1 /*
2  * FreeRTOS Kernel V11.1.0
3  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4  *
5  * SPDX-License-Identifier: MIT
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in all
15  * copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * https://www.FreeRTOS.org
25  * https://github.com/FreeRTOS
26  *
27  */
28 
29 /*-----------------------------------------------------------
30 * Implementation of functions defined in portable.h for the ARM CM7 port.
31 *----------------------------------------------------------*/
32 
33 /* IAR includes. */
34 #include <intrinsics.h>
35 
36 /* Scheduler includes. */
37 #include "FreeRTOS.h"
38 #include "task.h"
39 
40 #ifndef __ARMVFP__
41     #error This port can only be used when the project options are configured to enable hardware floating point support.
42 #endif
43 
44 #if ( configMAX_SYSCALL_INTERRUPT_PRIORITY == 0 )
45     #error configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0.  See http: /*www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
46 #endif
47 
48 /* Prototype of all Interrupt Service Routines (ISRs). */
49 typedef void ( * portISR_t )( void );
50 
51 /* Constants required to manipulate the core.  Registers first... */
52 #define portNVIC_SYSTICK_CTRL_REG             ( *( ( volatile uint32_t * ) 0xe000e010 ) )
53 #define portNVIC_SYSTICK_LOAD_REG             ( *( ( volatile uint32_t * ) 0xe000e014 ) )
54 #define portNVIC_SYSTICK_CURRENT_VALUE_REG    ( *( ( volatile uint32_t * ) 0xe000e018 ) )
55 #define portNVIC_SHPR2_REG                    ( *( ( volatile uint32_t * ) 0xe000ed1c ) )
56 #define portNVIC_SHPR3_REG                    ( *( ( volatile uint32_t * ) 0xe000ed20 ) )
57 /* ...then bits in the registers. */
58 #define portNVIC_SYSTICK_CLK_BIT              ( 1UL << 2UL )
59 #define portNVIC_SYSTICK_INT_BIT              ( 1UL << 1UL )
60 #define portNVIC_SYSTICK_ENABLE_BIT           ( 1UL << 0UL )
61 #define portNVIC_SYSTICK_COUNT_FLAG_BIT       ( 1UL << 16UL )
62 #define portNVIC_PENDSVCLEAR_BIT              ( 1UL << 27UL )
63 #define portNVIC_PEND_SYSTICK_SET_BIT         ( 1UL << 26UL )
64 #define portNVIC_PEND_SYSTICK_CLEAR_BIT       ( 1UL << 25UL )
65 
66 #define portMIN_INTERRUPT_PRIORITY            ( 255UL )
67 #define portNVIC_PENDSV_PRI                   ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 16UL )
68 #define portNVIC_SYSTICK_PRI                  ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 24UL )
69 
70 /* Constants used to check the installation of the FreeRTOS interrupt handlers. */
71 #define portSCB_VTOR_REG                      ( *( ( portISR_t ** ) 0xE000ED08 ) )
72 #define portVECTOR_INDEX_SVC                  ( 11 )
73 #define portVECTOR_INDEX_PENDSV               ( 14 )
74 
75 /* Constants required to check the validity of an interrupt priority. */
76 #define portFIRST_USER_INTERRUPT_NUMBER       ( 16 )
77 #define portNVIC_IP_REGISTERS_OFFSET_16       ( 0xE000E3F0 )
78 #define portAIRCR_REG                         ( *( ( volatile uint32_t * ) 0xE000ED0C ) )
79 #define portMAX_8_BIT_VALUE                   ( ( uint8_t ) 0xff )
80 #define portTOP_BIT_OF_BYTE                   ( ( uint8_t ) 0x80 )
81 #define portMAX_PRIGROUP_BITS                 ( ( uint8_t ) 7 )
82 #define portPRIORITY_GROUP_MASK               ( 0x07UL << 8UL )
83 #define portPRIGROUP_SHIFT                    ( 8UL )
84 
85 /* Masks off all bits but the VECTACTIVE bits in the ICSR register. */
86 #define portVECTACTIVE_MASK                   ( 0xFFUL )
87 
88 /* Constants required to manipulate the VFP. */
89 #define portFPCCR                             ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating point context control register. */
90 #define portASPEN_AND_LSPEN_BITS              ( 0x3UL << 30UL )
91 
92 /* Constants required to set up the initial stack. */
93 #define portINITIAL_XPSR                      ( 0x01000000 )
94 #define portINITIAL_EXC_RETURN                ( 0xfffffffd )
95 
96 /* The systick is a 24-bit counter. */
97 #define portMAX_24_BIT_NUMBER                 ( 0xffffffUL )
98 
99 /* A fiddle factor to estimate the number of SysTick counts that would have
100  * occurred while the SysTick counter is stopped during tickless idle
101  * calculations. */
102 #define portMISSED_COUNTS_FACTOR              ( 94UL )
103 
104 /* For strict compliance with the Cortex-M spec the task start address should
105  * have bit-0 clear, as it is loaded into the PC on exit from an ISR. */
106 #define portSTART_ADDRESS_MASK                ( ( StackType_t ) 0xfffffffeUL )
107 
108 /* Let the user override the default SysTick clock rate.  If defined by the
109  * user, this symbol must equal the SysTick clock rate when the CLK bit is 0 in the
110  * configuration register. */
111 #ifndef configSYSTICK_CLOCK_HZ
112     #define configSYSTICK_CLOCK_HZ             ( configCPU_CLOCK_HZ )
113     /* Ensure the SysTick is clocked at the same frequency as the core. */
114     #define portNVIC_SYSTICK_CLK_BIT_CONFIG    ( portNVIC_SYSTICK_CLK_BIT )
115 #else
116     /* Select the option to clock SysTick not at the same frequency as the core. */
117     #define portNVIC_SYSTICK_CLK_BIT_CONFIG    ( 0 )
118 #endif
119 
120 /*
121  * Setup the timer to generate the tick interrupts.  The implementation in this
122  * file is weak to allow application writers to change the timer used to
123  * generate the tick interrupt.
124  */
125 void vPortSetupTimerInterrupt( void );
126 
127 /*
128  * Exception handlers.
129  */
130 void xPortSysTickHandler( void );
131 
132 /*
133  * Start first task is a separate function so it can be tested in isolation.
134  */
135 extern void vPortStartFirstTask( void );
136 
137 /*
138  * Turn the VFP on.
139  */
140 extern void vPortEnableVFP( void );
141 
142 /*
143  * Used to catch tasks that attempt to return from their implementing function.
144  */
145 static void prvTaskExitError( void );
146 
147 /*
148  * FreeRTOS handlers implemented in assembly.
149  */
150 extern void vPortSVCHandler( void );
151 extern void xPortPendSVHandler( void );
152 /*-----------------------------------------------------------*/
153 
154 /* Each task maintains its own interrupt status in the critical nesting
155  * variable. */
156 static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
157 
158 /*
159  * The number of SysTick increments that make up one tick period.
160  */
161 #if ( configUSE_TICKLESS_IDLE == 1 )
162     static uint32_t ulTimerCountsForOneTick = 0;
163 #endif /* configUSE_TICKLESS_IDLE */
164 
165 /*
166  * The maximum number of tick periods that can be suppressed is limited by the
167  * 24 bit resolution of the SysTick timer.
168  */
169 #if ( configUSE_TICKLESS_IDLE == 1 )
170     static uint32_t xMaximumPossibleSuppressedTicks = 0;
171 #endif /* configUSE_TICKLESS_IDLE */
172 
173 /*
174  * Compensate for the CPU cycles that pass while the SysTick is stopped (low
175  * power functionality only.
176  */
177 #if ( configUSE_TICKLESS_IDLE == 1 )
178     static uint32_t ulStoppedTimerCompensation = 0;
179 #endif /* configUSE_TICKLESS_IDLE */
180 
181 /*
182  * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
183  * FreeRTOS API functions are not called from interrupts that have been assigned
184  * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
185  */
186 #if ( configASSERT_DEFINED == 1 )
187     static uint8_t ucMaxSysCallPriority = 0;
188     static uint32_t ulMaxPRIGROUPValue = 0;
189     static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * const ) portNVIC_IP_REGISTERS_OFFSET_16;
190 #endif /* configASSERT_DEFINED */
191 
192 /*-----------------------------------------------------------*/
193 
194 /*
195  * See header file for description.
196  */
pxPortInitialiseStack(StackType_t * pxTopOfStack,TaskFunction_t pxCode,void * pvParameters)197 StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
198                                      TaskFunction_t pxCode,
199                                      void * pvParameters )
200 {
201     /* Simulate the stack frame as it would be created by a context switch
202      * interrupt. */
203 
204     /* Offset added to account for the way the MCU uses the stack on entry/exit
205      * of interrupts, and to ensure alignment. */
206     pxTopOfStack--;
207 
208     *pxTopOfStack = portINITIAL_XPSR;                                    /* xPSR */
209     pxTopOfStack--;
210     *pxTopOfStack = ( ( StackType_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC */
211     pxTopOfStack--;
212     *pxTopOfStack = ( StackType_t ) prvTaskExitError;                    /* LR */
213 
214     /* Save code space by skipping register initialisation. */
215     pxTopOfStack -= 5;                            /* R12, R3, R2 and R1. */
216     *pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
217 
218     /* A save method is being used that requires each task to maintain its
219      * own exec return value. */
220     pxTopOfStack--;
221     *pxTopOfStack = portINITIAL_EXC_RETURN;
222 
223     pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */
224 
225     return pxTopOfStack;
226 }
227 /*-----------------------------------------------------------*/
228 
prvTaskExitError(void)229 static void prvTaskExitError( void )
230 {
231     /* A function that implements a task must not exit or attempt to return to
232      * its caller as there is nothing to return to.  If a task wants to exit it
233      * should instead call vTaskDelete( NULL ).
234      *
235      * Artificially force an assert() to be triggered if configASSERT() is
236      * defined, then stop here so application writers can catch the error. */
237     configASSERT( uxCriticalNesting == ~0UL );
238     portDISABLE_INTERRUPTS();
239 
240     for( ; ; )
241     {
242     }
243 }
244 /*-----------------------------------------------------------*/
245 
246 /*
247  * See header file for description.
248  */
xPortStartScheduler(void)249 BaseType_t xPortStartScheduler( void )
250 {
251     /* An application can install FreeRTOS interrupt handlers in one of the
252      * following ways:
253      * 1. Direct Routing - Install the functions vPortSVCHandler and
254      *    xPortPendSVHandler for SVCall and PendSV interrupts respectively.
255      * 2. Indirect Routing - Install separate handlers for SVCall and PendSV
256      *    interrupts and route program control from those handlers to
257      *    vPortSVCHandler and xPortPendSVHandler functions.
258      *
259      * Applications that use Indirect Routing must set
260      * configCHECK_HANDLER_INSTALLATION to 0 in their FreeRTOSConfig.h. Direct
261      * routing, which is validated here when configCHECK_HANDLER_INSTALLATION
262      * is 1, should be preferred when possible. */
263     #if ( configCHECK_HANDLER_INSTALLATION == 1 )
264     {
265         const portISR_t * const pxVectorTable = portSCB_VTOR_REG;
266 
267         /* Validate that the application has correctly installed the FreeRTOS
268          * handlers for SVCall and PendSV interrupts. We do not check the
269          * installation of the SysTick handler because the application may
270          * choose to drive the RTOS tick using a timer other than the SysTick
271          * timer by overriding the weak function vPortSetupTimerInterrupt().
272          *
273          * Assertion failures here indicate incorrect installation of the
274          * FreeRTOS handlers. For help installing the FreeRTOS handlers, see
275          * https://www.FreeRTOS.org/FAQHelp.html.
276          *
277          * Systems with a configurable address for the interrupt vector table
278          * can also encounter assertion failures or even system faults here if
279          * VTOR is not set correctly to point to the application's vector table. */
280         configASSERT( pxVectorTable[ portVECTOR_INDEX_SVC ] == vPortSVCHandler );
281         configASSERT( pxVectorTable[ portVECTOR_INDEX_PENDSV ] == xPortPendSVHandler );
282     }
283     #endif /* configCHECK_HANDLER_INSTALLATION */
284 
285     #if ( configASSERT_DEFINED == 1 )
286     {
287         volatile uint8_t ucOriginalPriority;
288         volatile uint32_t ulImplementedPrioBits = 0;
289         volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
290         volatile uint8_t ucMaxPriorityValue;
291 
292         /* Determine the maximum priority from which ISR safe FreeRTOS API
293          * functions can be called.  ISR safe functions are those that end in
294          * "FromISR".  FreeRTOS maintains separate thread and ISR API functions to
295          * ensure interrupt entry is as fast and simple as possible.
296          *
297          * Save the interrupt priority value that is about to be clobbered. */
298         ucOriginalPriority = *pucFirstUserPriorityRegister;
299 
300         /* Determine the number of priority bits available.  First write to all
301          * possible bits. */
302         *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
303 
304         /* Read the value back to see how many bits stuck. */
305         ucMaxPriorityValue = *pucFirstUserPriorityRegister;
306 
307         /* Use the same mask on the maximum system call priority. */
308         ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
309 
310         /* Check that the maximum system call priority is nonzero after
311          * accounting for the number of priority bits supported by the
312          * hardware. A priority of 0 is invalid because setting the BASEPRI
313          * register to 0 unmasks all interrupts, and interrupts with priority 0
314          * cannot be masked using BASEPRI.
315          * See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
316         configASSERT( ucMaxSysCallPriority );
317 
318         /* Check that the bits not implemented in hardware are zero in
319          * configMAX_SYSCALL_INTERRUPT_PRIORITY. */
320         configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & ( uint8_t ) ( ~( uint32_t ) ucMaxPriorityValue ) ) == 0U );
321 
322         /* Calculate the maximum acceptable priority group value for the number
323          * of bits read back. */
324 
325         while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
326         {
327             ulImplementedPrioBits++;
328             ucMaxPriorityValue <<= ( uint8_t ) 0x01;
329         }
330 
331         if( ulImplementedPrioBits == 8 )
332         {
333             /* When the hardware implements 8 priority bits, there is no way for
334              * the software to configure PRIGROUP to not have sub-priorities. As
335              * a result, the least significant bit is always used for sub-priority
336              * and there are 128 preemption priorities and 2 sub-priorities.
337              *
338              * This may cause some confusion in some cases - for example, if
339              * configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
340              * priority interrupts will be masked in Critical Sections as those
341              * are at the same preemption priority. This may appear confusing as
342              * 4 is higher (numerically lower) priority than
343              * configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
344              * have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
345              * to 4, this confusion does not happen and the behaviour remains the same.
346              *
347              * The following assert ensures that the sub-priority bit in the
348              * configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
349              * confusion. */
350             configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
351             ulMaxPRIGROUPValue = 0;
352         }
353         else
354         {
355             ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
356         }
357 
358         /* Shift the priority group value back to its position within the AIRCR
359          * register. */
360         ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
361         ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
362 
363         /* Restore the clobbered interrupt priority register to its original
364          * value. */
365         *pucFirstUserPriorityRegister = ucOriginalPriority;
366     }
367     #endif /* configASSERT_DEFINED */
368 
369     /* Make PendSV and SysTick the lowest priority interrupts, and make SVCall
370      * the highest priority. */
371     portNVIC_SHPR3_REG |= portNVIC_PENDSV_PRI;
372     portNVIC_SHPR3_REG |= portNVIC_SYSTICK_PRI;
373     portNVIC_SHPR2_REG = 0;
374 
375     /* Start the timer that generates the tick ISR.  Interrupts are disabled
376      * here already. */
377     vPortSetupTimerInterrupt();
378 
379     /* Initialise the critical nesting count ready for the first task. */
380     uxCriticalNesting = 0;
381 
382     /* Ensure the VFP is enabled - it should be anyway. */
383     vPortEnableVFP();
384 
385     /* Lazy save always. */
386     *( portFPCCR ) |= portASPEN_AND_LSPEN_BITS;
387 
388     /* Start the first task. */
389     vPortStartFirstTask();
390 
391     /* Should not get here! */
392     return 0;
393 }
394 /*-----------------------------------------------------------*/
395 
vPortEndScheduler(void)396 void vPortEndScheduler( void )
397 {
398     /* Not implemented in ports where there is nothing to return to.
399      * Artificially force an assert. */
400     configASSERT( uxCriticalNesting == 1000UL );
401 }
402 /*-----------------------------------------------------------*/
403 
vPortEnterCritical(void)404 void vPortEnterCritical( void )
405 {
406     portDISABLE_INTERRUPTS();
407     uxCriticalNesting++;
408 
409     /* This is not the interrupt safe version of the enter critical function so
410      * assert() if it is being called from an interrupt context.  Only API
411      * functions that end in "FromISR" can be used in an interrupt.  Only assert if
412      * the critical nesting count is 1 to protect against recursive calls if the
413      * assert function also uses a critical section. */
414     if( uxCriticalNesting == 1 )
415     {
416         configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
417     }
418 }
419 /*-----------------------------------------------------------*/
420 
vPortExitCritical(void)421 void vPortExitCritical( void )
422 {
423     configASSERT( uxCriticalNesting );
424     uxCriticalNesting--;
425 
426     if( uxCriticalNesting == 0 )
427     {
428         portENABLE_INTERRUPTS();
429     }
430 }
431 /*-----------------------------------------------------------*/
432 
xPortSysTickHandler(void)433 void xPortSysTickHandler( void )
434 {
435     /* The SysTick runs at the lowest interrupt priority, so when this interrupt
436      * executes all interrupts must be unmasked.  There is therefore no need to
437      * save and then restore the interrupt mask value as its value is already
438      * known. */
439     portDISABLE_INTERRUPTS();
440     traceISR_ENTER();
441     {
442         /* Increment the RTOS tick. */
443         if( xTaskIncrementTick() != pdFALSE )
444         {
445             traceISR_EXIT_TO_SCHEDULER();
446 
447             /* A context switch is required.  Context switching is performed in
448              * the PendSV interrupt.  Pend the PendSV interrupt. */
449             portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
450         }
451         else
452         {
453             traceISR_EXIT();
454         }
455     }
456     portENABLE_INTERRUPTS();
457 }
458 /*-----------------------------------------------------------*/
459 
460 #if ( configUSE_TICKLESS_IDLE == 1 )
461 
vPortSuppressTicksAndSleep(TickType_t xExpectedIdleTime)462     __weak void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
463     {
464         uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickDecrementsLeft;
465         TickType_t xModifiableIdleTime;
466 
467         /* Make sure the SysTick reload value does not overflow the counter. */
468         if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
469         {
470             xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
471         }
472 
473         /* Enter a critical section but don't use the taskENTER_CRITICAL()
474          * method as that will mask interrupts that should exit sleep mode. */
475         __disable_interrupt();
476         __DSB();
477         __ISB();
478 
479         /* If a context switch is pending or a task is waiting for the scheduler
480          * to be unsuspended then abandon the low power entry. */
481         if( eTaskConfirmSleepModeStatus() == eAbortSleep )
482         {
483             /* Re-enable interrupts - see comments above the __disable_interrupt()
484              * call above. */
485             __enable_interrupt();
486         }
487         else
488         {
489             /* Stop the SysTick momentarily.  The time the SysTick is stopped for
490              * is accounted for as best it can be, but using the tickless mode will
491              * inevitably result in some tiny drift of the time maintained by the
492              * kernel with respect to calendar time. */
493             portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
494 
495             /* Use the SysTick current-value register to determine the number of
496              * SysTick decrements remaining until the next tick interrupt.  If the
497              * current-value register is zero, then there are actually
498              * ulTimerCountsForOneTick decrements remaining, not zero, because the
499              * SysTick requests the interrupt when decrementing from 1 to 0. */
500             ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
501 
502             if( ulSysTickDecrementsLeft == 0 )
503             {
504                 ulSysTickDecrementsLeft = ulTimerCountsForOneTick;
505             }
506 
507             /* Calculate the reload value required to wait xExpectedIdleTime
508              * tick periods.  -1 is used because this code normally executes part
509              * way through the first tick period.  But if the SysTick IRQ is now
510              * pending, then clear the IRQ, suppressing the first tick, and correct
511              * the reload value to reflect that the second tick period is already
512              * underway.  The expected idle time is always at least two ticks. */
513             ulReloadValue = ulSysTickDecrementsLeft + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
514 
515             if( ( portNVIC_INT_CTRL_REG & portNVIC_PEND_SYSTICK_SET_BIT ) != 0 )
516             {
517                 portNVIC_INT_CTRL_REG = portNVIC_PEND_SYSTICK_CLEAR_BIT;
518                 ulReloadValue -= ulTimerCountsForOneTick;
519             }
520 
521             if( ulReloadValue > ulStoppedTimerCompensation )
522             {
523                 ulReloadValue -= ulStoppedTimerCompensation;
524             }
525 
526             /* Set the new reload value. */
527             portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
528 
529             /* Clear the SysTick count flag and set the count value back to
530              * zero. */
531             portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
532 
533             /* Restart SysTick. */
534             portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
535 
536             /* Sleep until something happens.  configPRE_SLEEP_PROCESSING() can
537              * set its parameter to 0 to indicate that its implementation contains
538              * its own wait for interrupt or wait for event instruction, and so wfi
539              * should not be executed again.  However, the original expected idle
540              * time variable must remain unmodified, so a copy is taken. */
541             xModifiableIdleTime = xExpectedIdleTime;
542             configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
543 
544             if( xModifiableIdleTime > 0 )
545             {
546                 __DSB();
547                 __WFI();
548                 __ISB();
549             }
550 
551             configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
552 
553             /* Re-enable interrupts to allow the interrupt that brought the MCU
554              * out of sleep mode to execute immediately.  See comments above
555              * the __disable_interrupt() call above. */
556             __enable_interrupt();
557             __DSB();
558             __ISB();
559 
560             /* Disable interrupts again because the clock is about to be stopped
561              * and interrupts that execute while the clock is stopped will increase
562              * any slippage between the time maintained by the RTOS and calendar
563              * time. */
564             __disable_interrupt();
565             __DSB();
566             __ISB();
567 
568             /* Disable the SysTick clock without reading the
569              * portNVIC_SYSTICK_CTRL_REG register to ensure the
570              * portNVIC_SYSTICK_COUNT_FLAG_BIT is not cleared if it is set.  Again,
571              * the time the SysTick is stopped for is accounted for as best it can
572              * be, but using the tickless mode will inevitably result in some tiny
573              * drift of the time maintained by the kernel with respect to calendar
574              * time*/
575             portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
576 
577             /* Determine whether the SysTick has already counted to zero. */
578             if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
579             {
580                 uint32_t ulCalculatedLoadValue;
581 
582                 /* The tick interrupt ended the sleep (or is now pending), and
583                  * a new tick period has started.  Reset portNVIC_SYSTICK_LOAD_REG
584                  * with whatever remains of the new tick period. */
585                 ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
586 
587                 /* Don't allow a tiny value, or values that have somehow
588                  * underflowed because the post sleep hook did something
589                  * that took too long or because the SysTick current-value register
590                  * is zero. */
591                 if( ( ulCalculatedLoadValue <= ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
592                 {
593                     ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL );
594                 }
595 
596                 portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
597 
598                 /* As the pending tick will be processed as soon as this
599                  * function exits, the tick value maintained by the tick is stepped
600                  * forward by one less than the time spent waiting. */
601                 ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
602             }
603             else
604             {
605                 /* Something other than the tick interrupt ended the sleep. */
606 
607                 /* Use the SysTick current-value register to determine the
608                  * number of SysTick decrements remaining until the expected idle
609                  * time would have ended. */
610                 ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
611                 #if ( portNVIC_SYSTICK_CLK_BIT_CONFIG != portNVIC_SYSTICK_CLK_BIT )
612                 {
613                     /* If the SysTick is not using the core clock, the current-
614                      * value register might still be zero here.  In that case, the
615                      * SysTick didn't load from the reload register, and there are
616                      * ulReloadValue decrements remaining in the expected idle
617                      * time, not zero. */
618                     if( ulSysTickDecrementsLeft == 0 )
619                     {
620                         ulSysTickDecrementsLeft = ulReloadValue;
621                     }
622                 }
623                 #endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
624 
625                 /* Work out how long the sleep lasted rounded to complete tick
626                  * periods (not the ulReload value which accounted for part
627                  * ticks). */
628                 ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - ulSysTickDecrementsLeft;
629 
630                 /* How many complete tick periods passed while the processor
631                  * was waiting? */
632                 ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
633 
634                 /* The reload value is set to whatever fraction of a single tick
635                  * period remains. */
636                 portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1UL ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
637             }
638 
639             /* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG again,
640              * then set portNVIC_SYSTICK_LOAD_REG back to its standard value.  If
641              * the SysTick is not using the core clock, temporarily configure it to
642              * use the core clock.  This configuration forces the SysTick to load
643              * from portNVIC_SYSTICK_LOAD_REG immediately instead of at the next
644              * cycle of the other clock.  Then portNVIC_SYSTICK_LOAD_REG is ready
645              * to receive the standard value immediately. */
646             portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
647             portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
648             #if ( portNVIC_SYSTICK_CLK_BIT_CONFIG == portNVIC_SYSTICK_CLK_BIT )
649             {
650                 portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
651             }
652             #else
653             {
654                 /* The temporary usage of the core clock has served its purpose,
655                  * as described above.  Resume usage of the other clock. */
656                 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT;
657 
658                 if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
659                 {
660                     /* The partial tick period already ended.  Be sure the SysTick
661                      * counts it only once. */
662                     portNVIC_SYSTICK_CURRENT_VALUE_REG = 0;
663                 }
664 
665                 portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
666                 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
667             }
668             #endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
669 
670             /* Step the tick to account for any tick periods that elapsed. */
671             vTaskStepTick( ulCompleteTickPeriods );
672 
673             /* Exit with interrupts enabled. */
674             __enable_interrupt();
675         }
676     }
677 
678 #endif /* configUSE_TICKLESS_IDLE */
679 /*-----------------------------------------------------------*/
680 
681 /*
682  * Setup the systick timer to generate the tick interrupts at the required
683  * frequency.
684  */
vPortSetupTimerInterrupt(void)685 __weak void vPortSetupTimerInterrupt( void )
686 {
687     /* Calculate the constants required to configure the tick interrupt. */
688     #if ( configUSE_TICKLESS_IDLE == 1 )
689     {
690         ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ );
691         xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
692         ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ );
693     }
694     #endif /* configUSE_TICKLESS_IDLE */
695 
696     /* Stop and clear the SysTick. */
697     portNVIC_SYSTICK_CTRL_REG = 0UL;
698     portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
699 
700     /* Configure SysTick to interrupt at the requested rate. */
701     portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
702     portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT );
703 }
704 /*-----------------------------------------------------------*/
705 
706 #if ( configASSERT_DEFINED == 1 )
707 
vPortValidateInterruptPriority(void)708     void vPortValidateInterruptPriority( void )
709     {
710         uint32_t ulCurrentInterrupt;
711         uint8_t ucCurrentPriority;
712 
713         /* Obtain the number of the currently executing interrupt. */
714         __asm volatile ( "mrs %0, ipsr" : "=r" ( ulCurrentInterrupt )::"memory" );
715 
716         /* Is the interrupt number a user defined interrupt? */
717         if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
718         {
719             /* Look up the interrupt's priority. */
720             ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
721 
722             /* The following assertion will fail if a service routine (ISR) for
723              * an interrupt that has been assigned a priority above
724              * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
725              * function.  ISR safe FreeRTOS API functions must *only* be called
726              * from interrupts that have been assigned a priority at or below
727              * configMAX_SYSCALL_INTERRUPT_PRIORITY.
728              *
729              * Numerically low interrupt priority numbers represent logically high
730              * interrupt priorities, therefore the priority of the interrupt must
731              * be set to a value equal to or numerically *higher* than
732              * configMAX_SYSCALL_INTERRUPT_PRIORITY.
733              *
734              * Interrupts that  use the FreeRTOS API must not be left at their
735              * default priority of  zero as that is the highest possible priority,
736              * which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
737              * and  therefore also guaranteed to be invalid.
738              *
739              * FreeRTOS maintains separate thread and ISR API functions to ensure
740              * interrupt entry is as fast and simple as possible.
741              *
742              * The following links provide detailed information:
743              * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
744              * https://www.FreeRTOS.org/FAQHelp.html */
745             configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
746         }
747 
748         /* Priority grouping:  The interrupt controller (NVIC) allows the bits
749          * that define each interrupt's priority to be split between bits that
750          * define the interrupt's pre-emption priority bits and bits that define
751          * the interrupt's sub-priority.  For simplicity all bits must be defined
752          * to be pre-emption priority bits.  The following assertion will fail if
753          * this is not the case (if some bits represent a sub-priority).
754          *
755          * If the application only uses CMSIS libraries for interrupt
756          * configuration then the correct setting can be achieved on all Cortex-M
757          * devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
758          * scheduler.  Note however that some vendor specific peripheral libraries
759          * assume a non-zero priority group setting, in which cases using a value
760          * of zero will result in unpredictable behaviour. */
761         configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
762     }
763 
764 #endif /* configASSERT_DEFINED */
765