xref: /Kernel-v10.6.2/portable/IAR/ARM_CM4F_MPU/port.c (revision ef7b253b56c9788077f5ecd6c9deb4021923d646)
1 /*
2  * FreeRTOS Kernel V10.6.2
3  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
4  *
5  * SPDX-License-Identifier: MIT
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in all
15  * copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * https://www.FreeRTOS.org
25  * https://github.com/FreeRTOS
26  *
27  */
28 
29 /*-----------------------------------------------------------
30 * Implementation of functions defined in portable.h for the ARM CM4F MPU port.
31 *----------------------------------------------------------*/
32 
33 /* IAR includes. */
34 #include <intrinsics.h>
35 
36 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
37  * all the API functions to use the MPU wrappers.  That should only be done when
38  * task.h is included from an application file. */
39 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
40 
41 /* Scheduler includes. */
42 #include "FreeRTOS.h"
43 #include "task.h"
44 #include "mpu_syscall_numbers.h"
45 
46 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
47 
48 #ifndef __ARMVFP__
49     #error This port can only be used when the project options are configured to enable hardware floating point support.
50 #endif
51 
52 #if ( configMAX_SYSCALL_INTERRUPT_PRIORITY == 0 )
53     #error configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0.  See http: /*www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
54 #endif
55 
56 #ifndef configSYSTICK_CLOCK_HZ
57     #define configSYSTICK_CLOCK_HZ      configCPU_CLOCK_HZ
58     /* Ensure the SysTick is clocked at the same frequency as the core. */
59     #define portNVIC_SYSTICK_CLK_BIT    ( 1UL << 2UL )
60 #else
61 
62 /* The way the SysTick is clocked is not modified in case it is not the same
63  * as the core. */
64     #define portNVIC_SYSTICK_CLK_BIT    ( 0 )
65 #endif
66 
67 #ifndef configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS
68     #warning "configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS is not defined. We recommend defining it to 0 in FreeRTOSConfig.h for better security."
69     #define configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS    1
70 #endif
71 
72 /* Constants required to manipulate the core.  Registers first... */
73 #define portNVIC_SYSTICK_CTRL_REG                 ( *( ( volatile uint32_t * ) 0xe000e010 ) )
74 #define portNVIC_SYSTICK_LOAD_REG                 ( *( ( volatile uint32_t * ) 0xe000e014 ) )
75 #define portNVIC_SYSTICK_CURRENT_VALUE_REG        ( *( ( volatile uint32_t * ) 0xe000e018 ) )
76 #define portNVIC_SHPR3_REG                        ( *( ( volatile uint32_t * ) 0xe000ed20 ) )
77 #define portNVIC_SHPR2_REG                        ( *( ( volatile uint32_t * ) 0xe000ed1c ) )
78 #define portNVIC_SYS_CTRL_STATE_REG               ( *( ( volatile uint32_t * ) 0xe000ed24 ) )
79 #define portNVIC_MEM_FAULT_ENABLE                 ( 1UL << 16UL )
80 
81 /* Constants required to access and manipulate the MPU. */
82 #define portMPU_TYPE_REG                          ( *( ( volatile uint32_t * ) 0xe000ed90 ) )
83 #define portMPU_REGION_BASE_ADDRESS_REG           ( *( ( volatile uint32_t * ) 0xe000ed9C ) )
84 #define portMPU_REGION_ATTRIBUTE_REG              ( *( ( volatile uint32_t * ) 0xe000edA0 ) )
85 #define portMPU_CTRL_REG                          ( *( ( volatile uint32_t * ) 0xe000ed94 ) )
86 #define portEXPECTED_MPU_TYPE_VALUE               ( configTOTAL_MPU_REGIONS << 8UL )
87 #define portMPU_ENABLE                            ( 0x01UL )
88 #define portMPU_BACKGROUND_ENABLE                 ( 1UL << 2UL )
89 #define portPRIVILEGED_EXECUTION_START_ADDRESS    ( 0UL )
90 #define portMPU_REGION_VALID                      ( 0x10UL )
91 #define portMPU_REGION_ENABLE                     ( 0x01UL )
92 #define portPERIPHERALS_START_ADDRESS             0x40000000UL
93 #define portPERIPHERALS_END_ADDRESS               0x5FFFFFFFUL
94 
95 /* ...then bits in the registers. */
96 #define portNVIC_SYSTICK_INT_BIT                  ( 1UL << 1UL )
97 #define portNVIC_SYSTICK_ENABLE_BIT               ( 1UL << 0UL )
98 #define portNVIC_SYSTICK_COUNT_FLAG_BIT           ( 1UL << 16UL )
99 #define portNVIC_PENDSVCLEAR_BIT                  ( 1UL << 27UL )
100 #define portNVIC_PEND_SYSTICK_CLEAR_BIT           ( 1UL << 25UL )
101 
102 /* Constants used to detect Cortex-M7 r0p0 and r0p1 cores, and ensure
103  * that a work around is active for errata 837070. */
104 #define portCPUID                                 ( *( ( volatile uint32_t * ) 0xE000ed00 ) )
105 #define portCORTEX_M7_r0p1_ID                     ( 0x410FC271UL )
106 #define portCORTEX_M7_r0p0_ID                     ( 0x410FC270UL )
107 
108 #define portMIN_INTERRUPT_PRIORITY                ( 255UL )
109 #define portNVIC_PENDSV_PRI                       ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 16UL )
110 #define portNVIC_SYSTICK_PRI                      ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 24UL )
111 #define portNVIC_SVC_PRI                          ( ( ( uint32_t ) configMAX_SYSCALL_INTERRUPT_PRIORITY - 1UL ) << 24UL )
112 
113 /* Constants required to check the validity of an interrupt priority. */
114 #define portFIRST_USER_INTERRUPT_NUMBER           ( 16 )
115 #define portNVIC_IP_REGISTERS_OFFSET_16           ( 0xE000E3F0 )
116 #define portAIRCR_REG                             ( *( ( volatile uint32_t * ) 0xE000ED0C ) )
117 #define portMAX_8_BIT_VALUE                       ( ( uint8_t ) 0xff )
118 #define portTOP_BIT_OF_BYTE                       ( ( uint8_t ) 0x80 )
119 #define portMAX_PRIGROUP_BITS                     ( ( uint8_t ) 7 )
120 #define portPRIORITY_GROUP_MASK                   ( 0x07UL << 8UL )
121 #define portPRIGROUP_SHIFT                        ( 8UL )
122 
123 /* Masks off all bits but the VECTACTIVE bits in the ICSR register. */
124 #define portVECTACTIVE_MASK                       ( 0xFFUL )
125 
126 /* Constants required to manipulate the VFP. */
127 #define portFPCCR                                 ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating point context control register. */
128 #define portASPEN_AND_LSPEN_BITS                  ( 0x3UL << 30UL )
129 
130 /* Constants required to set up the initial stack. */
131 #define portINITIAL_XPSR                          ( 0x01000000 )
132 #define portINITIAL_EXC_RETURN                    ( 0xfffffffd )
133 #define portINITIAL_CONTROL_IF_UNPRIVILEGED       ( 0x03 )
134 #define portINITIAL_CONTROL_IF_PRIVILEGED         ( 0x02 )
135 
136 /* Constants used during system call enter and exit. */
137 #define portPSR_STACK_PADDING_MASK                ( 1UL << 9UL )
138 #define portEXC_RETURN_STACK_FRAME_TYPE_MASK      ( 1UL << 4UL )
139 
140 /* Offsets in the stack to the parameters when inside the SVC handler. */
141 #define portOFFSET_TO_LR                          ( 5 )
142 #define portOFFSET_TO_PC                          ( 6 )
143 #define portOFFSET_TO_PSR                         ( 7 )
144 
145 /* The systick is a 24-bit counter. */
146 #define portMAX_24_BIT_NUMBER                     ( 0xffffffUL )
147 
148 /* A fiddle factor to estimate the number of SysTick counts that would have
149  * occurred while the SysTick counter is stopped during tickless idle
150  * calculations. */
151 #define portMISSED_COUNTS_FACTOR                  ( 45UL )
152 
153 /* For strict compliance with the Cortex-M spec the task start address should
154  * have bit-0 clear, as it is loaded into the PC on exit from an ISR. */
155 #define portSTART_ADDRESS_MASK                    ( ( StackType_t ) 0xfffffffeUL )
156 
157 /* Does addr lie within [start, end] address range? */
158 #define portIS_ADDRESS_WITHIN_RANGE( addr, start, end ) \
159     ( ( ( addr ) >= ( start ) ) && ( ( addr ) <= ( end ) ) )
160 
161 /* Is the access request satisfied by the available permissions? */
162 #define portIS_AUTHORIZED( accessRequest, permissions ) \
163     ( ( ( permissions ) & ( accessRequest ) ) == accessRequest )
164 
165 /* Max value that fits in a uint32_t type. */
166 #define portUINT32_MAX    ( ~( ( uint32_t ) 0 ) )
167 
168 /* Check if adding a and b will result in overflow. */
169 #define portADD_UINT32_WILL_OVERFLOW( a, b )    ( ( a ) > ( portUINT32_MAX - ( b ) ) )
170 /*-----------------------------------------------------------*/
171 
172 /*
173  * Configure a number of standard MPU regions that are used by all tasks.
174  */
175 static void prvSetupMPU( void ) PRIVILEGED_FUNCTION;
176 
177 /*
178  * Return the smallest MPU region size that a given number of bytes will fit
179  * into.  The region size is returned as the value that should be programmed
180  * into the region attribute register for that region.
181  */
182 static uint32_t prvGetMPURegionSizeSetting( uint32_t ulActualSizeInBytes ) PRIVILEGED_FUNCTION;
183 
184 /*
185  * Setup the timer to generate the tick interrupts.  The implementation in this
186  * file is weak to allow application writers to change the timer used to
187  * generate the tick interrupt.
188  */
189 void vPortSetupTimerInterrupt( void );
190 
191 /*
192  * Exception handlers.
193  */
194 void xPortSysTickHandler( void ) PRIVILEGED_FUNCTION;
195 
196 /*
197  * Start first task is a separate function so it can be tested in isolation.
198  */
199 extern void vPortStartFirstTask( void ) PRIVILEGED_FUNCTION;
200 
201 /*
202  * Turn the VFP on.
203  */
204 extern void vPortEnableVFP( void );
205 
206 /*
207  * The C portion of the SVC handler.
208  */
209 void vPortSVCHandler_C( uint32_t * pulParam ) PRIVILEGED_FUNCTION;
210 
211 /*
212  * Called from the SVC handler used to start the scheduler.
213  */
214 extern void vPortRestoreContextOfFirstTask( void ) PRIVILEGED_FUNCTION;
215 
216 /**
217  * @brief Enter critical section.
218  */
219 #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
220     void vPortEnterCritical( void ) FREERTOS_SYSTEM_CALL;
221 #else
222     void vPortEnterCritical( void ) PRIVILEGED_FUNCTION;
223 #endif
224 
225 /**
226  * @brief Exit from critical section.
227  */
228 #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
229     void vPortExitCritical( void ) FREERTOS_SYSTEM_CALL;
230 #else
231     void vPortExitCritical( void ) PRIVILEGED_FUNCTION;
232 #endif
233 
234 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
235 
236 /**
237  * @brief Sets up the system call stack so that upon returning from
238  * SVC, the system call stack is used.
239  *
240  * @param pulTaskStack The current SP when the SVC was raised.
241  * @param ulLR The value of Link Register (EXC_RETURN) in the SVC handler.
242  * @param ucSystemCallNumber The system call number of the system call.
243  */
244     void vSystemCallEnter( uint32_t * pulTaskStack,
245                            uint32_t ulLR,
246                            uint8_t ucSystemCallNumber ) PRIVILEGED_FUNCTION;
247 
248 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
249 
250 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
251 
252 /**
253  * @brief Raise SVC for exiting from a system call.
254  */
255     void vRequestSystemCallExit( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION;
256 
257 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
258 
259 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
260 
261     /**
262      * @brief Sets up the task stack so that upon returning from
263      * SVC, the task stack is used again.
264      *
265      * @param pulSystemCallStack The current SP when the SVC was raised.
266      * @param ulLR The value of Link Register (EXC_RETURN) in the SVC handler.
267      */
268     void vSystemCallExit( uint32_t * pulSystemCallStack,
269                           uint32_t ulLR ) PRIVILEGED_FUNCTION;
270 
271 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
272 
273 /**
274  * @brief Checks whether or not the calling task is privileged.
275  *
276  * @return pdTRUE if the calling task is privileged, pdFALSE otherwise.
277  */
278 BaseType_t xPortIsTaskPrivileged( void ) PRIVILEGED_FUNCTION;
279 
280 /*-----------------------------------------------------------*/
281 
282 /* Each task maintains its own interrupt status in the critical nesting
283  * variable. */
284 static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
285 
286 #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )
287 
288 /*
289  * This variable is set to pdTRUE when the scheduler is started.
290  */
291     PRIVILEGED_DATA static BaseType_t xSchedulerRunning = pdFALSE;
292 
293 #endif
294 
295 /*
296  * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
297  * FreeRTOS API functions are not called from interrupts that have been assigned
298  * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
299  */
300 #if ( configASSERT_DEFINED == 1 )
301     static uint8_t ucMaxSysCallPriority = 0;
302     static uint32_t ulMaxPRIGROUPValue = 0;
303     static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * const ) portNVIC_IP_REGISTERS_OFFSET_16;
304 #endif /* configASSERT_DEFINED */
305 
306 /*-----------------------------------------------------------*/
307 
308 /*
309  * See header file for description.
310  */
pxPortInitialiseStack(StackType_t * pxTopOfStack,TaskFunction_t pxCode,void * pvParameters,BaseType_t xRunPrivileged,xMPU_SETTINGS * xMPUSettings)311 StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
312                                      TaskFunction_t pxCode,
313                                      void * pvParameters,
314                                      BaseType_t xRunPrivileged,
315                                      xMPU_SETTINGS * xMPUSettings )
316 {
317     if( xRunPrivileged == pdTRUE )
318     {
319         xMPUSettings->ulTaskFlags |= portTASK_IS_PRIVILEGED_FLAG;
320         xMPUSettings->ulContext[ 0 ] = portINITIAL_CONTROL_IF_PRIVILEGED;
321     }
322     else
323     {
324         xMPUSettings->ulTaskFlags &= ( ~portTASK_IS_PRIVILEGED_FLAG );
325         xMPUSettings->ulContext[ 0 ] = portINITIAL_CONTROL_IF_UNPRIVILEGED;
326     }
327     xMPUSettings->ulContext[ 1 ] = 0x04040404; /* r4. */
328     xMPUSettings->ulContext[ 2 ] = 0x05050505; /* r5. */
329     xMPUSettings->ulContext[ 3 ] = 0x06060606; /* r6. */
330     xMPUSettings->ulContext[ 4 ] = 0x07070707; /* r7. */
331     xMPUSettings->ulContext[ 5 ] = 0x08080808; /* r8. */
332     xMPUSettings->ulContext[ 6 ] = 0x09090909; /* r9. */
333     xMPUSettings->ulContext[ 7 ] = 0x10101010; /* r10. */
334     xMPUSettings->ulContext[ 8 ] = 0x11111111; /* r11. */
335     xMPUSettings->ulContext[ 9 ] = portINITIAL_EXC_RETURN; /* EXC_RETURN. */
336 
337     xMPUSettings->ulContext[ 10 ] = ( uint32_t ) ( pxTopOfStack - 8 ); /* PSP with the hardware saved stack. */
338     xMPUSettings->ulContext[ 11 ] = ( uint32_t ) pvParameters; /* r0. */
339     xMPUSettings->ulContext[ 12 ] = 0x01010101; /* r1. */
340     xMPUSettings->ulContext[ 13 ] = 0x02020202; /* r2. */
341     xMPUSettings->ulContext[ 14 ] = 0x03030303; /* r3. */
342     xMPUSettings->ulContext[ 15 ] = 0x12121212; /* r12. */
343     xMPUSettings->ulContext[ 16 ] = 0; /* LR. */
344     xMPUSettings->ulContext[ 17 ] = ( ( uint32_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC. */
345     xMPUSettings->ulContext[ 18 ] = portINITIAL_XPSR; /* xPSR. */
346 
347     #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
348     {
349         /* Ensure that the system call stack is double word aligned. */
350         xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = &( xMPUSettings->xSystemCallStackInfo.ulSystemCallStackBuffer[ configSYSTEM_CALL_STACK_SIZE - 1 ] );
351         xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = ( uint32_t * ) ( ( uint32_t ) ( xMPUSettings->xSystemCallStackInfo.pulSystemCallStack ) &
352                                                                                  ( uint32_t ) ( ~( portBYTE_ALIGNMENT_MASK ) ) );
353 
354         /* This is not NULL only for the duration of a system call. */
355         xMPUSettings->xSystemCallStackInfo.pulTaskStack = NULL;
356     }
357     #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
358 
359     return &( xMPUSettings->ulContext[ 19 ] );
360 }
361 /*-----------------------------------------------------------*/
362 
vPortSVCHandler_C(uint32_t * pulParam)363 void vPortSVCHandler_C( uint32_t * pulParam ) /* PRIVILEGED_FUNCTION */
364 {
365     uint8_t ucSVCNumber;
366     uint32_t ulPC;
367 
368     #if ( ( configUSE_MPU_WRAPPERS_V1 == 1 ) && ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) )
369         extern uint32_t __syscalls_flash_start__[];
370         extern uint32_t __syscalls_flash_end__[];
371     #endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 1 ) && ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) ) */
372 
373     /* The stack contains: r0, r1, r2, r3, r12, LR, PC and xPSR. The first
374      * argument (r0) is pulParam[ 0 ]. */
375     ulPC = pulParam[ portOFFSET_TO_PC ];
376     ucSVCNumber = ( ( uint8_t * ) ulPC )[ -2 ];
377 
378     switch( ucSVCNumber )
379     {
380         case portSVC_START_SCHEDULER:
381             portNVIC_SHPR2_REG |= portNVIC_SVC_PRI;
382             vPortRestoreContextOfFirstTask();
383             break;
384 
385         case portSVC_YIELD:
386             portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
387 
388             /* Barriers are normally not required
389              * but do ensure the code is completely
390              * within the specified behaviour for the
391              * architecture. */
392             __asm volatile ( "dsb" ::: "memory" );
393             __asm volatile ( "isb" );
394 
395             break;
396 
397     #if ( configUSE_MPU_WRAPPERS_V1 == 1 )
398         #if ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 )
399             case portSVC_RAISE_PRIVILEGE: /* Only raise the privilege, if the
400                                            * svc was raised from any of the
401                                            * system calls. */
402 
403                 if( ( ulPC >= ( uint32_t ) __syscalls_flash_start__ ) &&
404                     ( ulPC <= ( uint32_t ) __syscalls_flash_end__ ) )
405                 {
406                     __asm volatile
407                     (
408                         "   mrs r1, control     \n" /* Obtain current control value. */
409                         "   bic r1, r1, #1      \n" /* Set privilege bit. */
410                         "   msr control, r1     \n" /* Write back new control value. */
411                         ::: "r1", "memory"
412                     );
413                 }
414 
415                 break;
416         #else /* if ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) */
417             case portSVC_RAISE_PRIVILEGE:
418                 __asm volatile
419                 (
420                     "   mrs r1, control     \n" /* Obtain current control value. */
421                     "   bic r1, r1, #1      \n" /* Set privilege bit. */
422                     "   msr control, r1     \n" /* Write back new control value. */
423                     ::: "r1", "memory"
424                 );
425                 break;
426         #endif /* #if( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) */
427     #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 1 ) */
428 
429         default: /* Unknown SVC call. */
430             break;
431     }
432 }
433 /*-----------------------------------------------------------*/
434 
435 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
436 
vSystemCallEnter(uint32_t * pulTaskStack,uint32_t ulLR,uint8_t ucSystemCallNumber)437     void vSystemCallEnter( uint32_t * pulTaskStack,
438                            uint32_t ulLR,
439                            uint8_t ucSystemCallNumber ) /* PRIVILEGED_FUNCTION */
440     {
441         extern TaskHandle_t pxCurrentTCB;
442         extern UBaseType_t uxSystemCallImplementations[ NUM_SYSTEM_CALLS ];
443         xMPU_SETTINGS * pxMpuSettings;
444         uint32_t * pulSystemCallStack;
445         uint32_t ulStackFrameSize, ulSystemCallLocation, i;
446 
447         #if defined( __ARMCC_VERSION )
448             /* Declaration when these variable are defined in code instead of being
449              * exported from linker scripts. */
450             extern uint32_t * __syscalls_flash_start__;
451             extern uint32_t * __syscalls_flash_end__;
452         #else
453             /* Declaration when these variable are exported from linker scripts. */
454             extern uint32_t __syscalls_flash_start__[];
455             extern uint32_t __syscalls_flash_end__[];
456         #endif /* #if defined( __ARMCC_VERSION ) */
457 
458         ulSystemCallLocation = pulTaskStack[ portOFFSET_TO_PC ];
459         pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB );
460 
461         /* Checks:
462          * 1. SVC is raised from the system call section (i.e. application is
463          *    not raising SVC directly).
464          * 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must be NULL as
465          *    it is non-NULL only during the execution of a system call (i.e.
466          *    between system call enter and exit).
467          * 3. System call is not for a kernel API disabled by the configuration
468          *    in FreeRTOSConfig.h.
469          * 4. We do not need to check that ucSystemCallNumber is within range
470          *    because the assembly SVC handler checks that before calling
471          *    this function.
472          */
473         if( ( ulSystemCallLocation >= ( uint32_t ) __syscalls_flash_start__ ) &&
474             ( ulSystemCallLocation <= ( uint32_t ) __syscalls_flash_end__ ) &&
475             ( pxMpuSettings->xSystemCallStackInfo.pulTaskStack == NULL ) &&
476             ( uxSystemCallImplementations[ ucSystemCallNumber ] != ( UBaseType_t ) 0 ) )
477         {
478             pulSystemCallStack = pxMpuSettings->xSystemCallStackInfo.pulSystemCallStack;
479 
480             if( ( ulLR & portEXC_RETURN_STACK_FRAME_TYPE_MASK ) == 0UL )
481             {
482                 /* Extended frame i.e. FPU in use. */
483                 ulStackFrameSize = 26;
484                 __asm volatile
485                 (
486                     " vpush {s0}         \n" /* Trigger lazy stacking. */
487                     " vpop  {s0}         \n" /* Nullify the affect of the above instruction. */
488                     ::: "memory"
489                 );
490             }
491             else
492             {
493                 /* Standard frame i.e. FPU not in use. */
494                 ulStackFrameSize = 8;
495             }
496 
497             /* Make space on the system call stack for the stack frame. */
498             pulSystemCallStack = pulSystemCallStack - ulStackFrameSize;
499 
500             /* Copy the stack frame. */
501             for( i = 0; i < ulStackFrameSize; i++ )
502             {
503                 pulSystemCallStack[ i ] = pulTaskStack[ i ];
504             }
505 
506             /* Use the pulSystemCallStack in thread mode. */
507             __asm volatile ( "msr psp, %0" : : "r" ( pulSystemCallStack ) );
508 
509             /* Raise the privilege for the duration of the system call. */
510             __asm volatile
511             (
512                 " mrs r1, control     \n" /* Obtain current control value. */
513                 " bic r1, #1          \n" /* Clear nPRIV bit. */
514                 " msr control, r1     \n" /* Write back new control value. */
515                 ::: "r1", "memory"
516             );
517 
518             /* Remember the location where we should copy the stack frame when we exit from
519              * the system call. */
520             pxMpuSettings->xSystemCallStackInfo.pulTaskStack = pulTaskStack + ulStackFrameSize;
521 
522             /* Store the value of the Link Register before the SVC was raised.
523              * It contains the address of the caller of the System Call entry
524              * point (i.e. the caller of the MPU_<API>). We need to restore it
525              * when we exit from the system call. */
526             pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry = pulTaskStack[ portOFFSET_TO_LR ];
527 
528 
529             /* Start executing the system call upon returning from this handler. */
530             pulSystemCallStack[ portOFFSET_TO_PC ] = uxSystemCallImplementations[ ucSystemCallNumber ];
531 
532             /* Raise a request to exit from the system call upon finishing the
533              * system call. */
534             pulSystemCallStack[ portOFFSET_TO_LR ] = ( uint32_t ) vRequestSystemCallExit;
535 
536             /* Record if the hardware used padding to force the stack pointer
537              * to be double word aligned. */
538             if( ( pulTaskStack[ portOFFSET_TO_PSR ] & portPSR_STACK_PADDING_MASK ) == portPSR_STACK_PADDING_MASK )
539             {
540                 pxMpuSettings->ulTaskFlags |= portSTACK_FRAME_HAS_PADDING_FLAG;
541             }
542             else
543             {
544                 pxMpuSettings->ulTaskFlags &= ( ~portSTACK_FRAME_HAS_PADDING_FLAG );
545             }
546 
547             /* We ensure in pxPortInitialiseStack that the system call stack is
548              * double word aligned and therefore, there is no need of padding.
549              * Clear the bit[9] of stacked xPSR. */
550             pulSystemCallStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK );
551         }
552     }
553 
554 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
555 /*-----------------------------------------------------------*/
556 
557 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
558 
vRequestSystemCallExit(void)559     void vRequestSystemCallExit( void ) /* __attribute__( ( naked ) ) PRIVILEGED_FUNCTION */
560     {
561         __asm volatile ( "svc %0 \n" ::"i" ( portSVC_SYSTEM_CALL_EXIT ) : "memory" );
562     }
563 
564 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
565 /*-----------------------------------------------------------*/
566 
567 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
568 
vSystemCallExit(uint32_t * pulSystemCallStack,uint32_t ulLR)569     void vSystemCallExit( uint32_t * pulSystemCallStack,
570                           uint32_t ulLR ) /* PRIVILEGED_FUNCTION */
571     {
572         extern TaskHandle_t pxCurrentTCB;
573         xMPU_SETTINGS * pxMpuSettings;
574         uint32_t * pulTaskStack;
575         uint32_t ulStackFrameSize, ulSystemCallLocation, i;
576 
577         #if defined( __ARMCC_VERSION )
578             /* Declaration when these variable are defined in code instead of being
579              * exported from linker scripts. */
580             extern uint32_t * __privileged_functions_start__;
581             extern uint32_t * __privileged_functions_end__;
582         #else
583             /* Declaration when these variable are exported from linker scripts. */
584             extern uint32_t __privileged_functions_start__[];
585             extern uint32_t __privileged_functions_end__[];
586         #endif /* #if defined( __ARMCC_VERSION ) */
587 
588         ulSystemCallLocation = pulSystemCallStack[ portOFFSET_TO_PC ];
589         pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB );
590 
591         /* Checks:
592          * 1. SVC is raised from the privileged code (i.e. application is not
593          *    raising SVC directly). This SVC is only raised from
594          *    vRequestSystemCallExit which is in the privileged code section.
595          * 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must not be NULL -
596          *    this means that we previously entered a system call and the
597          *    application is not attempting to exit without entering a system
598          *    call.
599          */
600         if( ( ulSystemCallLocation >= ( uint32_t ) __privileged_functions_start__ ) &&
601             ( ulSystemCallLocation <= ( uint32_t ) __privileged_functions_end__ ) &&
602             ( pxMpuSettings->xSystemCallStackInfo.pulTaskStack != NULL ) )
603         {
604             pulTaskStack = pxMpuSettings->xSystemCallStackInfo.pulTaskStack;
605 
606             if( ( ulLR & portEXC_RETURN_STACK_FRAME_TYPE_MASK ) == 0UL )
607             {
608                 /* Extended frame i.e. FPU in use. */
609                 ulStackFrameSize = 26;
610                 __asm volatile
611                 (
612                     " vpush {s0}         \n" /* Trigger lazy stacking. */
613                     " vpop  {s0}         \n" /* Nullify the affect of the above instruction. */
614                     ::: "memory"
615                 );
616             }
617             else
618             {
619                 /* Standard frame i.e. FPU not in use. */
620                 ulStackFrameSize = 8;
621             }
622 
623             /* Make space on the task stack for the stack frame. */
624             pulTaskStack = pulTaskStack - ulStackFrameSize;
625 
626             /* Copy the stack frame. */
627             for( i = 0; i < ulStackFrameSize; i++ )
628             {
629                 pulTaskStack[ i ] = pulSystemCallStack[ i ];
630             }
631 
632             /* Use the pulTaskStack in thread mode. */
633             __asm volatile ( "msr psp, %0" : : "r" ( pulTaskStack ) );
634 
635             /* Drop the privilege before returning to the thread mode. */
636             __asm volatile
637             (
638                 " mrs r1, control     \n" /* Obtain current control value. */
639                 " orr r1, #1          \n" /* Set nPRIV bit. */
640                 " msr control, r1     \n" /* Write back new control value. */
641                 ::: "r1", "memory"
642             );
643 
644             /* Return to the caller of the System Call entry point (i.e. the
645              * caller of the MPU_<API>). */
646             pulTaskStack[ portOFFSET_TO_PC ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry;
647             /* Ensure that LR has a valid value.*/
648             pulTaskStack[ portOFFSET_TO_LR ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry;
649 
650             /* If the hardware used padding to force the stack pointer
651              * to be double word aligned, set the stacked xPSR bit[9],
652              * otherwise clear it. */
653             if( ( pxMpuSettings->ulTaskFlags & portSTACK_FRAME_HAS_PADDING_FLAG ) == portSTACK_FRAME_HAS_PADDING_FLAG )
654             {
655                 pulTaskStack[ portOFFSET_TO_PSR ] |= portPSR_STACK_PADDING_MASK;
656             }
657             else
658             {
659                 pulTaskStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK );
660             }
661 
662             /* This is not NULL only for the duration of the system call. */
663             pxMpuSettings->xSystemCallStackInfo.pulTaskStack = NULL;
664         }
665     }
666 
667 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
668 /*-----------------------------------------------------------*/
669 
xPortIsTaskPrivileged(void)670 BaseType_t xPortIsTaskPrivileged( void ) /* PRIVILEGED_FUNCTION */
671 {
672     BaseType_t xTaskIsPrivileged = pdFALSE;
673     const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */
674 
675     if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
676     {
677         xTaskIsPrivileged = pdTRUE;
678     }
679 
680     return xTaskIsPrivileged;
681 }
682 /*-----------------------------------------------------------*/
683 
684 /*
685  * See header file for description.
686  */
xPortStartScheduler(void)687 BaseType_t xPortStartScheduler( void )
688 {
689     /* Errata 837070 workaround must only be enabled on Cortex-M7 r0p0
690      * and r0p1 cores. */
691     #if ( configENABLE_ERRATA_837070_WORKAROUND == 1 )
692         configASSERT( ( portCPUID == portCORTEX_M7_r0p1_ID ) || ( portCPUID == portCORTEX_M7_r0p0_ID ) );
693     #else
694         /* When using this port on a Cortex-M7 r0p0 or r0p1 core, define
695          * configENABLE_ERRATA_837070_WORKAROUND to 1 in your
696          * FreeRTOSConfig.h. */
697         configASSERT( portCPUID != portCORTEX_M7_r0p1_ID );
698         configASSERT( portCPUID != portCORTEX_M7_r0p0_ID );
699     #endif
700 
701     #if ( configASSERT_DEFINED == 1 )
702     {
703         volatile uint8_t ucOriginalPriority;
704         volatile uint32_t ulImplementedPrioBits = 0;
705         volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
706         volatile uint8_t ucMaxPriorityValue;
707 
708         /* Determine the maximum priority from which ISR safe FreeRTOS API
709          * functions can be called.  ISR safe functions are those that end in
710          * "FromISR".  FreeRTOS maintains separate thread and ISR API functions to
711          * ensure interrupt entry is as fast and simple as possible.
712          *
713          * Save the interrupt priority value that is about to be clobbered. */
714         ucOriginalPriority = *pucFirstUserPriorityRegister;
715 
716         /* Determine the number of priority bits available.  First write to all
717          * possible bits. */
718         *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
719 
720         /* Read the value back to see how many bits stuck. */
721         ucMaxPriorityValue = *pucFirstUserPriorityRegister;
722 
723         /* Use the same mask on the maximum system call priority. */
724         ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
725 
726         /* Check that the maximum system call priority is nonzero after
727          * accounting for the number of priority bits supported by the
728          * hardware. A priority of 0 is invalid because setting the BASEPRI
729          * register to 0 unmasks all interrupts, and interrupts with priority 0
730          * cannot be masked using BASEPRI.
731          * See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
732         configASSERT( ucMaxSysCallPriority );
733 
734         /* Check that the bits not implemented in hardware are zero in
735          * configMAX_SYSCALL_INTERRUPT_PRIORITY. */
736         configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & ( ~ucMaxPriorityValue ) ) == 0U );
737 
738         /* Calculate the maximum acceptable priority group value for the number
739          * of bits read back. */
740 
741         while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
742         {
743             ulImplementedPrioBits++;
744             ucMaxPriorityValue <<= ( uint8_t ) 0x01;
745         }
746 
747         if( ulImplementedPrioBits == 8 )
748         {
749             /* When the hardware implements 8 priority bits, there is no way for
750              * the software to configure PRIGROUP to not have sub-priorities. As
751              * a result, the least significant bit is always used for sub-priority
752              * and there are 128 preemption priorities and 2 sub-priorities.
753              *
754              * This may cause some confusion in some cases - for example, if
755              * configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
756              * priority interrupts will be masked in Critical Sections as those
757              * are at the same preemption priority. This may appear confusing as
758              * 4 is higher (numerically lower) priority than
759              * configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
760              * have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
761              * to 4, this confusion does not happen and the behaviour remains the same.
762              *
763              * The following assert ensures that the sub-priority bit in the
764              * configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
765              * confusion. */
766             configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
767             ulMaxPRIGROUPValue = 0;
768         }
769         else
770         {
771             ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
772         }
773 
774         /* Shift the priority group value back to its position within the AIRCR
775          * register. */
776         ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
777         ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
778 
779         /* Restore the clobbered interrupt priority register to its original
780          * value. */
781         *pucFirstUserPriorityRegister = ucOriginalPriority;
782     }
783     #endif /* configASSERT_DEFINED */
784 
785     /* Make PendSV and SysTick the lowest priority interrupts. */
786     portNVIC_SHPR3_REG |= portNVIC_PENDSV_PRI;
787     portNVIC_SHPR3_REG |= portNVIC_SYSTICK_PRI;
788 
789     /* Configure the regions in the MPU that are common to all tasks. */
790     prvSetupMPU();
791 
792     /* Start the timer that generates the tick ISR.  Interrupts are disabled
793      * here already. */
794     vPortSetupTimerInterrupt();
795 
796     /* Initialise the critical nesting count ready for the first task. */
797     uxCriticalNesting = 0;
798 
799     #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )
800     {
801         xSchedulerRunning = pdTRUE;
802     }
803     #endif
804 
805     /* Ensure the VFP is enabled - it should be anyway. */
806     vPortEnableVFP();
807 
808     /* Lazy save always. */
809     *( portFPCCR ) |= portASPEN_AND_LSPEN_BITS;
810 
811     /* Start the first task. */
812     vPortStartFirstTask();
813 
814     /* Should not get here! */
815     return 0;
816 }
817 /*-----------------------------------------------------------*/
818 
vPortEndScheduler(void)819 void vPortEndScheduler( void )
820 {
821     /* Not implemented in ports where there is nothing to return to.
822      * Artificially force an assert. */
823     configASSERT( uxCriticalNesting == 1000UL );
824 }
825 /*-----------------------------------------------------------*/
826 
vPortEnterCritical(void)827 void vPortEnterCritical( void )
828 {
829     #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
830         if( portIS_PRIVILEGED() == pdFALSE )
831         {
832             portRAISE_PRIVILEGE();
833             portMEMORY_BARRIER();
834 
835             portDISABLE_INTERRUPTS();
836             uxCriticalNesting++;
837 
838             /* This is not the interrupt safe version of the enter critical function so
839              * assert() if it is being called from an interrupt context.  Only API
840              * functions that end in "FromISR" can be used in an interrupt.  Only assert if
841              * the critical nesting count is 1 to protect against recursive calls if the
842              * assert function also uses a critical section. */
843             if( uxCriticalNesting == 1 )
844             {
845                 configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
846             }
847 
848             portMEMORY_BARRIER();
849 
850             portRESET_PRIVILEGE();
851             portMEMORY_BARRIER();
852         }
853         else
854         {
855             portDISABLE_INTERRUPTS();
856             uxCriticalNesting++;
857 
858             /* This is not the interrupt safe version of the enter critical function so
859              * assert() if it is being called from an interrupt context.  Only API
860              * functions that end in "FromISR" can be used in an interrupt.  Only assert if
861              * the critical nesting count is 1 to protect against recursive calls if the
862              * assert function also uses a critical section. */
863             if( uxCriticalNesting == 1 )
864             {
865                 configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
866             }
867         }
868     #else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
869         portDISABLE_INTERRUPTS();
870         uxCriticalNesting++;
871 
872         /* This is not the interrupt safe version of the enter critical function so
873          * assert() if it is being called from an interrupt context.  Only API
874          * functions that end in "FromISR" can be used in an interrupt.  Only assert if
875          * the critical nesting count is 1 to protect against recursive calls if the
876          * assert function also uses a critical section. */
877         if( uxCriticalNesting == 1 )
878         {
879             configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
880         }
881     #endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
882 }
883 /*-----------------------------------------------------------*/
884 
vPortExitCritical(void)885 void vPortExitCritical( void )
886 {
887     #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
888         if( portIS_PRIVILEGED() == pdFALSE )
889         {
890             portRAISE_PRIVILEGE();
891             portMEMORY_BARRIER();
892 
893             configASSERT( uxCriticalNesting );
894             uxCriticalNesting--;
895 
896             if( uxCriticalNesting == 0 )
897             {
898                 portENABLE_INTERRUPTS();
899             }
900 
901             portMEMORY_BARRIER();
902 
903             portRESET_PRIVILEGE();
904             portMEMORY_BARRIER();
905         }
906         else
907         {
908             configASSERT( uxCriticalNesting );
909             uxCriticalNesting--;
910 
911             if( uxCriticalNesting == 0 )
912             {
913                 portENABLE_INTERRUPTS();
914             }
915         }
916     #else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
917         configASSERT( uxCriticalNesting );
918         uxCriticalNesting--;
919 
920         if( uxCriticalNesting == 0 )
921         {
922             portENABLE_INTERRUPTS();
923         }
924     #endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
925 }
926 /*-----------------------------------------------------------*/
927 
xPortSysTickHandler(void)928 void xPortSysTickHandler( void )
929 {
930     /* The SysTick runs at the lowest interrupt priority, so when this interrupt
931      * executes all interrupts must be unmasked.  There is therefore no need to
932      * save and then restore the interrupt mask value as its value is already
933      * known. */
934     portDISABLE_INTERRUPTS();
935     {
936         /* Increment the RTOS tick. */
937         if( xTaskIncrementTick() != pdFALSE )
938         {
939             /* A context switch is required.  Context switching is performed in
940              * the PendSV interrupt.  Pend the PendSV interrupt. */
941             portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
942         }
943     }
944     portENABLE_INTERRUPTS();
945 }
946 /*-----------------------------------------------------------*/
947 
948 /*
949  * Setup the systick timer to generate the tick interrupts at the required
950  * frequency.
951  */
vPortSetupTimerInterrupt(void)952 __weak void vPortSetupTimerInterrupt( void )
953 {
954     /* Stop and clear the SysTick. */
955     portNVIC_SYSTICK_CTRL_REG = 0UL;
956     portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
957 
958     /* Configure SysTick to interrupt at the requested rate. */
959     portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
960     portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT );
961 }
962 /*-----------------------------------------------------------*/
963 
prvSetupMPU(void)964 static void prvSetupMPU( void )
965 {
966     extern uint32_t __privileged_functions_start__[];
967     extern uint32_t __privileged_functions_end__[];
968     extern uint32_t __FLASH_segment_start__[];
969     extern uint32_t __FLASH_segment_end__[];
970     extern uint32_t __privileged_data_start__[];
971     extern uint32_t __privileged_data_end__[];
972 
973     /* The only permitted number of regions are 8 or 16. */
974     configASSERT( ( configTOTAL_MPU_REGIONS == 8 ) || ( configTOTAL_MPU_REGIONS == 16 ) );
975 
976     /* Ensure that the configTOTAL_MPU_REGIONS is configured correctly. */
977     configASSERT( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE );
978 
979     /* Check the expected MPU is present. */
980     if( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE )
981     {
982         /* First setup the unprivileged flash for unprivileged read only access. */
983         portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __FLASH_segment_start__ ) | /* Base address. */
984                                           ( portMPU_REGION_VALID ) |
985                                           ( portUNPRIVILEGED_FLASH_REGION );
986 
987         portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_READ_ONLY ) |
988                                        ( ( configTEX_S_C_B_FLASH & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) |
989                                        ( prvGetMPURegionSizeSetting( ( uint32_t ) __FLASH_segment_end__ - ( uint32_t ) __FLASH_segment_start__ ) ) |
990                                        ( portMPU_REGION_ENABLE );
991 
992         /* Setup the privileged flash for privileged only access.  This is where
993          * the kernel code is placed. */
994         portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __privileged_functions_start__ ) | /* Base address. */
995                                           ( portMPU_REGION_VALID ) |
996                                           ( portPRIVILEGED_FLASH_REGION );
997 
998         portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_PRIVILEGED_READ_ONLY ) |
999                                        ( ( configTEX_S_C_B_FLASH & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) |
1000                                        ( prvGetMPURegionSizeSetting( ( uint32_t ) __privileged_functions_end__ - ( uint32_t ) __privileged_functions_start__ ) ) |
1001                                        ( portMPU_REGION_ENABLE );
1002 
1003         /* Setup the privileged data RAM region.  This is where the kernel data
1004          * is placed. */
1005         portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __privileged_data_start__ ) | /* Base address. */
1006                                           ( portMPU_REGION_VALID ) |
1007                                           ( portPRIVILEGED_RAM_REGION );
1008 
1009         portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_PRIVILEGED_READ_WRITE ) |
1010                                        ( portMPU_REGION_EXECUTE_NEVER ) |
1011                                        ( ( configTEX_S_C_B_SRAM & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) |
1012                                        prvGetMPURegionSizeSetting( ( uint32_t ) __privileged_data_end__ - ( uint32_t ) __privileged_data_start__ ) |
1013                                        ( portMPU_REGION_ENABLE );
1014 
1015         /* By default allow everything to access the general peripherals.  The
1016          * system peripherals and registers are protected. */
1017         portMPU_REGION_BASE_ADDRESS_REG = ( portPERIPHERALS_START_ADDRESS ) |
1018                                           ( portMPU_REGION_VALID ) |
1019                                           ( portGENERAL_PERIPHERALS_REGION );
1020 
1021         portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_READ_WRITE | portMPU_REGION_EXECUTE_NEVER ) |
1022                                        ( prvGetMPURegionSizeSetting( portPERIPHERALS_END_ADDRESS - portPERIPHERALS_START_ADDRESS ) ) |
1023                                        ( portMPU_REGION_ENABLE );
1024 
1025         /* Enable the memory fault exception. */
1026         portNVIC_SYS_CTRL_STATE_REG |= portNVIC_MEM_FAULT_ENABLE;
1027 
1028         /* Enable the MPU with the background region configured. */
1029         portMPU_CTRL_REG |= ( portMPU_ENABLE | portMPU_BACKGROUND_ENABLE );
1030     }
1031 }
1032 /*-----------------------------------------------------------*/
1033 
prvGetMPURegionSizeSetting(uint32_t ulActualSizeInBytes)1034 static uint32_t prvGetMPURegionSizeSetting( uint32_t ulActualSizeInBytes )
1035 {
1036     uint32_t ulRegionSize, ulReturnValue = 4;
1037 
1038     /* 32 is the smallest region size, 31 is the largest valid value for
1039      * ulReturnValue. */
1040     for( ulRegionSize = 32UL; ulReturnValue < 31UL; ( ulRegionSize <<= 1UL ) )
1041     {
1042         if( ulActualSizeInBytes <= ulRegionSize )
1043         {
1044             break;
1045         }
1046         else
1047         {
1048             ulReturnValue++;
1049         }
1050     }
1051 
1052     /* Shift the code by one before returning so it can be written directly
1053      * into the the correct bit position of the attribute register. */
1054     return( ulReturnValue << 1UL );
1055 }
1056 /*-----------------------------------------------------------*/
1057 
vPortStoreTaskMPUSettings(xMPU_SETTINGS * xMPUSettings,const struct xMEMORY_REGION * const xRegions,StackType_t * pxBottomOfStack,uint32_t ulStackDepth)1058 void vPortStoreTaskMPUSettings( xMPU_SETTINGS * xMPUSettings,
1059                                 const struct xMEMORY_REGION * const xRegions,
1060                                 StackType_t * pxBottomOfStack,
1061                                 uint32_t ulStackDepth )
1062 {
1063     extern uint32_t __SRAM_segment_start__[];
1064     extern uint32_t __SRAM_segment_end__[];
1065     extern uint32_t __privileged_data_start__[];
1066     extern uint32_t __privileged_data_end__[];
1067     int32_t lIndex;
1068     uint32_t ul;
1069 
1070     if( xRegions == NULL )
1071     {
1072         /* No MPU regions are specified so allow access to all RAM. */
1073         xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress =
1074             ( ( uint32_t ) __SRAM_segment_start__ ) | /* Base address. */
1075             ( portMPU_REGION_VALID ) |
1076             ( portSTACK_REGION );                     /* Region number. */
1077 
1078         xMPUSettings->xRegion[ 0 ].ulRegionAttribute =
1079             ( portMPU_REGION_READ_WRITE ) |
1080             ( portMPU_REGION_EXECUTE_NEVER ) |
1081             ( ( configTEX_S_C_B_SRAM & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) |
1082             ( prvGetMPURegionSizeSetting( ( uint32_t ) __SRAM_segment_end__ - ( uint32_t ) __SRAM_segment_start__ ) ) |
1083             ( portMPU_REGION_ENABLE );
1084 
1085         xMPUSettings->xRegionSettings[ 0 ].ulRegionStartAddress = ( uint32_t ) __SRAM_segment_start__;
1086         xMPUSettings->xRegionSettings[ 0 ].ulRegionEndAddress = ( uint32_t ) __SRAM_segment_end__;
1087         xMPUSettings->xRegionSettings[ 0 ].ulRegionPermissions = ( tskMPU_READ_PERMISSION |
1088                                                                    tskMPU_WRITE_PERMISSION );
1089 
1090         /* Invalidate user configurable regions. */
1091         for( ul = 1UL; ul <= portNUM_CONFIGURABLE_REGIONS; ul++ )
1092         {
1093             xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( ( ul - 1UL ) | portMPU_REGION_VALID );
1094             xMPUSettings->xRegion[ ul ].ulRegionAttribute = 0UL;
1095             xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = 0UL;
1096             xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = 0UL;
1097             xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL;
1098         }
1099     }
1100     else
1101     {
1102         /* This function is called automatically when the task is created - in
1103          * which case the stack region parameters will be valid.  At all other
1104          * times the stack parameters will not be valid and it is assumed that the
1105          * stack region has already been configured. */
1106         if( ulStackDepth > 0 )
1107         {
1108             /* Define the region that allows access to the stack. */
1109             xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress =
1110                 ( ( uint32_t ) pxBottomOfStack ) |
1111                 ( portMPU_REGION_VALID ) |
1112                 ( portSTACK_REGION ); /* Region number. */
1113 
1114             xMPUSettings->xRegion[ 0 ].ulRegionAttribute =
1115                 ( portMPU_REGION_READ_WRITE ) |
1116                 ( portMPU_REGION_EXECUTE_NEVER ) |
1117                 ( prvGetMPURegionSizeSetting( ulStackDepth * ( uint32_t ) sizeof( StackType_t ) ) ) |
1118                 ( ( configTEX_S_C_B_SRAM & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) |
1119                 ( portMPU_REGION_ENABLE );
1120 
1121             xMPUSettings->xRegionSettings[ 0 ].ulRegionStartAddress = ( uint32_t ) pxBottomOfStack;
1122             xMPUSettings->xRegionSettings[ 0 ].ulRegionEndAddress = ( uint32_t ) ( ( uint32_t ) ( pxBottomOfStack ) +
1123                                                                                    ( ulStackDepth * ( uint32_t ) sizeof( StackType_t ) ) - 1UL );
1124             xMPUSettings->xRegionSettings[ 0 ].ulRegionPermissions = ( tskMPU_READ_PERMISSION |
1125                                                                        tskMPU_WRITE_PERMISSION );
1126         }
1127 
1128         lIndex = 0;
1129 
1130         for( ul = 1UL; ul <= portNUM_CONFIGURABLE_REGIONS; ul++ )
1131         {
1132             if( ( xRegions[ lIndex ] ).ulLengthInBytes > 0UL )
1133             {
1134                 /* Translate the generic region definition contained in
1135                  * xRegions into the CM4 specific MPU settings that are then
1136                  * stored in xMPUSettings. */
1137                 xMPUSettings->xRegion[ ul ].ulRegionBaseAddress =
1138                     ( ( uint32_t ) xRegions[ lIndex ].pvBaseAddress ) |
1139                     ( portMPU_REGION_VALID ) |
1140                     ( ul - 1UL ); /* Region number. */
1141 
1142                 xMPUSettings->xRegion[ ul ].ulRegionAttribute =
1143                     ( prvGetMPURegionSizeSetting( xRegions[ lIndex ].ulLengthInBytes ) ) |
1144                     ( xRegions[ lIndex ].ulParameters ) |
1145                     ( portMPU_REGION_ENABLE );
1146 
1147                 xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = ( uint32_t ) xRegions[ lIndex ].pvBaseAddress;
1148                 xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = ( uint32_t ) ( ( uint32_t ) xRegions[ lIndex ].pvBaseAddress + xRegions[ lIndex ].ulLengthInBytes - 1UL );
1149                 xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL;
1150 
1151                 if( ( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_READ_ONLY ) == portMPU_REGION_READ_ONLY ) ||
1152                     ( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_PRIVILEGED_READ_WRITE_UNPRIV_READ_ONLY ) == portMPU_REGION_PRIVILEGED_READ_WRITE_UNPRIV_READ_ONLY ) )
1153                 {
1154                     xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = tskMPU_READ_PERMISSION;
1155                 }
1156 
1157                 if( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_READ_WRITE ) == portMPU_REGION_READ_WRITE )
1158                 {
1159                     xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = ( tskMPU_READ_PERMISSION | tskMPU_WRITE_PERMISSION );
1160                 }
1161             }
1162             else
1163             {
1164                 /* Invalidate the region. */
1165                 xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( ( ul - 1UL ) | portMPU_REGION_VALID );
1166                 xMPUSettings->xRegion[ ul ].ulRegionAttribute = 0UL;
1167                 xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = 0UL;
1168                 xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = 0UL;
1169                 xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL;
1170             }
1171 
1172             lIndex++;
1173         }
1174     }
1175 }
1176 /*-----------------------------------------------------------*/
1177 
xPortIsAuthorizedToAccessBuffer(const void * pvBuffer,uint32_t ulBufferLength,uint32_t ulAccessRequested)1178 BaseType_t xPortIsAuthorizedToAccessBuffer( const void * pvBuffer,
1179                                             uint32_t ulBufferLength,
1180                                             uint32_t ulAccessRequested ) /* PRIVILEGED_FUNCTION */
1181 
1182 {
1183     uint32_t i, ulBufferStartAddress, ulBufferEndAddress;
1184     BaseType_t xAccessGranted = pdFALSE;
1185     const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */
1186 
1187     if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
1188     {
1189         xAccessGranted = pdTRUE;
1190     }
1191     else
1192     {
1193         if( portADD_UINT32_WILL_OVERFLOW( ( ( uint32_t ) pvBuffer ), ( ulBufferLength - 1UL ) ) == pdFALSE )
1194         {
1195             ulBufferStartAddress = ( uint32_t ) pvBuffer;
1196             ulBufferEndAddress = ( ( ( uint32_t ) pvBuffer ) + ulBufferLength - 1UL );
1197 
1198             for( i = 0; i < portTOTAL_NUM_REGIONS_IN_TCB; i++ )
1199             {
1200                 if( portIS_ADDRESS_WITHIN_RANGE( ulBufferStartAddress,
1201                                                  xTaskMpuSettings->xRegionSettings[ i ].ulRegionStartAddress,
1202                                                  xTaskMpuSettings->xRegionSettings[ i ].ulRegionEndAddress ) &&
1203                     portIS_ADDRESS_WITHIN_RANGE( ulBufferEndAddress,
1204                                                  xTaskMpuSettings->xRegionSettings[ i ].ulRegionStartAddress,
1205                                                  xTaskMpuSettings->xRegionSettings[ i ].ulRegionEndAddress ) &&
1206                     portIS_AUTHORIZED( ulAccessRequested, xTaskMpuSettings->xRegionSettings[ i ].ulRegionPermissions ) )
1207                 {
1208                     xAccessGranted = pdTRUE;
1209                     break;
1210                 }
1211             }
1212         }
1213     }
1214 
1215     return xAccessGranted;
1216 }
1217 /*-----------------------------------------------------------*/
1218 
1219 
1220 #if ( configASSERT_DEFINED == 1 )
1221 
vPortValidateInterruptPriority(void)1222     void vPortValidateInterruptPriority( void )
1223     {
1224         uint32_t ulCurrentInterrupt;
1225         uint8_t ucCurrentPriority;
1226 
1227         /* Obtain the number of the currently executing interrupt. */
1228         __asm volatile ( "mrs %0, ipsr" : "=r" ( ulCurrentInterrupt )::"memory" );
1229 
1230         /* Is the interrupt number a user defined interrupt? */
1231         if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
1232         {
1233             /* Look up the interrupt's priority. */
1234             ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
1235 
1236             /* The following assertion will fail if a service routine (ISR) for
1237              * an interrupt that has been assigned a priority above
1238              * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
1239              * function.  ISR safe FreeRTOS API functions must *only* be called
1240              * from interrupts that have been assigned a priority at or below
1241              * configMAX_SYSCALL_INTERRUPT_PRIORITY.
1242              *
1243              * Numerically low interrupt priority numbers represent logically high
1244              * interrupt priorities, therefore the priority of the interrupt must
1245              * be set to a value equal to or numerically *higher* than
1246              * configMAX_SYSCALL_INTERRUPT_PRIORITY.
1247              *
1248              * Interrupts that  use the FreeRTOS API must not be left at their
1249              * default priority of  zero as that is the highest possible priority,
1250              * which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
1251              * and  therefore also guaranteed to be invalid.
1252              *
1253              * FreeRTOS maintains separate thread and ISR API functions to ensure
1254              * interrupt entry is as fast and simple as possible.
1255              *
1256              * The following links provide detailed information:
1257              * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
1258              * https://www.FreeRTOS.org/FAQHelp.html */
1259             configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
1260         }
1261 
1262         /* Priority grouping:  The interrupt controller (NVIC) allows the bits
1263          * that define each interrupt's priority to be split between bits that
1264          * define the interrupt's pre-emption priority bits and bits that define
1265          * the interrupt's sub-priority.  For simplicity all bits must be defined
1266          * to be pre-emption priority bits.  The following assertion will fail if
1267          * this is not the case (if some bits represent a sub-priority).
1268          *
1269          * If the application only uses CMSIS libraries for interrupt
1270          * configuration then the correct setting can be achieved on all Cortex-M
1271          * devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
1272          * scheduler.  Note however that some vendor specific peripheral libraries
1273          * assume a non-zero priority group setting, in which cases using a value
1274          * of zero will result in unpredictable behaviour. */
1275         configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
1276     }
1277 
1278 #endif /* configASSERT_DEFINED */
1279 /*-----------------------------------------------------------*/
1280 
1281 #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )
1282 
vPortGrantAccessToKernelObject(TaskHandle_t xInternalTaskHandle,int32_t lInternalIndexOfKernelObject)1283     void vPortGrantAccessToKernelObject( TaskHandle_t xInternalTaskHandle,
1284                                          int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
1285     {
1286         uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
1287         xMPU_SETTINGS * xTaskMpuSettings;
1288 
1289         ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
1290         ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );
1291 
1292         xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle );
1293 
1294         xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] |= ( 1U << ulAccessControlListEntryBit );
1295     }
1296 
1297 #endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */
1298 /*-----------------------------------------------------------*/
1299 
1300 #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )
1301 
vPortRevokeAccessToKernelObject(TaskHandle_t xInternalTaskHandle,int32_t lInternalIndexOfKernelObject)1302     void vPortRevokeAccessToKernelObject( TaskHandle_t xInternalTaskHandle,
1303                                           int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
1304     {
1305         uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
1306         xMPU_SETTINGS * xTaskMpuSettings;
1307 
1308         ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
1309         ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );
1310 
1311         xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle );
1312 
1313         xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] &= ~( 1U << ulAccessControlListEntryBit );
1314     }
1315 
1316 #endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */
1317 /*-----------------------------------------------------------*/
1318 
1319 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
1320 
1321     #if ( configENABLE_ACCESS_CONTROL_LIST == 1 )
1322 
xPortIsAuthorizedToAccessKernelObject(int32_t lInternalIndexOfKernelObject)1323         BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
1324         {
1325             uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
1326             BaseType_t xAccessGranted = pdFALSE;
1327             const xMPU_SETTINGS * xTaskMpuSettings;
1328 
1329             if( xSchedulerRunning == pdFALSE )
1330             {
1331                 /* Grant access to all the kernel objects before the scheduler
1332                  * is started. It is necessary because there is no task running
1333                  * yet and therefore, we cannot use the permissions of any
1334                  * task. */
1335                 xAccessGranted = pdTRUE;
1336             }
1337             else
1338             {
1339                 xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */
1340 
1341                 ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
1342                 ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );
1343 
1344                 if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
1345                 {
1346                     xAccessGranted = pdTRUE;
1347                 }
1348                 else
1349                 {
1350                     if( ( xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] & ( 1U << ulAccessControlListEntryBit ) ) != 0 )
1351                     {
1352                         xAccessGranted = pdTRUE;
1353                     }
1354                 }
1355             }
1356 
1357             return xAccessGranted;
1358         }
1359 
1360     #else /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */
1361 
xPortIsAuthorizedToAccessKernelObject(int32_t lInternalIndexOfKernelObject)1362         BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
1363         {
1364             ( void ) lInternalIndexOfKernelObject;
1365 
1366             /* If Access Control List feature is not used, all the tasks have
1367              * access to all the kernel objects. */
1368             return pdTRUE;
1369         }
1370 
1371     #endif /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */
1372 
1373 #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
1374 /*-----------------------------------------------------------*/
1375