICK_SET_BIT ) != 0 )
611 {
612 portNVIC_INT_CTRL_REG = portNVIC_PEND_SYSTICK_CLEAR_BIT;
613 ulReloadValue -= ulTimerCountsForOneTick;
614 }
615
616 if( ulReloadValue > ulStoppedTimerCompensation )
617 {
618 ulReloadValue -= ulStoppedTimerCompensation;
619 }
620
621 /* Set the new reload value. */
622 portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
623
624 /* Clear the SysTick count flag and set the count value back to
625 * zero. */
626 portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
627
628 /* Restart SysTick. */
629 portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
630
631 /* Sleep until something happens. configPRE_SLEEP_PROCESSING() can
632 * set its parameter to 0 to indicate that its implementation contains
633 * its own wait for interrupt or wait for event instruction, and so wfi
634 * should not be executed again. However, the original expected idle
635 * time variable must remain unmodified, so a copy is taken. */
636 xModifiableIdleTime = xExpectedIdleTime;
637 configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
638
639 if( xModifiableIdleTime > 0 )
640 {
641 __dsb( portSY_FULL_READ_WRITE );
642 __wfi();
643 __isb( portSY_FULL_READ_WRITE );
644 }
645
646 configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
647
648 /* Re-enable interrupts to allow the interrupt that brought the MCU
649 * out of sleep mode to execute immediately. See comments above
650 * the __disable_irq() call above. */
651 __enable_irq();
652 __dsb( portSY_FULL_READ_WRITE );
653 __isb( portSY_FULL_READ_WRITE );
654
655 /* Disable interrupts again because the clock is about to be stopped
656 * and interrupts that execute while the clock is stopped will increase
657 * any slippage between the time maintained by the RTOS and calendar
658 * time. */
659 __disable_irq();
660 __dsb( portSY_FULL_READ_WRITE );
661 __isb( portSY_FULL_READ_WRITE );
662
663 /* Disable the SysTick clock without reading the
664 * portNVIC_SYSTICK_CTRL_REG register to ensure the
665 * portNVIC_SYSTICK_COUNT_FLAG_BIT is not cleared if it is set. Again,
666 * the time the SysTick is stopped for is accounted for as best it can
667 * be, but using the tickless mode will inevitably result in some tiny
668 * drift of the time maintained by the kernel with respect to calendar
669 * time*/
670 portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
671
672 /* Determine whether the SysTick has already counted to zero. */
673 if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
674 {
675 uint32_t ulCalculatedLoadValue;
676
677 /* The tick interrupt ended the sleep (or is now pending), and
678 * a new tick period has started. Reset portNVIC_SYSTICK_LOAD_REG
679 * with whatever remains of the new tick period. */
680 ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
681
682 /* Don't allow a tiny value, or values that have somehow
683 * underflowed because the post sleep hook did something
684 * that took too long or because the SysTick current-value register
685 * is zero. */
686 if( ( ulCalculatedLoadValue <= ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
687 {
688 ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL );
689 }
690
691 portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
692
693 /* As the pending tick will be processed as soon as this
694 * function exits, the tick value maintained by the tick is stepped
695 * forward by one less than the time spent waiting. */
696 ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
697 }
698 else
699 {
700 /* Something other than the tick interrupt ended the sleep. */
701
702 /* Use the SysTick current-value register to determine the
703 * number of SysTick decrements remaining until the expected idle
704 * time would have ended. */
705 ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
706 #if ( portNVIC_SYSTICK_CLK_BIT_CONFIG != portNVIC_SYSTICK_CLK_BIT )
707 {
708 /* If the SysTick is not using the core clock, the current-
709 * value register might still be zero here. In that case, the
710 * SysTick didn't load from the reload register, and there are
711 * ulReloadValue decrements remaining in the expected idle
712 * time, not zero. */
713 if( ulSysTickDecrementsLeft == 0 )
714 {
715 ulSysTickDecrementsLeft = ulReloadValue;
716 }
717 }
718 #endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
719
720 /* Work out how long the sleep lasted rounded to complete tick
721 * periods (not the ulReload value which accounted for part
722 * ticks). */
723 ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - ulSysTickDecrementsLeft;
724
725 /* How many complete tick periods passed while the processor
726 * was waiting? */
727 ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
728
729 /* The reload value is set to whatever fraction of a single tick
730 * period remains. */
731 portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1UL ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
732 }
733
734 /* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG again,
735 * then set portNVIC_SYSTICK_LOAD_REG back to its standard value. If
736 * the SysTick is not using the core clock, temporarily configure it to
737 * use the core clock. This configuration forces the SysTick to load
738 * from portNVIC_SYSTICK_LOAD_REG immediately instead of at the next
739 * cycle of the other clock. Then portNVIC_SYSTICK_LOAD_REG is ready
740 * to receive the standard value immediately. */
741 portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
742 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
743 #if ( portNVIC_SYSTICK_CLK_BIT_CONFIG == portNVIC_SYSTICK_CLK_BIT )
744 {
745 portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
746 }
747 #else
748 {
749 /* The temporary usage of the core clock has served its purpose,
750 * as described above. Resume usage of the other clock. */
751 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT;
752
753 if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
754 {
755 /* The partial tick period already ended. Be sure the SysTick
756 * counts it only once. */
757 portNVIC_SYSTICK_CURRENT_VALUE_REG = 0;
758 }
759
760 portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
761 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
762 }
763 #endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
764
765 /* Step the tick to account for any tick periods that elapsed. */
766 vTaskStepTick( ulCompleteTickPeriods );
767
768 /* Exit with interrupts enabled. */
769 __enable_irq();
770 }
771 }
772
773 #endif /* #if configUSE_TICKLESS_IDLE */
774
775 /*-----------------------------------------------------------*/
776
777 /*
778 * Setup the SysTick timer to generate the tick interrupts at the required
779 * frequency.
780 */
781 #if ( configOVERRIDE_DEFAULT_TICK_CONFIGURATION == 0 )
782
vPortSetupTimerInterrupt(void)783 __weak void vPortSetupTimerInterrupt( void )
784 {
785 /* Calculate the constants required to configure the tick interrupt. */
786 #if ( configUSE_TICKLESS_IDLE == 1 )
787 {
788 ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ );
789 xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
790 ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ );
791 }
792 #endif /* configUSE_TICKLESS_IDLE */
793
794 /* Stop and clear the SysTick. */
795 portNVIC_SYSTICK_CTRL_REG = 0UL;
796 portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
797
798 /* Configure SysTick to interrupt at the requested rate. */
799 portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
800 portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT );
801 }
802
803 #endif /* configOVERRIDE_DEFAULT_TICK_CONFIGURATION */
804 /*-----------------------------------------------------------*/
805
vPortGetIPSR(void)806 __asm uint32_t vPortGetIPSR( void )
807 {
808 /* *INDENT-OFF* */
809 PRESERVE8
810
811 mrs r0, ipsr
812 bx r14
813 /* *INDENT-ON* */
814 }
815 /*-----------------------------------------------------------*/
816
817 #if ( configASSERT_DEFINED == 1 )
818
vPortValidateInterruptPriority(void)819 void vPortValidateInterruptPriority( void )
820 {
821 uint32_t ulCurrentInterrupt;
822 uint8_t ucCurrentPriority;
823
824 /* Obtain the number of the currently executing interrupt. */
825 ulCurrentInterrupt = vPortGetIPSR();
826
827 /* Is the interrupt number a user defined interrupt? */
828 if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
829 {
830 /* Look up the interrupt's priority. */
831 ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
832
833 /* The following assertion will fail if a service routine (ISR) for
834 * an interrupt that has been assigned a priority above
835 * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
836 * function. ISR safe FreeRTOS API functions must *only* be called
837 * from interrupts that have been assigned a priority at or below
838 * configMAX_SYSCALL_INTERRUPT_PRIORITY.
839 *
840 * Numerically low interrupt priority numbers represent logically high
841 * interrupt priorities, therefore the priority of the interrupt must
842 * be set to a value equal to or numerically *higher* than
843 * configMAX_SYSCALL_INTERRUPT_PRIORITY.
844 *
845 * Interrupts that use the FreeRTOS API must not be left at their
846 * default priority of zero as that is the highest possible priority,
847 * which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
848 * and therefore also guaranteed to be invalid.
849 *
850 * FreeRTOS maintains separate thread and ISR API functions to ensure
851 * interrupt entry is as fast and simple as possible.
852 *
853 * The following links provide detailed information:
854 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
855 * https://www.FreeRTOS.org/FAQHelp.html */
856 configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
857 }
858
859 /* Priority grouping: The interrupt controller (NVIC) allows the bits
860 * that define each interrupt's priority to be split between bits that
861 * define the interrupt's pre-emption priority bits and bits that define
862 * the interrupt's sub-priority. For simplicity all bits must be defined
863 * to be pre-emption priority bits. The following assertion will fail if
864 * this is not the case (if some bits represent a sub-priority).
865 *
866 * If the application only uses CMSIS libraries for interrupt
867 * configuration then the correct setting can be achieved on all Cortex-M
868 * devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
869 * scheduler. Note however that some vendor specific peripheral libraries
870 * assume a non-zero priority group setting, in which cases using a value
871 * of zero will result in unpredictable behaviour. */
872 configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
873 }
874
875 #endif /* configASSERT_DEFINED */
876