1 /*
2 * FreeRTOS Kernel V11.1.0
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4 *
5 * SPDX-License-Identifier: MIT
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
8 * this software and associated documentation files (the "Software"), to deal in
9 * the Software without restriction, including without limitation the rights to
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 * the Software, and to permit persons to whom the Software is furnished to do so,
12 * subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in all
15 * copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * https://www.FreeRTOS.org
25 * https://github.com/FreeRTOS
26 *
27 */
28
29 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
30 * all the API functions to use the MPU wrappers. That should only be done when
31 * task.h is included from an application file. */
32 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
33
34 /* Scheduler includes. */
35 #include "FreeRTOS.h"
36 #include "task.h"
37
38 /* MPU includes. */
39 #include "mpu_wrappers.h"
40 #include "mpu_syscall_numbers.h"
41
42 /* Portasm includes. */
43 #include "portasm.h"
44
45 #if ( configENABLE_TRUSTZONE == 1 )
46 /* Secure components includes. */
47 #include "secure_context.h"
48 #include "secure_init.h"
49 #endif /* configENABLE_TRUSTZONE */
50
51 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
52
53 /**
54 * The FreeRTOS Cortex M33 port can be configured to run on the Secure Side only
55 * i.e. the processor boots as secure and never jumps to the non-secure side.
56 * The Trust Zone support in the port must be disabled in order to run FreeRTOS
57 * on the secure side. The following are the valid configuration seetings:
58 *
59 * 1. Run FreeRTOS on the Secure Side:
60 * configRUN_FREERTOS_SECURE_ONLY = 1 and configENABLE_TRUSTZONE = 0
61 *
62 * 2. Run FreeRTOS on the Non-Secure Side with Secure Side function call support:
63 * configRUN_FREERTOS_SECURE_ONLY = 0 and configENABLE_TRUSTZONE = 1
64 *
65 * 3. Run FreeRTOS on the Non-Secure Side only i.e. no Secure Side function call support:
66 * configRUN_FREERTOS_SECURE_ONLY = 0 and configENABLE_TRUSTZONE = 0
67 */
68 #if ( ( configRUN_FREERTOS_SECURE_ONLY == 1 ) && ( configENABLE_TRUSTZONE == 1 ) )
69 #error TrustZone needs to be disabled in order to run FreeRTOS on the Secure Side.
70 #endif
71
72 /**
73 * Cortex-M23 does not have non-secure PSPLIM. We should use PSPLIM on Cortex-M23
74 * only when FreeRTOS runs on secure side.
75 */
76 #if ( ( portHAS_ARMV8M_MAIN_EXTENSION == 0 ) && ( configRUN_FREERTOS_SECURE_ONLY == 0 ) )
77 #define portUSE_PSPLIM_REGISTER 0
78 #else
79 #define portUSE_PSPLIM_REGISTER 1
80 #endif
81 /*-----------------------------------------------------------*/
82
83 /**
84 * @brief Prototype of all Interrupt Service Routines (ISRs).
85 */
86 typedef void ( * portISR_t )( void );
87 /*-----------------------------------------------------------*/
88
89 /**
90 * @brief Constants required to manipulate the NVIC.
91 */
92 #define portNVIC_SYSTICK_CTRL_REG ( *( ( volatile uint32_t * ) 0xe000e010 ) )
93 #define portNVIC_SYSTICK_LOAD_REG ( *( ( volatile uint32_t * ) 0xe000e014 ) )
94 #define portNVIC_SYSTICK_CURRENT_VALUE_REG ( *( ( volatile uint32_t * ) 0xe000e018 ) )
95 #define portNVIC_SHPR3_REG ( *( ( volatile uint32_t * ) 0xe000ed20 ) )
96 #define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL )
97 #define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL )
98 #define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL )
99 #define portNVIC_SYSTICK_COUNT_FLAG_BIT ( 1UL << 16UL )
100 #define portNVIC_PEND_SYSTICK_CLEAR_BIT ( 1UL << 25UL )
101 #define portNVIC_PEND_SYSTICK_SET_BIT ( 1UL << 26UL )
102 #define portMIN_INTERRUPT_PRIORITY ( 255UL )
103 #define portNVIC_PENDSV_PRI ( portMIN_INTERRUPT_PRIORITY << 16UL )
104 #define portNVIC_SYSTICK_PRI ( portMIN_INTERRUPT_PRIORITY << 24UL )
105 /*-----------------------------------------------------------*/
106
107 /**
108 * @brief Constants required to manipulate the SCB.
109 */
110 #define portSCB_VTOR_REG ( *( ( portISR_t ** ) 0xe000ed08 ) )
111 #define portSCB_SYS_HANDLER_CTRL_STATE_REG ( *( ( volatile uint32_t * ) 0xe000ed24 ) )
112 #define portSCB_MEM_FAULT_ENABLE_BIT ( 1UL << 16UL )
113 /*-----------------------------------------------------------*/
114
115 /**
116 * @brief Constants used to check the installation of the FreeRTOS interrupt handlers.
117 */
118 #define portVECTOR_INDEX_SVC ( 11 )
119 #define portVECTOR_INDEX_PENDSV ( 14 )
120 /*-----------------------------------------------------------*/
121
122 /**
123 * @brief Constants required to check the validity of an interrupt priority.
124 */
125 #define portNVIC_SHPR2_REG ( *( ( volatile uint32_t * ) 0xE000ED1C ) )
126 #define portFIRST_USER_INTERRUPT_NUMBER ( 16 )
127 #define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 )
128 #define portAIRCR_REG ( *( ( volatile uint32_t * ) 0xE000ED0C ) )
129 #define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 )
130 #define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 )
131 #define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL )
132 #define portPRIGROUP_SHIFT ( 8UL )
133 /*-----------------------------------------------------------*/
134
135 /**
136 * @brief Constants used during system call enter and exit.
137 */
138 #define portPSR_STACK_PADDING_MASK ( 1UL << 9UL )
139 #define portEXC_RETURN_STACK_FRAME_TYPE_MASK ( 1UL << 4UL )
140 /*-----------------------------------------------------------*/
141
142 /**
143 * @brief Constants required to manipulate the FPU.
144 */
145 #define portCPACR ( ( volatile uint32_t * ) 0xe000ed88 ) /* Coprocessor Access Control Register. */
146 #define portCPACR_CP10_VALUE ( 3UL )
147 #define portCPACR_CP11_VALUE portCPACR_CP10_VALUE
148 #define portCPACR_CP10_POS ( 20UL )
149 #define portCPACR_CP11_POS ( 22UL )
150
151 #define portFPCCR ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating Point Context Control Register. */
152 #define portFPCCR_ASPEN_POS ( 31UL )
153 #define portFPCCR_ASPEN_MASK ( 1UL << portFPCCR_ASPEN_POS )
154 #define portFPCCR_LSPEN_POS ( 30UL )
155 #define portFPCCR_LSPEN_MASK ( 1UL << portFPCCR_LSPEN_POS )
156 /*-----------------------------------------------------------*/
157
158 /**
159 * @brief Offsets in the stack to the parameters when inside the SVC handler.
160 */
161 #define portOFFSET_TO_LR ( 5 )
162 #define portOFFSET_TO_PC ( 6 )
163 #define portOFFSET_TO_PSR ( 7 )
164 /*-----------------------------------------------------------*/
165
166 /**
167 * @brief Constants required to manipulate the MPU.
168 */
169 #define portMPU_TYPE_REG ( *( ( volatile uint32_t * ) 0xe000ed90 ) )
170 #define portMPU_CTRL_REG ( *( ( volatile uint32_t * ) 0xe000ed94 ) )
171 #define portMPU_RNR_REG ( *( ( volatile uint32_t * ) 0xe000ed98 ) )
172
173 #define portMPU_RBAR_REG ( *( ( volatile uint32_t * ) 0xe000ed9c ) )
174 #define portMPU_RLAR_REG ( *( ( volatile uint32_t * ) 0xe000eda0 ) )
175
176 #define portMPU_RBAR_A1_REG ( *( ( volatile uint32_t * ) 0xe000eda4 ) )
177 #define portMPU_RLAR_A1_REG ( *( ( volatile uint32_t * ) 0xe000eda8 ) )
178
179 #define portMPU_RBAR_A2_REG ( *( ( volatile uint32_t * ) 0xe000edac ) )
180 #define portMPU_RLAR_A2_REG ( *( ( volatile uint32_t * ) 0xe000edb0 ) )
181
182 #define portMPU_RBAR_A3_REG ( *( ( volatile uint32_t * ) 0xe000edb4 ) )
183 #define portMPU_RLAR_A3_REG ( *( ( volatile uint32_t * ) 0xe000edb8 ) )
184
185 #define portMPU_MAIR0_REG ( *( ( volatile uint32_t * ) 0xe000edc0 ) )
186 #define portMPU_MAIR1_REG ( *( ( volatile uint32_t * ) 0xe000edc4 ) )
187
188 #define portMPU_RBAR_ADDRESS_MASK ( 0xffffffe0 ) /* Must be 32-byte aligned. */
189 #define portMPU_RLAR_ADDRESS_MASK ( 0xffffffe0 ) /* Must be 32-byte aligned. */
190
191 #define portMPU_RBAR_ACCESS_PERMISSIONS_MASK ( 3UL << 1UL )
192
193 #define portMPU_MAIR_ATTR0_POS ( 0UL )
194 #define portMPU_MAIR_ATTR0_MASK ( 0x000000ff )
195
196 #define portMPU_MAIR_ATTR1_POS ( 8UL )
197 #define portMPU_MAIR_ATTR1_MASK ( 0x0000ff00 )
198
199 #define portMPU_MAIR_ATTR2_POS ( 16UL )
200 #define portMPU_MAIR_ATTR2_MASK ( 0x00ff0000 )
201
202 #define portMPU_MAIR_ATTR3_POS ( 24UL )
203 #define portMPU_MAIR_ATTR3_MASK ( 0xff000000 )
204
205 #define portMPU_MAIR_ATTR4_POS ( 0UL )
206 #define portMPU_MAIR_ATTR4_MASK ( 0x000000ff )
207
208 #define portMPU_MAIR_ATTR5_POS ( 8UL )
209 #define portMPU_MAIR_ATTR5_MASK ( 0x0000ff00 )
210
211 #define portMPU_MAIR_ATTR6_POS ( 16UL )
212 #define portMPU_MAIR_ATTR6_MASK ( 0x00ff0000 )
213
214 #define portMPU_MAIR_ATTR7_POS ( 24UL )
215 #define portMPU_MAIR_ATTR7_MASK ( 0xff000000 )
216
217 #define portMPU_RLAR_ATTR_INDEX0 ( 0UL << 1UL )
218 #define portMPU_RLAR_ATTR_INDEX1 ( 1UL << 1UL )
219 #define portMPU_RLAR_ATTR_INDEX2 ( 2UL << 1UL )
220 #define portMPU_RLAR_ATTR_INDEX3 ( 3UL << 1UL )
221 #define portMPU_RLAR_ATTR_INDEX4 ( 4UL << 1UL )
222 #define portMPU_RLAR_ATTR_INDEX5 ( 5UL << 1UL )
223 #define portMPU_RLAR_ATTR_INDEX6 ( 6UL << 1UL )
224 #define portMPU_RLAR_ATTR_INDEX7 ( 7UL << 1UL )
225
226 #define portMPU_RLAR_REGION_ENABLE ( 1UL )
227
228 /* Enable privileged access to unmapped region. */
229 #define portMPU_PRIV_BACKGROUND_ENABLE_BIT ( 1UL << 2UL )
230
231 /* Enable MPU. */
232 #define portMPU_ENABLE_BIT ( 1UL << 0UL )
233
234 /* Expected value of the portMPU_TYPE register. */
235 #define portEXPECTED_MPU_TYPE_VALUE ( configTOTAL_MPU_REGIONS << 8UL )
236
237 /* Extract first address of the MPU region as encoded in the
238 * RBAR (Region Base Address Register) value. */
239 #define portEXTRACT_FIRST_ADDRESS_FROM_RBAR( rbar ) \
240 ( ( rbar ) & portMPU_RBAR_ADDRESS_MASK )
241
242 /* Extract last address of the MPU region as encoded in the
243 * RLAR (Region Limit Address Register) value. */
244 #define portEXTRACT_LAST_ADDRESS_FROM_RLAR( rlar ) \
245 ( ( ( rlar ) & portMPU_RLAR_ADDRESS_MASK ) | ~portMPU_RLAR_ADDRESS_MASK )
246
247 /* Does addr lies within [start, end] address range? */
248 #define portIS_ADDRESS_WITHIN_RANGE( addr, start, end ) \
249 ( ( ( addr ) >= ( start ) ) && ( ( addr ) <= ( end ) ) )
250
251 /* Is the access request satisfied by the available permissions? */
252 #define portIS_AUTHORIZED( accessRequest, permissions ) \
253 ( ( ( permissions ) & ( accessRequest ) ) == accessRequest )
254
255 /* Max value that fits in a uint32_t type. */
256 #define portUINT32_MAX ( ~( ( uint32_t ) 0 ) )
257
258 /* Check if adding a and b will result in overflow. */
259 #define portADD_UINT32_WILL_OVERFLOW( a, b ) ( ( a ) > ( portUINT32_MAX - ( b ) ) )
260 /*-----------------------------------------------------------*/
261
262 /**
263 * @brief The maximum 24-bit number.
264 *
265 * It is needed because the systick is a 24-bit counter.
266 */
267 #define portMAX_24_BIT_NUMBER ( 0xffffffUL )
268
269 /**
270 * @brief A fiddle factor to estimate the number of SysTick counts that would
271 * have occurred while the SysTick counter is stopped during tickless idle
272 * calculations.
273 */
274 #define portMISSED_COUNTS_FACTOR ( 94UL )
275 /*-----------------------------------------------------------*/
276
277 /**
278 * @brief Constants required to set up the initial stack.
279 */
280 #define portINITIAL_XPSR ( 0x01000000 )
281
282 #if ( configRUN_FREERTOS_SECURE_ONLY == 1 )
283
284 /**
285 * @brief Initial EXC_RETURN value.
286 *
287 * FF FF FF FD
288 * 1111 1111 1111 1111 1111 1111 1111 1101
289 *
290 * Bit[6] - 1 --> The exception was taken from the Secure state.
291 * Bit[5] - 1 --> Do not skip stacking of additional state context.
292 * Bit[4] - 1 --> The PE did not allocate space on the stack for FP context.
293 * Bit[3] - 1 --> Return to the Thread mode.
294 * Bit[2] - 1 --> Restore registers from the process stack.
295 * Bit[1] - 0 --> Reserved, 0.
296 * Bit[0] - 1 --> The exception was taken to the Secure state.
297 */
298 #define portINITIAL_EXC_RETURN ( 0xfffffffd )
299 #else
300
301 /**
302 * @brief Initial EXC_RETURN value.
303 *
304 * FF FF FF BC
305 * 1111 1111 1111 1111 1111 1111 1011 1100
306 *
307 * Bit[6] - 0 --> The exception was taken from the Non-Secure state.
308 * Bit[5] - 1 --> Do not skip stacking of additional state context.
309 * Bit[4] - 1 --> The PE did not allocate space on the stack for FP context.
310 * Bit[3] - 1 --> Return to the Thread mode.
311 * Bit[2] - 1 --> Restore registers from the process stack.
312 * Bit[1] - 0 --> Reserved, 0.
313 * Bit[0] - 0 --> The exception was taken to the Non-Secure state.
314 */
315 #define portINITIAL_EXC_RETURN ( 0xffffffbc )
316 #endif /* configRUN_FREERTOS_SECURE_ONLY */
317
318 /**
319 * @brief CONTROL register privileged bit mask.
320 *
321 * Bit[0] in CONTROL register tells the privilege:
322 * Bit[0] = 0 ==> The task is privileged.
323 * Bit[0] = 1 ==> The task is not privileged.
324 */
325 #define portCONTROL_PRIVILEGED_MASK ( 1UL << 0UL )
326
327 /**
328 * @brief Initial CONTROL register values.
329 */
330 #define portINITIAL_CONTROL_UNPRIVILEGED ( 0x3 )
331 #define portINITIAL_CONTROL_PRIVILEGED ( 0x2 )
332
333 /**
334 * @brief Let the user override the default SysTick clock rate. If defined by the
335 * user, this symbol must equal the SysTick clock rate when the CLK bit is 0 in the
336 * configuration register.
337 */
338 #ifndef configSYSTICK_CLOCK_HZ
339 #define configSYSTICK_CLOCK_HZ ( configCPU_CLOCK_HZ )
340 /* Ensure the SysTick is clocked at the same frequency as the core. */
341 #define portNVIC_SYSTICK_CLK_BIT_CONFIG ( portNVIC_SYSTICK_CLK_BIT )
342 #else
343 /* Select the option to clock SysTick not at the same frequency as the core. */
344 #define portNVIC_SYSTICK_CLK_BIT_CONFIG ( 0 )
345 #endif
346
347 /**
348 * @brief Let the user override the pre-loading of the initial LR with the
349 * address of prvTaskExitError() in case it messes up unwinding of the stack
350 * in the debugger.
351 */
352 #ifdef configTASK_RETURN_ADDRESS
353 #define portTASK_RETURN_ADDRESS configTASK_RETURN_ADDRESS
354 #else
355 #define portTASK_RETURN_ADDRESS prvTaskExitError
356 #endif
357
358 /**
359 * @brief If portPRELOAD_REGISTERS then registers will be given an initial value
360 * when a task is created. This helps in debugging at the cost of code size.
361 */
362 #define portPRELOAD_REGISTERS 1
363
364 /**
365 * @brief A task is created without a secure context, and must call
366 * portALLOCATE_SECURE_CONTEXT() to give itself a secure context before it makes
367 * any secure calls.
368 */
369 #define portNO_SECURE_CONTEXT 0
370 /*-----------------------------------------------------------*/
371
372 /**
373 * @brief Used to catch tasks that attempt to return from their implementing
374 * function.
375 */
376 static void prvTaskExitError( void );
377
378 #if ( configENABLE_MPU == 1 )
379
380 /**
381 * @brief Extract MPU region's access permissions from the Region Base Address
382 * Register (RBAR) value.
383 *
384 * @param ulRBARValue RBAR value for the MPU region.
385 *
386 * @return uint32_t Access permissions.
387 */
388 static uint32_t prvGetRegionAccessPermissions( uint32_t ulRBARValue ) PRIVILEGED_FUNCTION;
389 #endif /* configENABLE_MPU */
390
391 #if ( configENABLE_MPU == 1 )
392
393 /**
394 * @brief Setup the Memory Protection Unit (MPU).
395 */
396 static void prvSetupMPU( void ) PRIVILEGED_FUNCTION;
397 #endif /* configENABLE_MPU */
398
399 #if ( configENABLE_FPU == 1 )
400
401 /**
402 * @brief Setup the Floating Point Unit (FPU).
403 */
404 static void prvSetupFPU( void ) PRIVILEGED_FUNCTION;
405 #endif /* configENABLE_FPU */
406
407 /**
408 * @brief Setup the timer to generate the tick interrupts.
409 *
410 * The implementation in this file is weak to allow application writers to
411 * change the timer used to generate the tick interrupt.
412 */
413 void vPortSetupTimerInterrupt( void ) PRIVILEGED_FUNCTION;
414
415 /**
416 * @brief Checks whether the current execution context is interrupt.
417 *
418 * @return pdTRUE if the current execution context is interrupt, pdFALSE
419 * otherwise.
420 */
421 BaseType_t xPortIsInsideInterrupt( void );
422
423 /**
424 * @brief Yield the processor.
425 */
426 void vPortYield( void ) PRIVILEGED_FUNCTION;
427
428 /**
429 * @brief Enter critical section.
430 */
431 void vPortEnterCritical( void ) PRIVILEGED_FUNCTION;
432
433 /**
434 * @brief Exit from critical section.
435 */
436 void vPortExitCritical( void ) PRIVILEGED_FUNCTION;
437
438 /**
439 * @brief SysTick handler.
440 */
441 void SysTick_Handler( void ) PRIVILEGED_FUNCTION;
442
443 /**
444 * @brief C part of SVC handler.
445 */
446 portDONT_DISCARD void vPortSVCHandler_C( uint32_t * pulCallerStackAddress ) PRIVILEGED_FUNCTION;
447
448 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
449
450 /**
451 * @brief Sets up the system call stack so that upon returning from
452 * SVC, the system call stack is used.
453 *
454 * @param pulTaskStack The current SP when the SVC was raised.
455 * @param ulLR The value of Link Register (EXC_RETURN) in the SVC handler.
456 * @param ucSystemCallNumber The system call number of the system call.
457 */
458 void vSystemCallEnter( uint32_t * pulTaskStack,
459 uint32_t ulLR,
460 uint8_t ucSystemCallNumber ) PRIVILEGED_FUNCTION;
461
462 #endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
463
464 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
465
466 /**
467 * @brief Raise SVC for exiting from a system call.
468 */
469 void vRequestSystemCallExit( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION;
470
471 #endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
472
473 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
474
475 /**
476 * @brief Sets up the task stack so that upon returning from
477 * SVC, the task stack is used again.
478 *
479 * @param pulSystemCallStack The current SP when the SVC was raised.
480 * @param ulLR The value of Link Register (EXC_RETURN) in the SVC handler.
481 */
482 void vSystemCallExit( uint32_t * pulSystemCallStack,
483 uint32_t ulLR ) PRIVILEGED_FUNCTION;
484
485 #endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
486
487 #if ( configENABLE_MPU == 1 )
488
489 /**
490 * @brief Checks whether or not the calling task is privileged.
491 *
492 * @return pdTRUE if the calling task is privileged, pdFALSE otherwise.
493 */
494 BaseType_t xPortIsTaskPrivileged( void ) PRIVILEGED_FUNCTION;
495
496 #endif /* configENABLE_MPU == 1 */
497 /*-----------------------------------------------------------*/
498
499 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
500
501 /**
502 * @brief This variable is set to pdTRUE when the scheduler is started.
503 */
504 PRIVILEGED_DATA static BaseType_t xSchedulerRunning = pdFALSE;
505
506 #endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
507
508 /**
509 * @brief Each task maintains its own interrupt status in the critical nesting
510 * variable.
511 */
512 PRIVILEGED_DATA static volatile uint32_t ulCriticalNesting = 0xaaaaaaaaUL;
513
514 #if ( configENABLE_TRUSTZONE == 1 )
515
516 /**
517 * @brief Saved as part of the task context to indicate which context the
518 * task is using on the secure side.
519 */
520 PRIVILEGED_DATA portDONT_DISCARD volatile SecureContextHandle_t xSecureContext = portNO_SECURE_CONTEXT;
521 #endif /* configENABLE_TRUSTZONE */
522
523 /**
524 * @brief Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
525 * FreeRTOS API functions are not called from interrupts that have been assigned
526 * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
527 */
528 #if ( ( configASSERT_DEFINED == 1 ) && ( portHAS_ARMV8M_MAIN_EXTENSION == 1 ) )
529
530 static uint8_t ucMaxSysCallPriority = 0;
531 static uint32_t ulMaxPRIGROUPValue = 0;
532 static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * ) portNVIC_IP_REGISTERS_OFFSET_16;
533
534 #endif /* #if ( ( configASSERT_DEFINED == 1 ) && ( portHAS_ARMV8M_MAIN_EXTENSION == 1 ) ) */
535
536 #if ( configUSE_TICKLESS_IDLE == 1 )
537
538 /**
539 * @brief The number of SysTick increments that make up one tick period.
540 */
541 PRIVILEGED_DATA static uint32_t ulTimerCountsForOneTick = 0;
542
543 /**
544 * @brief The maximum number of tick periods that can be suppressed is
545 * limited by the 24 bit resolution of the SysTick timer.
546 */
547 PRIVILEGED_DATA static uint32_t xMaximumPossibleSuppressedTicks = 0;
548
549 /**
550 * @brief Compensate for the CPU cycles that pass while the SysTick is
551 * stopped (low power functionality only).
552 */
553 PRIVILEGED_DATA static uint32_t ulStoppedTimerCompensation = 0;
554 #endif /* configUSE_TICKLESS_IDLE */
555 /*-----------------------------------------------------------*/
556
557 #if ( configUSE_TICKLESS_IDLE == 1 )
558
vPortSuppressTicksAndSleep(TickType_t xExpectedIdleTime)559 __attribute__( ( weak ) ) void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
560 {
561 uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickDecrementsLeft;
562 TickType_t xModifiableIdleTime;
563
564 /* Make sure the SysTick reload value does not overflow the counter. */
565 if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
566 {
567 xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
568 }
569
570 /* Enter a critical section but don't use the taskENTER_CRITICAL()
571 * method as that will mask interrupts that should exit sleep mode. */
572 __asm volatile ( "cpsid i" ::: "memory" );
573 __asm volatile ( "dsb" );
574 __asm volatile ( "isb" );
575
576 /* If a context switch is pending or a task is waiting for the scheduler
577 * to be unsuspended then abandon the low power entry. */
578 if( eTaskConfirmSleepModeStatus() == eAbortSleep )
579 {
580 /* Re-enable interrupts - see comments above the cpsid instruction
581 * above. */
582 __asm volatile ( "cpsie i" ::: "memory" );
583 }
584 else
585 {
586 /* Stop the SysTick momentarily. The time the SysTick is stopped for
587 * is accounted for as best it can be, but using the tickless mode will
588 * inevitably result in some tiny drift of the time maintained by the
589 * kernel with respect to calendar time. */
590 portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
591
592 /* Use the SysTick current-value register to determine the number of
593 * SysTick decrements remaining until the next tick interrupt. If the
594 * current-value register is zero, then there are actually
595 * ulTimerCountsForOneTick decrements remaining, not zero, because the
596 * SysTick requests the interrupt when decrementing from 1 to 0. */
597 ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
598
599 if( ulSysTickDecrementsLeft == 0 )
600 {
601 ulSysTickDecrementsLeft = ulTimerCountsForOneTick;
602 }
603
604 /* Calculate the reload value required to wait xExpectedIdleTime
605 * tick periods. -1 is used because this code normally executes part
606 * way through the first tick period. But if the SysTick IRQ is now
607 * pending, then clear the IRQ, suppressing the first tick, and correct
608 * the reload value to reflect that the second tick period is already
609 * underway. The expected idle time is always at least two ticks. */
610 ulReloadValue = ulSysTickDecrementsLeft + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
611
612 if( ( portNVIC_INT_CTRL_REG & portNVIC_PEND_SYSTICK_SET_BIT ) != 0 )
613 {
614 portNVIC_INT_CTRL_REG = portNVIC_PEND_SYSTICK_CLEAR_BIT;
615 ulReloadValue -= ulTimerCountsForOneTick;
616 }
617
618 if( ulReloadValue > ulStoppedTimerCompensation )
619 {
620 ulReloadValue -= ulStoppedTimerCompensation;
621 }
622
623 /* Set the new reload value. */
624 portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
625
626 /* Clear the SysTick count flag and set the count value back to
627 * zero. */
628 portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
629
630 /* Restart SysTick. */
631 portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
632
633 /* Sleep until something happens. configPRE_SLEEP_PROCESSING() can
634 * set its parameter to 0 to indicate that its implementation contains
635 * its own wait for interrupt or wait for event instruction, and so wfi
636 * should not be executed again. However, the original expected idle
637 * time variable must remain unmodified, so a copy is taken. */
638 xModifiableIdleTime = xExpectedIdleTime;
639 configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
640
641 if( xModifiableIdleTime > 0 )
642 {
643 __asm volatile ( "dsb" ::: "memory" );
644 __asm volatile ( "wfi" );
645 __asm volatile ( "isb" );
646 }
647
648 configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
649
650 /* Re-enable interrupts to allow the interrupt that brought the MCU
651 * out of sleep mode to execute immediately. See comments above
652 * the cpsid instruction above. */
653 __asm volatile ( "cpsie i" ::: "memory" );
654 __asm volatile ( "dsb" );
655 __asm volatile ( "isb" );
656
657 /* Disable interrupts again because the clock is about to be stopped
658 * and interrupts that execute while the clock is stopped will increase
659 * any slippage between the time maintained by the RTOS and calendar
660 * time. */
661 __asm volatile ( "cpsid i" ::: "memory" );
662 __asm volatile ( "dsb" );
663 __asm volatile ( "isb" );
664
665 /* Disable the SysTick clock without reading the
666 * portNVIC_SYSTICK_CTRL_REG register to ensure the
667 * portNVIC_SYSTICK_COUNT_FLAG_BIT is not cleared if it is set. Again,
668 * the time the SysTick is stopped for is accounted for as best it can
669 * be, but using the tickless mode will inevitably result in some tiny
670 * drift of the time maintained by the kernel with respect to calendar
671 * time*/
672 portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
673
674 /* Determine whether the SysTick has already counted to zero. */
675 if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
676 {
677 uint32_t ulCalculatedLoadValue;
678
679 /* The tick interrupt ended the sleep (or is now pending), and
680 * a new tick period has started. Reset portNVIC_SYSTICK_LOAD_REG
681 * with whatever remains of the new tick period. */
682 ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
683
684 /* Don't allow a tiny value, or values that have somehow
685 * underflowed because the post sleep hook did something
686 * that took too long or because the SysTick current-value register
687 * is zero. */
688 if( ( ulCalculatedLoadValue <= ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
689 {
690 ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL );
691 }
692
693 portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
694
695 /* As the pending tick will be processed as soon as this
696 * function exits, the tick value maintained by the tick is stepped
697 * forward by one less than the time spent waiting. */
698 ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
699 }
700 else
701 {
702 /* Something other than the tick interrupt ended the sleep. */
703
704 /* Use the SysTick current-value register to determine the
705 * number of SysTick decrements remaining until the expected idle
706 * time would have ended. */
707 ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
708 #if ( portNVIC_SYSTICK_CLK_BIT_CONFIG != portNVIC_SYSTICK_CLK_BIT )
709 {
710 /* If the SysTick is not using the core clock, the current-
711 * value register might still be zero here. In that case, the
712 * SysTick didn't load from the reload register, and there are
713 * ulReloadValue decrements remaining in the expected idle
714 * time, not zero. */
715 if( ulSysTickDecrementsLeft == 0 )
716 {
717 ulSysTickDecrementsLeft = ulReloadValue;
718 }
719 }
720 #endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
721
722 /* Work out how long the sleep lasted rounded to complete tick
723 * periods (not the ulReload value which accounted for part
724 * ticks). */
725 ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - ulSysTickDecrementsLeft;
726
727 /* How many complete tick periods passed while the processor
728 * was waiting? */
729 ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
730
731 /* The reload value is set to whatever fraction of a single tick
732 * period remains. */
733 portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1UL ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
734 }
735
736 /* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG again,
737 * then set portNVIC_SYSTICK_LOAD_REG back to its standard value. If
738 * the SysTick is not using the core clock, temporarily configure it to
739 * use the core clock. This configuration forces the SysTick to load
740 * from portNVIC_SYSTICK_LOAD_REG immediately instead of at the next
741 * cycle of the other clock. Then portNVIC_SYSTICK_LOAD_REG is ready
742 * to receive the standard value immediately. */
743 portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
744 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
745 #if ( portNVIC_SYSTICK_CLK_BIT_CONFIG == portNVIC_SYSTICK_CLK_BIT )
746 {
747 portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
748 }
749 #else
750 {
751 /* The temporary usage of the core clock has served its purpose,
752 * as described above. Resume usage of the other clock. */
753 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT;
754
755 if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
756 {
757 /* The partial tick period already ended. Be sure the SysTick
758 * counts it only once. */
759 portNVIC_SYSTICK_CURRENT_VALUE_REG = 0;
760 }
761
762 portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
763 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
764 }
765 #endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
766
767 /* Step the tick to account for any tick periods that elapsed. */
768 vTaskStepTick( ulCompleteTickPeriods );
769
770 /* Exit with interrupts enabled. */
771 __asm volatile ( "cpsie i" ::: "memory" );
772 }
773 }
774
775 #endif /* configUSE_TICKLESS_IDLE */
776 /*-----------------------------------------------------------*/
777
vPortSetupTimerInterrupt(void)778 __attribute__( ( weak ) ) void vPortSetupTimerInterrupt( void ) /* PRIVILEGED_FUNCTION */
779 {
780 /* Calculate the constants required to configure the tick interrupt. */
781 #if ( configUSE_TICKLESS_IDLE == 1 )
782 {
783 ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ );
784 xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
785 ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ );
786 }
787 #endif /* configUSE_TICKLESS_IDLE */
788
789 /* Stop and reset SysTick.
790 *
791 * QEMU versions older than 7.0.0 contain a bug which causes an error if we
792 * enable SysTick without first selecting a valid clock source. We trigger
793 * the bug if we change clock sources from a clock with a zero clock period
794 * to one with a nonzero clock period and enable Systick at the same time.
795 * So we configure the CLKSOURCE bit here, prior to setting the ENABLE bit.
796 * This workaround avoids the bug in QEMU versions older than 7.0.0. */
797 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT_CONFIG;
798 portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
799
800 /* Configure SysTick to interrupt at the requested rate. */
801 portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
802 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
803 }
804 /*-----------------------------------------------------------*/
805
prvTaskExitError(void)806 static void prvTaskExitError( void )
807 {
808 volatile uint32_t ulDummy = 0UL;
809
810 /* A function that implements a task must not exit or attempt to return to
811 * its caller as there is nothing to return to. If a task wants to exit it
812 * should instead call vTaskDelete( NULL ). Artificially force an assert()
813 * to be triggered if configASSERT() is defined, then stop here so
814 * application writers can catch the error. */
815 configASSERT( ulCriticalNesting == ~0UL );
816 portDISABLE_INTERRUPTS();
817
818 while( ulDummy == 0 )
819 {
820 /* This file calls prvTaskExitError() after the scheduler has been
821 * started to remove a compiler warning about the function being
822 * defined but never called. ulDummy is used purely to quieten other
823 * warnings about code appearing after this function is called - making
824 * ulDummy volatile makes the compiler think the function could return
825 * and therefore not output an 'unreachable code' warning for code that
826 * appears after it. */
827 }
828 }
829 /*-----------------------------------------------------------*/
830
831 #if ( configENABLE_MPU == 1 )
832
prvGetRegionAccessPermissions(uint32_t ulRBARValue)833 static uint32_t prvGetRegionAccessPermissions( uint32_t ulRBARValue ) /* PRIVILEGED_FUNCTION */
834 {
835 uint32_t ulAccessPermissions = 0;
836
837 if( ( ulRBARValue & portMPU_RBAR_ACCESS_PERMISSIONS_MASK ) == portMPU_REGION_READ_ONLY )
838 {
839 ulAccessPermissions = tskMPU_READ_PERMISSION;
840 }
841
842 if( ( ulRBARValue & portMPU_RBAR_ACCESS_PERMISSIONS_MASK ) == portMPU_REGION_READ_WRITE )
843 {
844 ulAccessPermissions = ( tskMPU_READ_PERMISSION | tskMPU_WRITE_PERMISSION );
845 }
846
847 return ulAccessPermissions;
848 }
849
850 #endif /* configENABLE_MPU */
851 /*-----------------------------------------------------------*/
852
853 #if ( configENABLE_MPU == 1 )
854
prvSetupMPU(void)855 static void prvSetupMPU( void ) /* PRIVILEGED_FUNCTION */
856 {
857 #if defined( __ARMCC_VERSION )
858
859 /* Declaration when these variable are defined in code instead of being
860 * exported from linker scripts. */
861 extern uint32_t * __privileged_functions_start__;
862 extern uint32_t * __privileged_functions_end__;
863 extern uint32_t * __syscalls_flash_start__;
864 extern uint32_t * __syscalls_flash_end__;
865 extern uint32_t * __unprivileged_flash_start__;
866 extern uint32_t * __unprivileged_flash_end__;
867 extern uint32_t * __privileged_sram_start__;
868 extern uint32_t * __privileged_sram_end__;
869 #else /* if defined( __ARMCC_VERSION ) */
870 /* Declaration when these variable are exported from linker scripts. */
871 extern uint32_t __privileged_functions_start__[];
872 extern uint32_t __privileged_functions_end__[];
873 extern uint32_t __syscalls_flash_start__[];
874 extern uint32_t __syscalls_flash_end__[];
875 extern uint32_t __unprivileged_flash_start__[];
876 extern uint32_t __unprivileged_flash_end__[];
877 extern uint32_t __privileged_sram_start__[];
878 extern uint32_t __privileged_sram_end__[];
879 #endif /* defined( __ARMCC_VERSION ) */
880
881 /* The only permitted number of regions are 8 or 16. */
882 configASSERT( ( configTOTAL_MPU_REGIONS == 8 ) || ( configTOTAL_MPU_REGIONS == 16 ) );
883
884 /* Ensure that the configTOTAL_MPU_REGIONS is configured correctly. */
885 configASSERT( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE );
886
887 /* Check that the MPU is present. */
888 if( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE )
889 {
890 /* MAIR0 - Index 0. */
891 portMPU_MAIR0_REG |= ( ( portMPU_NORMAL_MEMORY_BUFFERABLE_CACHEABLE << portMPU_MAIR_ATTR0_POS ) & portMPU_MAIR_ATTR0_MASK );
892 /* MAIR0 - Index 1. */
893 portMPU_MAIR0_REG |= ( ( portMPU_DEVICE_MEMORY_nGnRE << portMPU_MAIR_ATTR1_POS ) & portMPU_MAIR_ATTR1_MASK );
894
895 /* Setup privileged flash as Read Only so that privileged tasks can
896 * read it but not modify. */
897 portMPU_RNR_REG = portPRIVILEGED_FLASH_REGION;
898 portMPU_RBAR_REG = ( ( ( uint32_t ) __privileged_functions_start__ ) & portMPU_RBAR_ADDRESS_MASK ) |
899 ( portMPU_REGION_NON_SHAREABLE ) |
900 ( portMPU_REGION_PRIVILEGED_READ_ONLY );
901 portMPU_RLAR_REG = ( ( ( uint32_t ) __privileged_functions_end__ ) & portMPU_RLAR_ADDRESS_MASK ) |
902 ( portMPU_RLAR_ATTR_INDEX0 ) |
903 ( portMPU_RLAR_REGION_ENABLE );
904
905 /* Setup unprivileged flash as Read Only by both privileged and
906 * unprivileged tasks. All tasks can read it but no-one can modify. */
907 portMPU_RNR_REG = portUNPRIVILEGED_FLASH_REGION;
908 portMPU_RBAR_REG = ( ( ( uint32_t ) __unprivileged_flash_start__ ) & portMPU_RBAR_ADDRESS_MASK ) |
909 ( portMPU_REGION_NON_SHAREABLE ) |
910 ( portMPU_REGION_READ_ONLY );
911 portMPU_RLAR_REG = ( ( ( uint32_t ) __unprivileged_flash_end__ ) & portMPU_RLAR_ADDRESS_MASK ) |
912 ( portMPU_RLAR_ATTR_INDEX0 ) |
913 ( portMPU_RLAR_REGION_ENABLE );
914
915 /* Setup unprivileged syscalls flash as Read Only by both privileged
916 * and unprivileged tasks. All tasks can read it but no-one can modify. */
917 portMPU_RNR_REG = portUNPRIVILEGED_SYSCALLS_REGION;
918 portMPU_RBAR_REG = ( ( ( uint32_t ) __syscalls_flash_start__ ) & portMPU_RBAR_ADDRESS_MASK ) |
919 ( portMPU_REGION_NON_SHAREABLE ) |
920 ( portMPU_REGION_READ_ONLY );
921 portMPU_RLAR_REG = ( ( ( uint32_t ) __syscalls_flash_end__ ) & portMPU_RLAR_ADDRESS_MASK ) |
922 ( portMPU_RLAR_ATTR_INDEX0 ) |
923 ( portMPU_RLAR_REGION_ENABLE );
924
925 /* Setup RAM containing kernel data for privileged access only. */
926 portMPU_RNR_REG = portPRIVILEGED_RAM_REGION;
927 portMPU_RBAR_REG = ( ( ( uint32_t ) __privileged_sram_start__ ) & portMPU_RBAR_ADDRESS_MASK ) |
928 ( portMPU_REGION_NON_SHAREABLE ) |
929 ( portMPU_REGION_PRIVILEGED_READ_WRITE ) |
930 ( portMPU_REGION_EXECUTE_NEVER );
931 portMPU_RLAR_REG = ( ( ( uint32_t ) __privileged_sram_end__ ) & portMPU_RLAR_ADDRESS_MASK ) |
932 ( portMPU_RLAR_ATTR_INDEX0 ) |
933 ( portMPU_RLAR_REGION_ENABLE );
934
935 /* Enable mem fault. */
936 portSCB_SYS_HANDLER_CTRL_STATE_REG |= portSCB_MEM_FAULT_ENABLE_BIT;
937
938 /* Enable MPU with privileged background access i.e. unmapped
939 * regions have privileged access. */
940 portMPU_CTRL_REG |= ( portMPU_PRIV_BACKGROUND_ENABLE_BIT | portMPU_ENABLE_BIT );
941 }
942 }
943
944 #endif /* configENABLE_MPU */
945 /*-----------------------------------------------------------*/
946
947 #if ( configENABLE_FPU == 1 )
948
prvSetupFPU(void)949 static void prvSetupFPU( void ) /* PRIVILEGED_FUNCTION */
950 {
951 #if ( configENABLE_TRUSTZONE == 1 )
952 {
953 /* Enable non-secure access to the FPU. */
954 SecureInit_EnableNSFPUAccess();
955 }
956 #endif /* configENABLE_TRUSTZONE */
957
958 /* CP10 = 11 ==> Full access to FPU i.e. both privileged and
959 * unprivileged code should be able to access FPU. CP11 should be
960 * programmed to the same value as CP10. */
961 *( portCPACR ) |= ( ( portCPACR_CP10_VALUE << portCPACR_CP10_POS ) |
962 ( portCPACR_CP11_VALUE << portCPACR_CP11_POS )
963 );
964
965 /* ASPEN = 1 ==> Hardware should automatically preserve floating point
966 * context on exception entry and restore on exception return.
967 * LSPEN = 1 ==> Enable lazy context save of FP state. */
968 *( portFPCCR ) |= ( portFPCCR_ASPEN_MASK | portFPCCR_LSPEN_MASK );
969 }
970
971 #endif /* configENABLE_FPU */
972 /*-----------------------------------------------------------*/
973
vPortYield(void)974 void vPortYield( void ) /* PRIVILEGED_FUNCTION */
975 {
976 /* Set a PendSV to request a context switch. */
977 portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
978
979 /* Barriers are normally not required but do ensure the code is
980 * completely within the specified behaviour for the architecture. */
981 __asm volatile ( "dsb" ::: "memory" );
982 __asm volatile ( "isb" );
983 }
984 /*-----------------------------------------------------------*/
985
vPortEnterCritical(void)986 void vPortEnterCritical( void ) /* PRIVILEGED_FUNCTION */
987 {
988 portDISABLE_INTERRUPTS();
989 ulCriticalNesting++;
990
991 /* Barriers are normally not required but do ensure the code is
992 * completely within the specified behaviour for the architecture. */
993 __asm volatile ( "dsb" ::: "memory" );
994 __asm volatile ( "isb" );
995 }
996 /*-----------------------------------------------------------*/
997
vPortExitCritical(void)998 void vPortExitCritical( void ) /* PRIVILEGED_FUNCTION */
999 {
1000 configASSERT( ulCriticalNesting );
1001 ulCriticalNesting--;
1002
1003 if( ulCriticalNesting == 0 )
1004 {
1005 portENABLE_INTERRUPTS();
1006 }
1007 }
1008 /*-----------------------------------------------------------*/
1009
SysTick_Handler(void)1010 void SysTick_Handler( void ) /* PRIVILEGED_FUNCTION */
1011 {
1012 uint32_t ulPreviousMask;
1013
1014 ulPreviousMask = portSET_INTERRUPT_MASK_FROM_ISR();
1015 traceISR_ENTER();
1016 {
1017 /* Increment the RTOS tick. */
1018 if( xTaskIncrementTick() != pdFALSE )
1019 {
1020 traceISR_EXIT_TO_SCHEDULER();
1021 /* Pend a context switch. */
1022 portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
1023 }
1024 else
1025 {
1026 traceISR_EXIT();
1027 }
1028 }
1029 portCLEAR_INTERRUPT_MASK_FROM_ISR( ulPreviousMask );
1030 }
1031 /*-----------------------------------------------------------*/
1032
vPortSVCHandler_C(uint32_t * pulCallerStackAddress)1033 void vPortSVCHandler_C( uint32_t * pulCallerStackAddress ) /* PRIVILEGED_FUNCTION portDONT_DISCARD */
1034 {
1035 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 1 ) )
1036 #if defined( __ARMCC_VERSION )
1037
1038 /* Declaration when these variable are defined in code instead of being
1039 * exported from linker scripts. */
1040 extern uint32_t * __syscalls_flash_start__;
1041 extern uint32_t * __syscalls_flash_end__;
1042 #else
1043 /* Declaration when these variable are exported from linker scripts. */
1044 extern uint32_t __syscalls_flash_start__[];
1045 extern uint32_t __syscalls_flash_end__[];
1046 #endif /* defined( __ARMCC_VERSION ) */
1047 #endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 1 ) */
1048
1049 uint32_t ulPC;
1050
1051 #if ( configENABLE_TRUSTZONE == 1 )
1052 uint32_t ulR0, ulR1;
1053 extern TaskHandle_t pxCurrentTCB;
1054 #if ( configENABLE_MPU == 1 )
1055 uint32_t ulControl, ulIsTaskPrivileged;
1056 #endif /* configENABLE_MPU */
1057 #endif /* configENABLE_TRUSTZONE */
1058 uint8_t ucSVCNumber;
1059
1060 /* Register are stored on the stack in the following order - R0, R1, R2, R3,
1061 * R12, LR, PC, xPSR. */
1062 ulPC = pulCallerStackAddress[ portOFFSET_TO_PC ];
1063 ucSVCNumber = ( ( uint8_t * ) ulPC )[ -2 ];
1064
1065 switch( ucSVCNumber )
1066 {
1067 #if ( configENABLE_TRUSTZONE == 1 )
1068 case portSVC_ALLOCATE_SECURE_CONTEXT:
1069
1070 /* R0 contains the stack size passed as parameter to the
1071 * vPortAllocateSecureContext function. */
1072 ulR0 = pulCallerStackAddress[ 0 ];
1073
1074 #if ( configENABLE_MPU == 1 )
1075 {
1076 /* Read the CONTROL register value. */
1077 __asm volatile ( "mrs %0, control" : "=r" ( ulControl ) );
1078
1079 /* The task that raised the SVC is privileged if Bit[0]
1080 * in the CONTROL register is 0. */
1081 ulIsTaskPrivileged = ( ( ulControl & portCONTROL_PRIVILEGED_MASK ) == 0 );
1082
1083 /* Allocate and load a context for the secure task. */
1084 xSecureContext = SecureContext_AllocateContext( ulR0, ulIsTaskPrivileged, pxCurrentTCB );
1085 }
1086 #else /* if ( configENABLE_MPU == 1 ) */
1087 {
1088 /* Allocate and load a context for the secure task. */
1089 xSecureContext = SecureContext_AllocateContext( ulR0, pxCurrentTCB );
1090 }
1091 #endif /* configENABLE_MPU */
1092
1093 configASSERT( xSecureContext != securecontextINVALID_CONTEXT_ID );
1094 SecureContext_LoadContext( xSecureContext, pxCurrentTCB );
1095 break;
1096
1097 case portSVC_FREE_SECURE_CONTEXT:
1098
1099 /* R0 contains TCB being freed and R1 contains the secure
1100 * context handle to be freed. */
1101 ulR0 = pulCallerStackAddress[ 0 ];
1102 ulR1 = pulCallerStackAddress[ 1 ];
1103
1104 /* Free the secure context. */
1105 SecureContext_FreeContext( ( SecureContextHandle_t ) ulR1, ( void * ) ulR0 );
1106 break;
1107 #endif /* configENABLE_TRUSTZONE */
1108
1109 case portSVC_START_SCHEDULER:
1110 #if ( configENABLE_TRUSTZONE == 1 )
1111 {
1112 /* De-prioritize the non-secure exceptions so that the
1113 * non-secure pendSV runs at the lowest priority. */
1114 SecureInit_DePrioritizeNSExceptions();
1115
1116 /* Initialize the secure context management system. */
1117 SecureContext_Init();
1118 }
1119 #endif /* configENABLE_TRUSTZONE */
1120
1121 #if ( configENABLE_FPU == 1 )
1122 {
1123 /* Setup the Floating Point Unit (FPU). */
1124 prvSetupFPU();
1125 }
1126 #endif /* configENABLE_FPU */
1127
1128 /* Setup the context of the first task so that the first task starts
1129 * executing. */
1130 vRestoreContextOfFirstTask();
1131 break;
1132
1133 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 1 ) )
1134 case portSVC_RAISE_PRIVILEGE:
1135
1136 /* Only raise the privilege, if the svc was raised from any of
1137 * the system calls. */
1138 if( ( ulPC >= ( uint32_t ) __syscalls_flash_start__ ) &&
1139 ( ulPC <= ( uint32_t ) __syscalls_flash_end__ ) )
1140 {
1141 vRaisePrivilege();
1142 }
1143 break;
1144 #endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 1 ) */
1145
1146 #if ( configENABLE_MPU == 1 )
1147 case portSVC_YIELD:
1148 vPortYield();
1149 break;
1150 #endif /* configENABLE_MPU == 1 */
1151
1152 default:
1153 /* Incorrect SVC call. */
1154 configASSERT( pdFALSE );
1155 }
1156 }
1157 /*-----------------------------------------------------------*/
1158
1159 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
1160
vSystemCallEnter(uint32_t * pulTaskStack,uint32_t ulLR,uint8_t ucSystemCallNumber)1161 void vSystemCallEnter( uint32_t * pulTaskStack,
1162 uint32_t ulLR,
1163 uint8_t ucSystemCallNumber ) /* PRIVILEGED_FUNCTION */
1164 {
1165 extern TaskHandle_t pxCurrentTCB;
1166 extern UBaseType_t uxSystemCallImplementations[ NUM_SYSTEM_CALLS ];
1167 xMPU_SETTINGS * pxMpuSettings;
1168 uint32_t * pulSystemCallStack;
1169 uint32_t ulStackFrameSize, ulSystemCallLocation, i;
1170
1171 #if defined( __ARMCC_VERSION )
1172 /* Declaration when these variable are defined in code instead of being
1173 * exported from linker scripts. */
1174 extern uint32_t * __syscalls_flash_start__;
1175 extern uint32_t * __syscalls_flash_end__;
1176 #else
1177 /* Declaration when these variable are exported from linker scripts. */
1178 extern uint32_t __syscalls_flash_start__[];
1179 extern uint32_t __syscalls_flash_end__[];
1180 #endif /* #if defined( __ARMCC_VERSION ) */
1181
1182 ulSystemCallLocation = pulTaskStack[ portOFFSET_TO_PC ];
1183 pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB );
1184
1185 /* Checks:
1186 * 1. SVC is raised from the system call section (i.e. application is
1187 * not raising SVC directly).
1188 * 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must be NULL as
1189 * it is non-NULL only during the execution of a system call (i.e.
1190 * between system call enter and exit).
1191 * 3. System call is not for a kernel API disabled by the configuration
1192 * in FreeRTOSConfig.h.
1193 * 4. We do not need to check that ucSystemCallNumber is within range
1194 * because the assembly SVC handler checks that before calling
1195 * this function.
1196 */
1197 if( ( ulSystemCallLocation >= ( uint32_t ) __syscalls_flash_start__ ) &&
1198 ( ulSystemCallLocation <= ( uint32_t ) __syscalls_flash_end__ ) &&
1199 ( pxMpuSettings->xSystemCallStackInfo.pulTaskStack == NULL ) &&
1200 ( uxSystemCallImplementations[ ucSystemCallNumber ] != ( UBaseType_t ) 0 ) )
1201 {
1202 pulSystemCallStack = pxMpuSettings->xSystemCallStackInfo.pulSystemCallStack;
1203
1204 #if ( ( configENABLE_FPU == 1 ) || ( configENABLE_MVE == 1 ) )
1205 {
1206 if( ( ulLR & portEXC_RETURN_STACK_FRAME_TYPE_MASK ) == 0UL )
1207 {
1208 /* Extended frame i.e. FPU in use. */
1209 ulStackFrameSize = 26;
1210 __asm volatile (
1211 " vpush {s0} \n" /* Trigger lazy stacking. */
1212 " vpop {s0} \n" /* Nullify the affect of the above instruction. */
1213 ::: "memory"
1214 );
1215 }
1216 else
1217 {
1218 /* Standard frame i.e. FPU not in use. */
1219 ulStackFrameSize = 8;
1220 }
1221 }
1222 #else /* if ( ( configENABLE_FPU == 1 ) || ( configENABLE_MVE == 1 ) ) */
1223 {
1224 ulStackFrameSize = 8;
1225 }
1226 #endif /* configENABLE_FPU || configENABLE_MVE */
1227
1228 /* Make space on the system call stack for the stack frame. */
1229 pulSystemCallStack = pulSystemCallStack - ulStackFrameSize;
1230
1231 /* Copy the stack frame. */
1232 for( i = 0; i < ulStackFrameSize; i++ )
1233 {
1234 pulSystemCallStack[ i ] = pulTaskStack[ i ];
1235 }
1236
1237 /* Store the value of the Link Register before the SVC was raised.
1238 * It contains the address of the caller of the System Call entry
1239 * point (i.e. the caller of the MPU_<API>). We need to restore it
1240 * when we exit from the system call. */
1241 pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry = pulTaskStack[ portOFFSET_TO_LR ];
1242 /* Store the value of the PSPLIM register before the SVC was raised.
1243 * We need to restore it when we exit from the system call. */
1244 #if ( portUSE_PSPLIM_REGISTER == 1 )
1245 {
1246 __asm volatile ( "mrs %0, psplim" : "=r" ( pxMpuSettings->xSystemCallStackInfo.ulStackLimitRegisterAtSystemCallEntry ) );
1247 }
1248 #endif
1249
1250 /* Use the pulSystemCallStack in thread mode. */
1251 __asm volatile ( "msr psp, %0" : : "r" ( pulSystemCallStack ) );
1252 #if ( portUSE_PSPLIM_REGISTER == 1 )
1253 {
1254 __asm volatile ( "msr psplim, %0" : : "r" ( pxMpuSettings->xSystemCallStackInfo.pulSystemCallStackLimit ) );
1255 }
1256 #endif
1257
1258 /* Start executing the system call upon returning from this handler. */
1259 pulSystemCallStack[ portOFFSET_TO_PC ] = uxSystemCallImplementations[ ucSystemCallNumber ];
1260 /* Raise a request to exit from the system call upon finishing the
1261 * system call. */
1262 pulSystemCallStack[ portOFFSET_TO_LR ] = ( uint32_t ) vRequestSystemCallExit;
1263
1264 /* Remember the location where we should copy the stack frame when we exit from
1265 * the system call. */
1266 pxMpuSettings->xSystemCallStackInfo.pulTaskStack = pulTaskStack + ulStackFrameSize;
1267
1268 /* Record if the hardware used padding to force the stack pointer
1269 * to be double word aligned. */
1270 if( ( pulTaskStack[ portOFFSET_TO_PSR ] & portPSR_STACK_PADDING_MASK ) == portPSR_STACK_PADDING_MASK )
1271 {
1272 pxMpuSettings->ulTaskFlags |= portSTACK_FRAME_HAS_PADDING_FLAG;
1273 }
1274 else
1275 {
1276 pxMpuSettings->ulTaskFlags &= ( ~portSTACK_FRAME_HAS_PADDING_FLAG );
1277 }
1278
1279 /* We ensure in pxPortInitialiseStack that the system call stack is
1280 * double word aligned and therefore, there is no need of padding.
1281 * Clear the bit[9] of stacked xPSR. */
1282 pulSystemCallStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK );
1283
1284 /* Raise the privilege for the duration of the system call. */
1285 __asm volatile (
1286 " mrs r0, control \n" /* Obtain current control value. */
1287 " movs r1, #1 \n" /* r1 = 1. */
1288 " bics r0, r1 \n" /* Clear nPRIV bit. */
1289 " msr control, r0 \n" /* Write back new control value. */
1290 ::: "r0", "r1", "memory"
1291 );
1292 }
1293 }
1294
1295 #endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
1296 /*-----------------------------------------------------------*/
1297
1298 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
1299
vRequestSystemCallExit(void)1300 void vRequestSystemCallExit( void ) /* __attribute__( ( naked ) ) PRIVILEGED_FUNCTION */
1301 {
1302 __asm volatile ( "svc %0 \n" ::"i" ( portSVC_SYSTEM_CALL_EXIT ) : "memory" );
1303 }
1304
1305 #endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
1306 /*-----------------------------------------------------------*/
1307
1308 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
1309
vSystemCallExit(uint32_t * pulSystemCallStack,uint32_t ulLR)1310 void vSystemCallExit( uint32_t * pulSystemCallStack,
1311 uint32_t ulLR ) /* PRIVILEGED_FUNCTION */
1312 {
1313 extern TaskHandle_t pxCurrentTCB;
1314 xMPU_SETTINGS * pxMpuSettings;
1315 uint32_t * pulTaskStack;
1316 uint32_t ulStackFrameSize, ulSystemCallLocation, i;
1317
1318 #if defined( __ARMCC_VERSION )
1319 /* Declaration when these variable are defined in code instead of being
1320 * exported from linker scripts. */
1321 extern uint32_t * __privileged_functions_start__;
1322 extern uint32_t * __privileged_functions_end__;
1323 #else
1324 /* Declaration when these variable are exported from linker scripts. */
1325 extern uint32_t __privileged_functions_start__[];
1326 extern uint32_t __privileged_functions_end__[];
1327 #endif /* #if defined( __ARMCC_VERSION ) */
1328
1329 ulSystemCallLocation = pulSystemCallStack[ portOFFSET_TO_PC ];
1330 pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB );
1331
1332 /* Checks:
1333 * 1. SVC is raised from the privileged code (i.e. application is not
1334 * raising SVC directly). This SVC is only raised from
1335 * vRequestSystemCallExit which is in the privileged code section.
1336 * 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must not be NULL -
1337 * this means that we previously entered a system call and the
1338 * application is not attempting to exit without entering a system
1339 * call.
1340 */
1341 if( ( ulSystemCallLocation >= ( uint32_t ) __privileged_functions_start__ ) &&
1342 ( ulSystemCallLocation <= ( uint32_t ) __privileged_functions_end__ ) &&
1343 ( pxMpuSettings->xSystemCallStackInfo.pulTaskStack != NULL ) )
1344 {
1345 pulTaskStack = pxMpuSettings->xSystemCallStackInfo.pulTaskStack;
1346
1347 #if ( ( configENABLE_FPU == 1 ) || ( configENABLE_MVE == 1 ) )
1348 {
1349 if( ( ulLR & portEXC_RETURN_STACK_FRAME_TYPE_MASK ) == 0UL )
1350 {
1351 /* Extended frame i.e. FPU in use. */
1352 ulStackFrameSize = 26;
1353 __asm volatile (
1354 " vpush {s0} \n" /* Trigger lazy stacking. */
1355 " vpop {s0} \n" /* Nullify the affect of the above instruction. */
1356 ::: "memory"
1357 );
1358 }
1359 else
1360 {
1361 /* Standard frame i.e. FPU not in use. */
1362 ulStackFrameSize = 8;
1363 }
1364 }
1365 #else /* if ( ( configENABLE_FPU == 1 ) || ( configENABLE_MVE == 1 ) ) */
1366 {
1367 ulStackFrameSize = 8;
1368 }
1369 #endif /* configENABLE_FPU || configENABLE_MVE */
1370
1371 /* Make space on the task stack for the stack frame. */
1372 pulTaskStack = pulTaskStack - ulStackFrameSize;
1373
1374 /* Copy the stack frame. */
1375 for( i = 0; i < ulStackFrameSize; i++ )
1376 {
1377 pulTaskStack[ i ] = pulSystemCallStack[ i ];
1378 }
1379
1380 /* Use the pulTaskStack in thread mode. */
1381 __asm volatile ( "msr psp, %0" : : "r" ( pulTaskStack ) );
1382
1383 /* Return to the caller of the System Call entry point (i.e. the
1384 * caller of the MPU_<API>). */
1385 pulTaskStack[ portOFFSET_TO_PC ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry;
1386 /* Ensure that LR has a valid value.*/
1387 pulTaskStack[ portOFFSET_TO_LR ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry;
1388
1389 /* Restore the PSPLIM register to what it was at the time of
1390 * system call entry. */
1391 #if ( portUSE_PSPLIM_REGISTER == 1 )
1392 {
1393 __asm volatile ( "msr psplim, %0" : : "r" ( pxMpuSettings->xSystemCallStackInfo.ulStackLimitRegisterAtSystemCallEntry ) );
1394 }
1395 #endif
1396
1397 /* If the hardware used padding to force the stack pointer
1398 * to be double word aligned, set the stacked xPSR bit[9],
1399 * otherwise clear it. */
1400 if( ( pxMpuSettings->ulTaskFlags & portSTACK_FRAME_HAS_PADDING_FLAG ) == portSTACK_FRAME_HAS_PADDING_FLAG )
1401 {
1402 pulTaskStack[ portOFFSET_TO_PSR ] |= portPSR_STACK_PADDING_MASK;
1403 }
1404 else
1405 {
1406 pulTaskStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK );
1407 }
1408
1409 /* This is not NULL only for the duration of the system call. */
1410 pxMpuSettings->xSystemCallStackInfo.pulTaskStack = NULL;
1411
1412 /* Drop the privilege before returning to the thread mode. */
1413 __asm volatile (
1414 " mrs r0, control \n" /* Obtain current control value. */
1415 " movs r1, #1 \n" /* r1 = 1. */
1416 " orrs r0, r1 \n" /* Set nPRIV bit. */
1417 " msr control, r0 \n" /* Write back new control value. */
1418 ::: "r0", "r1", "memory"
1419 );
1420 }
1421 }
1422
1423 #endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
1424 /*-----------------------------------------------------------*/
1425
1426 #if ( configENABLE_MPU == 1 )
1427
xPortIsTaskPrivileged(void)1428 BaseType_t xPortIsTaskPrivileged( void ) /* PRIVILEGED_FUNCTION */
1429 {
1430 BaseType_t xTaskIsPrivileged = pdFALSE;
1431 const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */
1432
1433 if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
1434 {
1435 xTaskIsPrivileged = pdTRUE;
1436 }
1437
1438 return xTaskIsPrivileged;
1439 }
1440
1441 #endif /* configENABLE_MPU == 1 */
1442 /*-----------------------------------------------------------*/
1443
1444 #if ( configENABLE_MPU == 1 )
1445
pxPortInitialiseStack(StackType_t * pxTopOfStack,StackType_t * pxEndOfStack,TaskFunction_t pxCode,void * pvParameters,BaseType_t xRunPrivileged,xMPU_SETTINGS * xMPUSettings)1446 StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
1447 StackType_t * pxEndOfStack,
1448 TaskFunction_t pxCode,
1449 void * pvParameters,
1450 BaseType_t xRunPrivileged,
1451 xMPU_SETTINGS * xMPUSettings ) /* PRIVILEGED_FUNCTION */
1452 {
1453 uint32_t ulIndex = 0;
1454
1455 xMPUSettings->ulContext[ ulIndex ] = 0x04040404; /* r4. */
1456 ulIndex++;
1457 xMPUSettings->ulContext[ ulIndex ] = 0x05050505; /* r5. */
1458 ulIndex++;
1459 xMPUSettings->ulContext[ ulIndex ] = 0x06060606; /* r6. */
1460 ulIndex++;
1461 xMPUSettings->ulContext[ ulIndex ] = 0x07070707; /* r7. */
1462 ulIndex++;
1463 xMPUSettings->ulContext[ ulIndex ] = 0x08080808; /* r8. */
1464 ulIndex++;
1465 xMPUSettings->ulContext[ ulIndex ] = 0x09090909; /* r9. */
1466 ulIndex++;
1467 xMPUSettings->ulContext[ ulIndex ] = 0x10101010; /* r10. */
1468 ulIndex++;
1469 xMPUSettings->ulContext[ ulIndex ] = 0x11111111; /* r11. */
1470 ulIndex++;
1471
1472 xMPUSettings->ulContext[ ulIndex ] = ( uint32_t ) pvParameters; /* r0. */
1473 ulIndex++;
1474 xMPUSettings->ulContext[ ulIndex ] = 0x01010101; /* r1. */
1475 ulIndex++;
1476 xMPUSettings->ulContext[ ulIndex ] = 0x02020202; /* r2. */
1477 ulIndex++;
1478 xMPUSettings->ulContext[ ulIndex ] = 0x03030303; /* r3. */
1479 ulIndex++;
1480 xMPUSettings->ulContext[ ulIndex ] = 0x12121212; /* r12. */
1481 ulIndex++;
1482 xMPUSettings->ulContext[ ulIndex ] = ( uint32_t ) portTASK_RETURN_ADDRESS; /* LR. */
1483 ulIndex++;
1484 xMPUSettings->ulContext[ ulIndex ] = ( uint32_t ) pxCode; /* PC. */
1485 ulIndex++;
1486 xMPUSettings->ulContext[ ulIndex ] = portINITIAL_XPSR; /* xPSR. */
1487 ulIndex++;
1488
1489 #if ( configENABLE_TRUSTZONE == 1 )
1490 {
1491 xMPUSettings->ulContext[ ulIndex ] = portNO_SECURE_CONTEXT; /* xSecureContext. */
1492 ulIndex++;
1493 }
1494 #endif /* configENABLE_TRUSTZONE */
1495 xMPUSettings->ulContext[ ulIndex ] = ( uint32_t ) ( pxTopOfStack - 8 ); /* PSP with the hardware saved stack. */
1496 ulIndex++;
1497 xMPUSettings->ulContext[ ulIndex ] = ( uint32_t ) pxEndOfStack; /* PSPLIM. */
1498 ulIndex++;
1499
1500 if( xRunPrivileged == pdTRUE )
1501 {
1502 xMPUSettings->ulTaskFlags |= portTASK_IS_PRIVILEGED_FLAG;
1503 xMPUSettings->ulContext[ ulIndex ] = ( uint32_t ) portINITIAL_CONTROL_PRIVILEGED; /* CONTROL. */
1504 ulIndex++;
1505 }
1506 else
1507 {
1508 xMPUSettings->ulTaskFlags &= ( ~portTASK_IS_PRIVILEGED_FLAG );
1509 xMPUSettings->ulContext[ ulIndex ] = ( uint32_t ) portINITIAL_CONTROL_UNPRIVILEGED; /* CONTROL. */
1510 ulIndex++;
1511 }
1512
1513 xMPUSettings->ulContext[ ulIndex ] = portINITIAL_EXC_RETURN; /* LR (EXC_RETURN). */
1514 ulIndex++;
1515
1516 #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
1517 {
1518 /* Ensure that the system call stack is double word aligned. */
1519 xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = &( xMPUSettings->xSystemCallStackInfo.ulSystemCallStackBuffer[ configSYSTEM_CALL_STACK_SIZE - 1 ] );
1520 xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = ( uint32_t * ) ( ( uint32_t ) ( xMPUSettings->xSystemCallStackInfo.pulSystemCallStack ) &
1521 ( uint32_t ) ( ~( portBYTE_ALIGNMENT_MASK ) ) );
1522
1523 xMPUSettings->xSystemCallStackInfo.pulSystemCallStackLimit = &( xMPUSettings->xSystemCallStackInfo.ulSystemCallStackBuffer[ 0 ] );
1524 xMPUSettings->xSystemCallStackInfo.pulSystemCallStackLimit = ( uint32_t * ) ( ( ( uint32_t ) ( xMPUSettings->xSystemCallStackInfo.pulSystemCallStackLimit ) +
1525 ( uint32_t ) ( portBYTE_ALIGNMENT - 1 ) ) &
1526 ( uint32_t ) ( ~( portBYTE_ALIGNMENT_MASK ) ) );
1527
1528 /* This is not NULL only for the duration of a system call. */
1529 xMPUSettings->xSystemCallStackInfo.pulTaskStack = NULL;
1530 }
1531 #endif /* configUSE_MPU_WRAPPERS_V1 == 0 */
1532
1533 return &( xMPUSettings->ulContext[ ulIndex ] );
1534 }
1535
1536 #else /* configENABLE_MPU */
1537
pxPortInitialiseStack(StackType_t * pxTopOfStack,StackType_t * pxEndOfStack,TaskFunction_t pxCode,void * pvParameters)1538 StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
1539 StackType_t * pxEndOfStack,
1540 TaskFunction_t pxCode,
1541 void * pvParameters ) /* PRIVILEGED_FUNCTION */
1542 {
1543 /* Simulate the stack frame as it would be created by a context switch
1544 * interrupt. */
1545 #if ( portPRELOAD_REGISTERS == 0 )
1546 {
1547 pxTopOfStack--; /* Offset added to account for the way the MCU uses the stack on entry/exit of interrupts. */
1548 *pxTopOfStack = portINITIAL_XPSR; /* xPSR. */
1549 pxTopOfStack--;
1550 *pxTopOfStack = ( StackType_t ) pxCode; /* PC. */
1551 pxTopOfStack--;
1552 *pxTopOfStack = ( StackType_t ) portTASK_RETURN_ADDRESS; /* LR. */
1553 pxTopOfStack -= 5; /* R12, R3, R2 and R1. */
1554 *pxTopOfStack = ( StackType_t ) pvParameters; /* R0. */
1555 pxTopOfStack -= 9; /* R11..R4, EXC_RETURN. */
1556 *pxTopOfStack = portINITIAL_EXC_RETURN;
1557 pxTopOfStack--;
1558 *pxTopOfStack = ( StackType_t ) pxEndOfStack; /* Slot used to hold this task's PSPLIM value. */
1559
1560 #if ( configENABLE_TRUSTZONE == 1 )
1561 {
1562 pxTopOfStack--;
1563 *pxTopOfStack = portNO_SECURE_CONTEXT; /* Slot used to hold this task's xSecureContext value. */
1564 }
1565 #endif /* configENABLE_TRUSTZONE */
1566 }
1567 #else /* portPRELOAD_REGISTERS */
1568 {
1569 pxTopOfStack--; /* Offset added to account for the way the MCU uses the stack on entry/exit of interrupts. */
1570 *pxTopOfStack = portINITIAL_XPSR; /* xPSR. */
1571 pxTopOfStack--;
1572 *pxTopOfStack = ( StackType_t ) pxCode; /* PC. */
1573 pxTopOfStack--;
1574 *pxTopOfStack = ( StackType_t ) portTASK_RETURN_ADDRESS; /* LR. */
1575 pxTopOfStack--;
1576 *pxTopOfStack = ( StackType_t ) 0x12121212UL; /* R12. */
1577 pxTopOfStack--;
1578 *pxTopOfStack = ( StackType_t ) 0x03030303UL; /* R3. */
1579 pxTopOfStack--;
1580 *pxTopOfStack = ( StackType_t ) 0x02020202UL; /* R2. */
1581 pxTopOfStack--;
1582 *pxTopOfStack = ( StackType_t ) 0x01010101UL; /* R1. */
1583 pxTopOfStack--;
1584 *pxTopOfStack = ( StackType_t ) pvParameters; /* R0. */
1585 pxTopOfStack--;
1586 *pxTopOfStack = ( StackType_t ) 0x11111111UL; /* R11. */
1587 pxTopOfStack--;
1588 *pxTopOfStack = ( StackType_t ) 0x10101010UL; /* R10. */
1589 pxTopOfStack--;
1590 *pxTopOfStack = ( StackType_t ) 0x09090909UL; /* R09. */
1591 pxTopOfStack--;
1592 *pxTopOfStack = ( StackType_t ) 0x08080808UL; /* R08. */
1593 pxTopOfStack--;
1594 *pxTopOfStack = ( StackType_t ) 0x07070707UL; /* R07. */
1595 pxTopOfStack--;
1596 *pxTopOfStack = ( StackType_t ) 0x06060606UL; /* R06. */
1597 pxTopOfStack--;
1598 *pxTopOfStack = ( StackType_t ) 0x05050505UL; /* R05. */
1599 pxTopOfStack--;
1600 *pxTopOfStack = ( StackType_t ) 0x04040404UL; /* R04. */
1601 pxTopOfStack--;
1602 *pxTopOfStack = portINITIAL_EXC_RETURN; /* EXC_RETURN. */
1603 pxTopOfStack--;
1604 *pxTopOfStack = ( StackType_t ) pxEndOfStack; /* Slot used to hold this task's PSPLIM value. */
1605
1606 #if ( configENABLE_TRUSTZONE == 1 )
1607 {
1608 pxTopOfStack--;
1609 *pxTopOfStack = portNO_SECURE_CONTEXT; /* Slot used to hold this task's xSecureContext value. */
1610 }
1611 #endif /* configENABLE_TRUSTZONE */
1612 }
1613 #endif /* portPRELOAD_REGISTERS */
1614
1615 return pxTopOfStack;
1616 }
1617
1618 #endif /* configENABLE_MPU */
1619 /*-----------------------------------------------------------*/
1620
xPortStartScheduler(void)1621 BaseType_t xPortStartScheduler( void ) /* PRIVILEGED_FUNCTION */
1622 {
1623 /* An application can install FreeRTOS interrupt handlers in one of the
1624 * following ways:
1625 * 1. Direct Routing - Install the functions SVC_Handler and PendSV_Handler
1626 * for SVCall and PendSV interrupts respectively.
1627 * 2. Indirect Routing - Install separate handlers for SVCall and PendSV
1628 * interrupts and route program control from those handlers to
1629 * SVC_Handler and PendSV_Handler functions.
1630 *
1631 * Applications that use Indirect Routing must set
1632 * configCHECK_HANDLER_INSTALLATION to 0 in their FreeRTOSConfig.h. Direct
1633 * routing, which is validated here when configCHECK_HANDLER_INSTALLATION
1634 * is 1, should be preferred when possible. */
1635 #if ( configCHECK_HANDLER_INSTALLATION == 1 )
1636 {
1637 const portISR_t * const pxVectorTable = portSCB_VTOR_REG;
1638
1639 /* Validate that the application has correctly installed the FreeRTOS
1640 * handlers for SVCall and PendSV interrupts. We do not check the
1641 * installation of the SysTick handler because the application may
1642 * choose to drive the RTOS tick using a timer other than the SysTick
1643 * timer by overriding the weak function vPortSetupTimerInterrupt().
1644 *
1645 * Assertion failures here indicate incorrect installation of the
1646 * FreeRTOS handlers. For help installing the FreeRTOS handlers, see
1647 * https://www.FreeRTOS.org/FAQHelp.html.
1648 *
1649 * Systems with a configurable address for the interrupt vector table
1650 * can also encounter assertion failures or even system faults here if
1651 * VTOR is not set correctly to point to the application's vector table. */
1652 configASSERT( pxVectorTable[ portVECTOR_INDEX_SVC ] == SVC_Handler );
1653 configASSERT( pxVectorTable[ portVECTOR_INDEX_PENDSV ] == PendSV_Handler );
1654 }
1655 #endif /* configCHECK_HANDLER_INSTALLATION */
1656
1657 #if ( ( configASSERT_DEFINED == 1 ) && ( portHAS_ARMV8M_MAIN_EXTENSION == 1 ) )
1658 {
1659 volatile uint32_t ulImplementedPrioBits = 0;
1660 volatile uint8_t ucMaxPriorityValue;
1661
1662 /* Determine the maximum priority from which ISR safe FreeRTOS API
1663 * functions can be called. ISR safe functions are those that end in
1664 * "FromISR". FreeRTOS maintains separate thread and ISR API functions to
1665 * ensure interrupt entry is as fast and simple as possible.
1666 *
1667 * First, determine the number of priority bits available. Write to all
1668 * possible bits in the priority setting for SVCall. */
1669 portNVIC_SHPR2_REG = 0xFF000000;
1670
1671 /* Read the value back to see how many bits stuck. */
1672 ucMaxPriorityValue = ( uint8_t ) ( ( portNVIC_SHPR2_REG & 0xFF000000 ) >> 24 );
1673
1674 /* Use the same mask on the maximum system call priority. */
1675 ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
1676
1677 /* Check that the maximum system call priority is nonzero after
1678 * accounting for the number of priority bits supported by the
1679 * hardware. A priority of 0 is invalid because setting the BASEPRI
1680 * register to 0 unmasks all interrupts, and interrupts with priority 0
1681 * cannot be masked using BASEPRI.
1682 * See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1683 configASSERT( ucMaxSysCallPriority );
1684
1685 /* Check that the bits not implemented in hardware are zero in
1686 * configMAX_SYSCALL_INTERRUPT_PRIORITY. */
1687 configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & ( uint8_t ) ( ~( uint32_t ) ucMaxPriorityValue ) ) == 0U );
1688
1689 /* Calculate the maximum acceptable priority group value for the number
1690 * of bits read back. */
1691 while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
1692 {
1693 ulImplementedPrioBits++;
1694 ucMaxPriorityValue <<= ( uint8_t ) 0x01;
1695 }
1696
1697 if( ulImplementedPrioBits == 8 )
1698 {
1699 /* When the hardware implements 8 priority bits, there is no way for
1700 * the software to configure PRIGROUP to not have sub-priorities. As
1701 * a result, the least significant bit is always used for sub-priority
1702 * and there are 128 preemption priorities and 2 sub-priorities.
1703 *
1704 * This may cause some confusion in some cases - for example, if
1705 * configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
1706 * priority interrupts will be masked in Critical Sections as those
1707 * are at the same preemption priority. This may appear confusing as
1708 * 4 is higher (numerically lower) priority than
1709 * configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
1710 * have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
1711 * to 4, this confusion does not happen and the behaviour remains the same.
1712 *
1713 * The following assert ensures that the sub-priority bit in the
1714 * configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
1715 * confusion. */
1716 configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
1717 ulMaxPRIGROUPValue = 0;
1718 }
1719 else
1720 {
1721 ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
1722 }
1723
1724 /* Shift the priority group value back to its position within the AIRCR
1725 * register. */
1726 ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
1727 ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
1728 }
1729 #endif /* #if ( ( configASSERT_DEFINED == 1 ) && ( portHAS_ARMV8M_MAIN_EXTENSION == 1 ) ) */
1730
1731 /* Make PendSV and SysTick the lowest priority interrupts, and make SVCall
1732 * the highest priority. */
1733 portNVIC_SHPR3_REG |= portNVIC_PENDSV_PRI;
1734 portNVIC_SHPR3_REG |= portNVIC_SYSTICK_PRI;
1735 portNVIC_SHPR2_REG = 0;
1736
1737 #if ( configENABLE_MPU == 1 )
1738 {
1739 /* Setup the Memory Protection Unit (MPU). */
1740 prvSetupMPU();
1741 }
1742 #endif /* configENABLE_MPU */
1743
1744 /* Start the timer that generates the tick ISR. Interrupts are disabled
1745 * here already. */
1746 vPortSetupTimerInterrupt();
1747
1748 /* Initialize the critical nesting count ready for the first task. */
1749 ulCriticalNesting = 0;
1750
1751 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
1752 {
1753 xSchedulerRunning = pdTRUE;
1754 }
1755 #endif /* ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) ) */
1756
1757 /* Start the first task. */
1758 vStartFirstTask();
1759
1760 /* Should never get here as the tasks will now be executing. Call the task
1761 * exit error function to prevent compiler warnings about a static function
1762 * not being called in the case that the application writer overrides this
1763 * functionality by defining configTASK_RETURN_ADDRESS. Call
1764 * vTaskSwitchContext() so link time optimization does not remove the
1765 * symbol. */
1766 vTaskSwitchContext();
1767 prvTaskExitError();
1768
1769 /* Should not get here. */
1770 return 0;
1771 }
1772 /*-----------------------------------------------------------*/
1773
vPortEndScheduler(void)1774 void vPortEndScheduler( void ) /* PRIVILEGED_FUNCTION */
1775 {
1776 /* Not implemented in ports where there is nothing to return to.
1777 * Artificially force an assert. */
1778 configASSERT( ulCriticalNesting == 1000UL );
1779 }
1780 /*-----------------------------------------------------------*/
1781
1782 #if ( configENABLE_MPU == 1 )
1783
vPortStoreTaskMPUSettings(xMPU_SETTINGS * xMPUSettings,const struct xMEMORY_REGION * const xRegions,StackType_t * pxBottomOfStack,configSTACK_DEPTH_TYPE uxStackDepth)1784 void vPortStoreTaskMPUSettings( xMPU_SETTINGS * xMPUSettings,
1785 const struct xMEMORY_REGION * const xRegions,
1786 StackType_t * pxBottomOfStack,
1787 configSTACK_DEPTH_TYPE uxStackDepth )
1788 {
1789 uint32_t ulRegionStartAddress, ulRegionEndAddress, ulRegionNumber;
1790 int32_t lIndex = 0;
1791
1792 #if defined( __ARMCC_VERSION )
1793
1794 /* Declaration when these variable are defined in code instead of being
1795 * exported from linker scripts. */
1796 extern uint32_t * __privileged_sram_start__;
1797 extern uint32_t * __privileged_sram_end__;
1798 #else
1799 /* Declaration when these variable are exported from linker scripts. */
1800 extern uint32_t __privileged_sram_start__[];
1801 extern uint32_t __privileged_sram_end__[];
1802 #endif /* defined( __ARMCC_VERSION ) */
1803
1804 /* Setup MAIR0. */
1805 xMPUSettings->ulMAIR0 = ( ( portMPU_NORMAL_MEMORY_BUFFERABLE_CACHEABLE << portMPU_MAIR_ATTR0_POS ) & portMPU_MAIR_ATTR0_MASK );
1806 xMPUSettings->ulMAIR0 |= ( ( portMPU_DEVICE_MEMORY_nGnRE << portMPU_MAIR_ATTR1_POS ) & portMPU_MAIR_ATTR1_MASK );
1807
1808 /* This function is called automatically when the task is created - in
1809 * which case the stack region parameters will be valid. At all other
1810 * times the stack parameters will not be valid and it is assumed that
1811 * the stack region has already been configured. */
1812 if( uxStackDepth > 0 )
1813 {
1814 ulRegionStartAddress = ( uint32_t ) pxBottomOfStack;
1815 ulRegionEndAddress = ( uint32_t ) pxBottomOfStack + ( uxStackDepth * ( configSTACK_DEPTH_TYPE ) sizeof( StackType_t ) ) - 1;
1816
1817 /* If the stack is within the privileged SRAM, do not protect it
1818 * using a separate MPU region. This is needed because privileged
1819 * SRAM is already protected using an MPU region and ARMv8-M does
1820 * not allow overlapping MPU regions. */
1821 if( ( ulRegionStartAddress >= ( uint32_t ) __privileged_sram_start__ ) &&
1822 ( ulRegionEndAddress <= ( uint32_t ) __privileged_sram_end__ ) )
1823 {
1824 xMPUSettings->xRegionsSettings[ 0 ].ulRBAR = 0;
1825 xMPUSettings->xRegionsSettings[ 0 ].ulRLAR = 0;
1826 }
1827 else
1828 {
1829 /* Define the region that allows access to the stack. */
1830 ulRegionStartAddress &= portMPU_RBAR_ADDRESS_MASK;
1831 ulRegionEndAddress &= portMPU_RLAR_ADDRESS_MASK;
1832
1833 xMPUSettings->xRegionsSettings[ 0 ].ulRBAR = ( ulRegionStartAddress ) |
1834 ( portMPU_REGION_NON_SHAREABLE ) |
1835 ( portMPU_REGION_READ_WRITE ) |
1836 ( portMPU_REGION_EXECUTE_NEVER );
1837
1838 xMPUSettings->xRegionsSettings[ 0 ].ulRLAR = ( ulRegionEndAddress ) |
1839 ( portMPU_RLAR_ATTR_INDEX0 ) |
1840 ( portMPU_RLAR_REGION_ENABLE );
1841 }
1842 }
1843
1844 /* User supplied configurable regions. */
1845 for( ulRegionNumber = 1; ulRegionNumber <= portNUM_CONFIGURABLE_REGIONS; ulRegionNumber++ )
1846 {
1847 /* If xRegions is NULL i.e. the task has not specified any MPU
1848 * region, the else part ensures that all the configurable MPU
1849 * regions are invalidated. */
1850 if( ( xRegions != NULL ) && ( xRegions[ lIndex ].ulLengthInBytes > 0UL ) )
1851 {
1852 /* Translate the generic region definition contained in xRegions
1853 * into the ARMv8 specific MPU settings that are then stored in
1854 * xMPUSettings. */
1855 ulRegionStartAddress = ( ( uint32_t ) xRegions[ lIndex ].pvBaseAddress ) & portMPU_RBAR_ADDRESS_MASK;
1856 ulRegionEndAddress = ( uint32_t ) xRegions[ lIndex ].pvBaseAddress + xRegions[ lIndex ].ulLengthInBytes - 1;
1857 ulRegionEndAddress &= portMPU_RLAR_ADDRESS_MASK;
1858
1859 /* Start address. */
1860 xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRBAR = ( ulRegionStartAddress ) |
1861 ( portMPU_REGION_NON_SHAREABLE );
1862
1863 /* RO/RW. */
1864 if( ( xRegions[ lIndex ].ulParameters & tskMPU_REGION_READ_ONLY ) != 0 )
1865 {
1866 xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRBAR |= ( portMPU_REGION_READ_ONLY );
1867 }
1868 else
1869 {
1870 xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRBAR |= ( portMPU_REGION_READ_WRITE );
1871 }
1872
1873 /* XN. */
1874 if( ( xRegions[ lIndex ].ulParameters & tskMPU_REGION_EXECUTE_NEVER ) != 0 )
1875 {
1876 xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRBAR |= ( portMPU_REGION_EXECUTE_NEVER );
1877 }
1878
1879 /* End Address. */
1880 xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRLAR = ( ulRegionEndAddress ) |
1881 ( portMPU_RLAR_REGION_ENABLE );
1882
1883 /* Normal memory/ Device memory. */
1884 if( ( xRegions[ lIndex ].ulParameters & tskMPU_REGION_DEVICE_MEMORY ) != 0 )
1885 {
1886 /* Attr1 in MAIR0 is configured as device memory. */
1887 xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRLAR |= portMPU_RLAR_ATTR_INDEX1;
1888 }
1889 else
1890 {
1891 /* Attr0 in MAIR0 is configured as normal memory. */
1892 xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRLAR |= portMPU_RLAR_ATTR_INDEX0;
1893 }
1894 }
1895 else
1896 {
1897 /* Invalidate the region. */
1898 xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRBAR = 0UL;
1899 xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRLAR = 0UL;
1900 }
1901
1902 lIndex++;
1903 }
1904 }
1905
1906 #endif /* configENABLE_MPU */
1907 /*-----------------------------------------------------------*/
1908
1909 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
1910
xPortIsAuthorizedToAccessBuffer(const void * pvBuffer,uint32_t ulBufferLength,uint32_t ulAccessRequested)1911 BaseType_t xPortIsAuthorizedToAccessBuffer( const void * pvBuffer,
1912 uint32_t ulBufferLength,
1913 uint32_t ulAccessRequested ) /* PRIVILEGED_FUNCTION */
1914
1915 {
1916 uint32_t i, ulBufferStartAddress, ulBufferEndAddress;
1917 BaseType_t xAccessGranted = pdFALSE;
1918 const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */
1919
1920 if( xSchedulerRunning == pdFALSE )
1921 {
1922 /* Grant access to all the kernel objects before the scheduler
1923 * is started. It is necessary because there is no task running
1924 * yet and therefore, we cannot use the permissions of any
1925 * task. */
1926 xAccessGranted = pdTRUE;
1927 }
1928 else if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
1929 {
1930 xAccessGranted = pdTRUE;
1931 }
1932 else
1933 {
1934 if( portADD_UINT32_WILL_OVERFLOW( ( ( uint32_t ) pvBuffer ), ( ulBufferLength - 1UL ) ) == pdFALSE )
1935 {
1936 ulBufferStartAddress = ( uint32_t ) pvBuffer;
1937 ulBufferEndAddress = ( ( ( uint32_t ) pvBuffer ) + ulBufferLength - 1UL );
1938
1939 for( i = 0; i < portTOTAL_NUM_REGIONS; i++ )
1940 {
1941 /* Is the MPU region enabled? */
1942 if( ( xTaskMpuSettings->xRegionsSettings[ i ].ulRLAR & portMPU_RLAR_REGION_ENABLE ) == portMPU_RLAR_REGION_ENABLE )
1943 {
1944 if( portIS_ADDRESS_WITHIN_RANGE( ulBufferStartAddress,
1945 portEXTRACT_FIRST_ADDRESS_FROM_RBAR( xTaskMpuSettings->xRegionsSettings[ i ].ulRBAR ),
1946 portEXTRACT_LAST_ADDRESS_FROM_RLAR( xTaskMpuSettings->xRegionsSettings[ i ].ulRLAR ) ) &&
1947 portIS_ADDRESS_WITHIN_RANGE( ulBufferEndAddress,
1948 portEXTRACT_FIRST_ADDRESS_FROM_RBAR( xTaskMpuSettings->xRegionsSettings[ i ].ulRBAR ),
1949 portEXTRACT_LAST_ADDRESS_FROM_RLAR( xTaskMpuSettings->xRegionsSettings[ i ].ulRLAR ) ) &&
1950 portIS_AUTHORIZED( ulAccessRequested,
1951 prvGetRegionAccessPermissions( xTaskMpuSettings->xRegionsSettings[ i ].ulRBAR ) ) )
1952 {
1953 xAccessGranted = pdTRUE;
1954 break;
1955 }
1956 }
1957 }
1958 }
1959 }
1960
1961 return xAccessGranted;
1962 }
1963
1964 #endif /* #if ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
1965 /*-----------------------------------------------------------*/
1966
xPortIsInsideInterrupt(void)1967 BaseType_t xPortIsInsideInterrupt( void )
1968 {
1969 uint32_t ulCurrentInterrupt;
1970 BaseType_t xReturn;
1971
1972 /* Obtain the number of the currently executing interrupt. Interrupt Program
1973 * Status Register (IPSR) holds the exception number of the currently-executing
1974 * exception or zero for Thread mode.*/
1975 __asm volatile ( "mrs %0, ipsr" : "=r" ( ulCurrentInterrupt )::"memory" );
1976
1977 if( ulCurrentInterrupt == 0 )
1978 {
1979 xReturn = pdFALSE;
1980 }
1981 else
1982 {
1983 xReturn = pdTRUE;
1984 }
1985
1986 return xReturn;
1987 }
1988 /*-----------------------------------------------------------*/
1989
1990 #if ( ( configASSERT_DEFINED == 1 ) && ( portHAS_ARMV8M_MAIN_EXTENSION == 1 ) )
1991
vPortValidateInterruptPriority(void)1992 void vPortValidateInterruptPriority( void )
1993 {
1994 uint32_t ulCurrentInterrupt;
1995 uint8_t ucCurrentPriority;
1996
1997 /* Obtain the number of the currently executing interrupt. */
1998 __asm volatile ( "mrs %0, ipsr" : "=r" ( ulCurrentInterrupt )::"memory" );
1999
2000 /* Is the interrupt number a user defined interrupt? */
2001 if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
2002 {
2003 /* Look up the interrupt's priority. */
2004 ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
2005
2006 /* The following assertion will fail if a service routine (ISR) for
2007 * an interrupt that has been assigned a priority above
2008 * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
2009 * function. ISR safe FreeRTOS API functions must *only* be called
2010 * from interrupts that have been assigned a priority at or below
2011 * configMAX_SYSCALL_INTERRUPT_PRIORITY.
2012 *
2013 * Numerically low interrupt priority numbers represent logically high
2014 * interrupt priorities, therefore the priority of the interrupt must
2015 * be set to a value equal to or numerically *higher* than
2016 * configMAX_SYSCALL_INTERRUPT_PRIORITY.
2017 *
2018 * Interrupts that use the FreeRTOS API must not be left at their
2019 * default priority of zero as that is the highest possible priority,
2020 * which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
2021 * and therefore also guaranteed to be invalid.
2022 *
2023 * FreeRTOS maintains separate thread and ISR API functions to ensure
2024 * interrupt entry is as fast and simple as possible.
2025 *
2026 * The following links provide detailed information:
2027 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
2028 * https://www.FreeRTOS.org/FAQHelp.html */
2029 configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
2030 }
2031
2032 /* Priority grouping: The interrupt controller (NVIC) allows the bits
2033 * that define each interrupt's priority to be split between bits that
2034 * define the interrupt's pre-emption priority bits and bits that define
2035 * the interrupt's sub-priority. For simplicity all bits must be defined
2036 * to be pre-emption priority bits. The following assertion will fail if
2037 * this is not the case (if some bits represent a sub-priority).
2038 *
2039 * If the application only uses CMSIS libraries for interrupt
2040 * configuration then the correct setting can be achieved on all Cortex-M
2041 * devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
2042 * scheduler. Note however that some vendor specific peripheral libraries
2043 * assume a non-zero priority group setting, in which cases using a value
2044 * of zero will result in unpredictable behaviour. */
2045 configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
2046 }
2047
2048 #endif /* #if ( ( configASSERT_DEFINED == 1 ) && ( portHAS_ARMV8M_MAIN_EXTENSION == 1 ) ) */
2049 /*-----------------------------------------------------------*/
2050
2051 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )
2052
vPortGrantAccessToKernelObject(TaskHandle_t xInternalTaskHandle,int32_t lInternalIndexOfKernelObject)2053 void vPortGrantAccessToKernelObject( TaskHandle_t xInternalTaskHandle,
2054 int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
2055 {
2056 uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
2057 xMPU_SETTINGS * xTaskMpuSettings;
2058
2059 ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
2060 ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );
2061
2062 xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle );
2063
2064 xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] |= ( 1U << ulAccessControlListEntryBit );
2065 }
2066
2067 #endif /* #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */
2068 /*-----------------------------------------------------------*/
2069
2070 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )
2071
vPortRevokeAccessToKernelObject(TaskHandle_t xInternalTaskHandle,int32_t lInternalIndexOfKernelObject)2072 void vPortRevokeAccessToKernelObject( TaskHandle_t xInternalTaskHandle,
2073 int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
2074 {
2075 uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
2076 xMPU_SETTINGS * xTaskMpuSettings;
2077
2078 ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
2079 ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );
2080
2081 xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle );
2082
2083 xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] &= ~( 1U << ulAccessControlListEntryBit );
2084 }
2085
2086 #endif /* #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */
2087 /*-----------------------------------------------------------*/
2088
2089 #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
2090
2091 #if ( configENABLE_ACCESS_CONTROL_LIST == 1 )
2092
xPortIsAuthorizedToAccessKernelObject(int32_t lInternalIndexOfKernelObject)2093 BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
2094 {
2095 uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
2096 BaseType_t xAccessGranted = pdFALSE;
2097 const xMPU_SETTINGS * xTaskMpuSettings;
2098
2099 if( xSchedulerRunning == pdFALSE )
2100 {
2101 /* Grant access to all the kernel objects before the scheduler
2102 * is started. It is necessary because there is no task running
2103 * yet and therefore, we cannot use the permissions of any
2104 * task. */
2105 xAccessGranted = pdTRUE;
2106 }
2107 else
2108 {
2109 xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */
2110
2111 ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
2112 ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );
2113
2114 if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
2115 {
2116 xAccessGranted = pdTRUE;
2117 }
2118 else
2119 {
2120 if( ( xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] & ( 1U << ulAccessControlListEntryBit ) ) != 0 )
2121 {
2122 xAccessGranted = pdTRUE;
2123 }
2124 }
2125 }
2126
2127 return xAccessGranted;
2128 }
2129
2130 #else /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */
2131
xPortIsAuthorizedToAccessKernelObject(int32_t lInternalIndexOfKernelObject)2132 BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
2133 {
2134 ( void ) lInternalIndexOfKernelObject;
2135
2136 /* If Access Control List feature is not used, all the tasks have
2137 * access to all the kernel objects. */
2138 return pdTRUE;
2139 }
2140
2141 #endif /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */
2142
2143 #endif /* #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) ) */
2144 /*-----------------------------------------------------------*/
2145