1 /*
2  * FreeRTOS Kernel V11.1.0
3  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4  *
5  * SPDX-License-Identifier: MIT
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in all
15  * copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * https://www.FreeRTOS.org
25  * https://github.com/FreeRTOS
26  *
27  */
28 
29 /*-----------------------------------------------------------
30 * Implementation of functions defined in portable.h for the ARM CM4F port.
31 *----------------------------------------------------------*/
32 
33 /* IAR includes. */
34 #include <intrinsics.h>
35 
36 /* Scheduler includes. */
37 #include "FreeRTOS.h"
38 #include "task.h"
39 
40 #ifndef __ARMVFP__
41     #error This port can only be used when the project options are configured to enable hardware floating point support.
42 #endif
43 
44 #if ( configMAX_SYSCALL_INTERRUPT_PRIORITY == 0 )
45     #error configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0.  See http: /*www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
46 #endif
47 
48 /* Prototype of all Interrupt Service Routines (ISRs). */
49 typedef void ( * portISR_t )( void );
50 
51 /* Constants required to manipulate the core.  Registers first... */
52 #define portNVIC_SYSTICK_CTRL_REG             ( *( ( volatile uint32_t * ) 0xe000e010 ) )
53 #define portNVIC_SYSTICK_LOAD_REG             ( *( ( volatile uint32_t * ) 0xe000e014 ) )
54 #define portNVIC_SYSTICK_CURRENT_VALUE_REG    ( *( ( volatile uint32_t * ) 0xe000e018 ) )
55 #define portNVIC_SHPR2_REG                    ( *( ( volatile uint32_t * ) 0xe000ed1c ) )
56 #define portNVIC_SHPR3_REG                    ( *( ( volatile uint32_t * ) 0xe000ed20 ) )
57 /* ...then bits in the registers. */
58 #define portNVIC_SYSTICK_CLK_BIT              ( 1UL << 2UL )
59 #define portNVIC_SYSTICK_INT_BIT              ( 1UL << 1UL )
60 #define portNVIC_SYSTICK_ENABLE_BIT           ( 1UL << 0UL )
61 #define portNVIC_SYSTICK_COUNT_FLAG_BIT       ( 1UL << 16UL )
62 #define portNVIC_PENDSVCLEAR_BIT              ( 1UL << 27UL )
63 #define portNVIC_PEND_SYSTICK_SET_BIT         ( 1UL << 26UL )
64 #define portNVIC_PEND_SYSTICK_CLEAR_BIT       ( 1UL << 25UL )
65 
66 /* Constants used to detect a Cortex-M7 r0p1 core, which should use the ARM_CM7
67  * r0p1 port. */
68 #define portCPUID                             ( *( ( volatile uint32_t * ) 0xE000ed00 ) )
69 #define portCORTEX_M7_r0p1_ID                 ( 0x410FC271UL )
70 #define portCORTEX_M7_r0p0_ID                 ( 0x410FC270UL )
71 
72 #define portMIN_INTERRUPT_PRIORITY            ( 255UL )
73 #define portNVIC_PENDSV_PRI                   ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 16UL )
74 #define portNVIC_SYSTICK_PRI                  ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 24UL )
75 
76 /* Constants used to check the installation of the FreeRTOS interrupt handlers. */
77 #define portSCB_VTOR_REG                      ( *( ( portISR_t ** ) 0xE000ED08 ) )
78 #define portVECTOR_INDEX_SVC                  ( 11 )
79 #define portVECTOR_INDEX_PENDSV               ( 14 )
80 
81 /* Constants required to check the validity of an interrupt priority. */
82 #define portFIRST_USER_INTERRUPT_NUMBER       ( 16 )
83 #define portNVIC_IP_REGISTERS_OFFSET_16       ( 0xE000E3F0 )
84 #define portAIRCR_REG                         ( *( ( volatile uint32_t * ) 0xE000ED0C ) )
85 #define portMAX_8_BIT_VALUE                   ( ( uint8_t ) 0xff )
86 #define portTOP_BIT_OF_BYTE                   ( ( uint8_t ) 0x80 )
87 #define portMAX_PRIGROUP_BITS                 ( ( uint8_t ) 7 )
88 #define portPRIORITY_GROUP_MASK               ( 0x07UL << 8UL )
89 #define portPRIGROUP_SHIFT                    ( 8UL )
90 
91 /* Masks off all bits but the VECTACTIVE bits in the ICSR register. */
92 #define portVECTACTIVE_MASK                   ( 0xFFUL )
93 
94 /* Constants required to manipulate the VFP. */
95 #define portFPCCR                             ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating point context control register. */
96 #define portASPEN_AND_LSPEN_BITS              ( 0x3UL << 30UL )
97 
98 /* Constants required to set up the initial stack. */
99 #define portINITIAL_XPSR                      ( 0x01000000 )
100 #define portINITIAL_EXC_RETURN                ( 0xfffffffd )
101 
102 /* The systick is a 24-bit counter. */
103 #define portMAX_24_BIT_NUMBER                 ( 0xffffffUL )
104 
105 /* A fiddle factor to estimate the number of SysTick counts that would have
106  * occurred while the SysTick counter is stopped during tickless idle
107  * calculations. */
108 #define portMISSED_COUNTS_FACTOR              ( 94UL )
109 
110 /* For strict compliance with the Cortex-M spec the task start address should
111  * have bit-0 clear, as it is loaded into the PC on exit from an ISR. */
112 #define portSTART_ADDRESS_MASK                ( ( StackType_t ) 0xfffffffeUL )
113 
114 /* Let the user override the default SysTick clock rate.  If defined by the
115  * user, this symbol must equal the SysTick clock rate when the CLK bit is 0 in the
116  * configuration register. */
117 #ifndef configSYSTICK_CLOCK_HZ
118     #define configSYSTICK_CLOCK_HZ             ( configCPU_CLOCK_HZ )
119     /* Ensure the SysTick is clocked at the same frequency as the core. */
120     #define portNVIC_SYSTICK_CLK_BIT_CONFIG    ( portNVIC_SYSTICK_CLK_BIT )
121 #else
122     /* Select the option to clock SysTick not at the same frequency as the core. */
123     #define portNVIC_SYSTICK_CLK_BIT_CONFIG    ( 0 )
124 #endif
125 
126 /*
127  * Setup the timer to generate the tick interrupts.  The implementation in this
128  * file is weak to allow application writers to change the timer used to
129  * generate the tick interrupt.
130  */
131 void vPortSetupTimerInterrupt( void );
132 
133 /*
134  * Exception handlers.
135  */
136 void xPortSysTickHandler( void );
137 
138 /*
139  * Start first task is a separate function so it can be tested in isolation.
140  */
141 extern void vPortStartFirstTask( void );
142 
143 /*
144  * Turn the VFP on.
145  */
146 extern void vPortEnableVFP( void );
147 
148 /*
149  * Used to catch tasks that attempt to return from their implementing function.
150  */
151 static void prvTaskExitError( void );
152 
153 /*
154  * FreeRTOS handlers implemented in assembly.
155  */
156 extern void vPortSVCHandler( void );
157 extern void xPortPendSVHandler( void );
158 /*-----------------------------------------------------------*/
159 
160 /* Each task maintains its own interrupt status in the critical nesting
161  * variable. */
162 static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
163 
164 /*
165  * The number of SysTick increments that make up one tick period.
166  */
167 #if ( configUSE_TICKLESS_IDLE == 1 )
168     static uint32_t ulTimerCountsForOneTick = 0;
169 #endif /* configUSE_TICKLESS_IDLE */
170 
171 /*
172  * The maximum number of tick periods that can be suppressed is limited by the
173  * 24 bit resolution of the SysTick timer.
174  */
175 #if ( configUSE_TICKLESS_IDLE == 1 )
176     static uint32_t xMaximumPossibleSuppressedTicks = 0;
177 #endif /* configUSE_TICKLESS_IDLE */
178 
179 /*
180  * Compensate for the CPU cycles that pass while the SysTick is stopped (low
181  * power functionality only.
182  */
183 #if ( configUSE_TICKLESS_IDLE == 1 )
184     static uint32_t ulStoppedTimerCompensation = 0;
185 #endif /* configUSE_TICKLESS_IDLE */
186 
187 /*
188  * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
189  * FreeRTOS API functions are not called from interrupts that have been assigned
190  * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
191  */
192 #if ( configASSERT_DEFINED == 1 )
193     static uint8_t ucMaxSysCallPriority = 0;
194     static uint32_t ulMaxPRIGROUPValue = 0;
195     static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * const ) portNVIC_IP_REGISTERS_OFFSET_16;
196 #endif /* configASSERT_DEFINED */
197 
198 /*-----------------------------------------------------------*/
199 
200 /*
201  * See header file for description.
202  */
pxPortInitialiseStack(StackType_t * pxTopOfStack,TaskFunction_t pxCode,void * pvParameters)203 StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
204                                      TaskFunction_t pxCode,
205                                      void * pvParameters )
206 {
207     /* Simulate the stack frame as it would be created by a context switch
208      * interrupt. */
209 
210     /* Offset added to account for the way the MCU uses the stack on entry/exit
211      * of interrupts, and to ensure alignment. */
212     pxTopOfStack--;
213 
214     *pxTopOfStack = portINITIAL_XPSR;                                    /* xPSR */
215     pxTopOfStack--;
216     *pxTopOfStack = ( ( StackType_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC */
217     pxTopOfStack--;
218     *pxTopOfStack = ( StackType_t ) prvTaskExitError;                    /* LR */
219 
220     /* Save code space by skipping register initialisation. */
221     pxTopOfStack -= 5;                            /* R12, R3, R2 and R1. */
222     *pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
223 
224     /* A save method is being used that requires each task to maintain its
225      * own exec return value. */
226     pxTopOfStack--;
227     *pxTopOfStack = portINITIAL_EXC_RETURN;
228 
229     pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */
230 
231     return pxTopOfStack;
232 }
233 /*-----------------------------------------------------------*/
234 
prvTaskExitError(void)235 static void prvTaskExitError( void )
236 {
237     /* A function that implements a task must not exit or attempt to return to
238      * its caller as there is nothing to return to.  If a task wants to exit it
239      * should instead call vTaskDelete( NULL ).
240      *
241      * Artificially force an assert() to be triggered if configASSERT() is
242      * defined, then stop here so application writers can catch the error. */
243     configASSERT( uxCriticalNesting == ~0UL );
244     portDISABLE_INTERRUPTS();
245 
246     for( ; ; )
247     {
248     }
249 }
250 /*-----------------------------------------------------------*/
251 
252 /*
253  * See header file for description.
254  */
xPortStartScheduler(void)255 BaseType_t xPortStartScheduler( void )
256 {
257     /* This port can be used on all revisions of the Cortex-M7 core other than
258      * the r0p1 parts.  r0p1 parts should use the port from the
259      * /source/portable/GCC/ARM_CM7/r0p1 directory. */
260     configASSERT( portCPUID != portCORTEX_M7_r0p1_ID );
261     configASSERT( portCPUID != portCORTEX_M7_r0p0_ID );
262 
263     /* An application can install FreeRTOS interrupt handlers in one of the
264      * following ways:
265      * 1. Direct Routing - Install the functions vPortSVCHandler and
266      *    xPortPendSVHandler for SVCall and PendSV interrupts respectively.
267      * 2. Indirect Routing - Install separate handlers for SVCall and PendSV
268      *    interrupts and route program control from those handlers to
269      *    vPortSVCHandler and xPortPendSVHandler functions.
270      *
271      * Applications that use Indirect Routing must set
272      * configCHECK_HANDLER_INSTALLATION to 0 in their FreeRTOSConfig.h. Direct
273      * routing, which is validated here when configCHECK_HANDLER_INSTALLATION
274      * is 1, should be preferred when possible. */
275     #if ( configCHECK_HANDLER_INSTALLATION == 1 )
276     {
277         const portISR_t * const pxVectorTable = portSCB_VTOR_REG;
278 
279         /* Validate that the application has correctly installed the FreeRTOS
280          * handlers for SVCall and PendSV interrupts. We do not check the
281          * installation of the SysTick handler because the application may
282          * choose to drive the RTOS tick using a timer other than the SysTick
283          * timer by overriding the weak function vPortSetupTimerInterrupt().
284          *
285          * Assertion failures here indicate incorrect installation of the
286          * FreeRTOS handlers. For help installing the FreeRTOS handlers, see
287          * https://www.FreeRTOS.org/FAQHelp.html.
288          *
289          * Systems with a configurable address for the interrupt vector table
290          * can also encounter assertion failures or even system faults here if
291          * VTOR is not set correctly to point to the application's vector table. */
292         configASSERT( pxVectorTable[ portVECTOR_INDEX_SVC ] == vPortSVCHandler );
293         configASSERT( pxVectorTable[ portVECTOR_INDEX_PENDSV ] == xPortPendSVHandler );
294     }
295     #endif /* configCHECK_HANDLER_INSTALLATION */
296 
297     #if ( configASSERT_DEFINED == 1 )
298     {
299         volatile uint8_t ucOriginalPriority;
300         volatile uint32_t ulImplementedPrioBits = 0;
301         volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
302         volatile uint8_t ucMaxPriorityValue;
303 
304         /* Determine the maximum priority from which ISR safe FreeRTOS API
305          * functions can be called.  ISR safe functions are those that end in
306          * "FromISR".  FreeRTOS maintains separate thread and ISR API functions to
307          * ensure interrupt entry is as fast and simple as possible.
308          *
309          * Save the interrupt priority value that is about to be clobbered. */
310         ucOriginalPriority = *pucFirstUserPriorityRegister;
311 
312         /* Determine the number of priority bits available.  First write to all
313          * possible bits. */
314         *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
315 
316         /* Read the value back to see how many bits stuck. */
317         ucMaxPriorityValue = *pucFirstUserPriorityRegister;
318 
319         /* Use the same mask on the maximum system call priority. */
320         ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
321 
322         /* Check that the maximum system call priority is nonzero after
323          * accounting for the number of priority bits supported by the
324          * hardware. A priority of 0 is invalid because setting the BASEPRI
325          * register to 0 unmasks all interrupts, and interrupts with priority 0
326          * cannot be masked using BASEPRI.
327          * See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
328         configASSERT( ucMaxSysCallPriority );
329 
330         /* Check that the bits not implemented in hardware are zero in
331          * configMAX_SYSCALL_INTERRUPT_PRIORITY. */
332         configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & ( uint8_t ) ( ~( uint32_t ) ucMaxPriorityValue ) ) == 0U );
333 
334         /* Calculate the maximum acceptable priority group value for the number
335          * of bits read back. */
336 
337         while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
338         {
339             ulImplementedPrioBits++;
340             ucMaxPriorityValue <<= ( uint8_t ) 0x01;
341         }
342 
343         if( ulImplementedPrioBits == 8 )
344         {
345             /* When the hardware implements 8 priority bits, there is no way for
346              * the software to configure PRIGROUP to not have sub-priorities. As
347              * a result, the least significant bit is always used for sub-priority
348              * and there are 128 preemption priorities and 2 sub-priorities.
349              *
350              * This may cause some confusion in some cases - for example, if
351              * configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
352              * priority interrupts will be masked in Critical Sections as those
353              * are at the same preemption priority. This may appear confusing as
354              * 4 is higher (numerically lower) priority than
355              * configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
356              * have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
357              * to 4, this confusion does not happen and the behaviour remains the same.
358              *
359              * The following assert ensures that the sub-priority bit in the
360              * configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
361              * confusion. */
362             configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
363             ulMaxPRIGROUPValue = 0;
364         }
365         else
366         {
367             ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
368         }
369 
370         /* Shift the priority group value back to its position within the AIRCR
371          * register. */
372         ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
373         ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
374 
375         /* Restore the clobbered interrupt priority register to its original
376          * value. */
377         *pucFirstUserPriorityRegister = ucOriginalPriority;
378     }
379     #endif /* configASSERT_DEFINED */
380 
381     /* Make PendSV and SysTick the lowest priority interrupts, and make SVCall
382      * the highest priority. */
383     portNVIC_SHPR3_REG |= portNVIC_PENDSV_PRI;
384     portNVIC_SHPR3_REG |= portNVIC_SYSTICK_PRI;
385     portNVIC_SHPR2_REG = 0;
386 
387     /* Start the timer that generates the tick ISR.  Interrupts are disabled
388      * here already. */
389     vPortSetupTimerInterrupt();
390 
391     /* Initialise the critical nesting count ready for the first task. */
392     uxCriticalNesting = 0;
393 
394     /* Ensure the VFP is enabled - it should be anyway. */
395     vPortEnableVFP();
396 
397     /* Lazy save always. */
398     *( portFPCCR ) |= portASPEN_AND_LSPEN_BITS;
399 
400     /* Start the first task. */
401     vPortStartFirstTask();
402 
403     /* Should not get here! */
404     return 0;
405 }
406 /*-----------------------------------------------------------*/
407 
vPortEndScheduler(void)408 void vPortEndScheduler( void )
409 {
410     /* Not implemented in ports where there is nothing to return to.
411      * Artificially force an assert. */
412     configASSERT( uxCriticalNesting == 1000UL );
413 }
414 /*-----------------------------------------------------------*/
415 
vPortEnterCritical(void)416 void vPortEnterCritical( void )
417 {
418     portDISABLE_INTERRUPTS();
419     uxCriticalNesting++;
420 
421     /* This is not the interrupt safe version of the enter critical function so
422      * assert() if it is being called from an interrupt context.  Only API
423      * functions that end in "FromISR" can be used in an interrupt.  Only assert if
424      * the critical nesting count is 1 to protect against recursive calls if the
425      * assert function also uses a critical section. */
426     if( uxCriticalNesting == 1 )
427     {
428         configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
429     }
430 }
431 /*-----------------------------------------------------------*/
432 
vPortExitCritical(void)433 void vPortExitCritical( void )
434 {
435     configASSERT( uxCriticalNesting );
436     uxCriticalNesting--;
437 
438     if( uxCriticalNesting == 0 )
439     {
440         portENABLE_INTERRUPTS();
441     }
442 }
443 /*-----------------------------------------------------------*/
444 
xPortSysTickHandler(void)445 void xPortSysTickHandler( void )
446 {
447     /* The SysTick runs at the lowest interrupt priority, so when this interrupt
448      * executes all interrupts must be unmasked.  There is therefore no need to
449      * save and then restore the interrupt mask value as its value is already
450      * known. */
451     portDISABLE_INTERRUPTS();
452     traceISR_ENTER();
453     {
454         /* Increment the RTOS tick. */
455         if( xTaskIncrementTick() != pdFALSE )
456         {
457             traceISR_EXIT_TO_SCHEDULER();
458 
459             /* A context switch is required.  Context switching is performed in
460              * the PendSV interrupt.  Pend the PendSV interrupt. */
461             portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
462         }
463         else
464         {
465             traceISR_EXIT();
466         }
467     }
468     portENABLE_INTERRUPTS();
469 }
470 /*-----------------------------------------------------------*/
471 
472 #if ( configUSE_TICKLESS_IDLE == 1 )
473 
vPortSuppressTicksAndSleep(TickType_t xExpectedIdleTime)474     __weak void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
475     {
476         uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickDecrementsLeft;
477         TickType_t xModifiableIdleTime;
478 
479         /* Make sure the SysTick reload value does not overflow the counter. */
480         if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
481         {
482             xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
483         }
484 
485         /* Enter a critical section but don't use the taskENTER_CRITICAL()
486          * method as that will mask interrupts that should exit sleep mode. */
487         __disable_interrupt();
488         __DSB();
489         __ISB();
490 
491         /* If a context switch is pending or a task is waiting for the scheduler
492          * to be unsuspended then abandon the low power entry. */
493         if( eTaskConfirmSleepModeStatus() == eAbortSleep )
494         {
495             /* Re-enable interrupts - see comments above the __disable_interrupt()
496              * call above. */
497             __enable_interrupt();
498         }
499         else
500         {
501             /* Stop the SysTick momentarily.  The time the SysTick is stopped for
502              * is accounted for as best it can be, but using the tickless mode will
503              * inevitably result in some tiny drift of the time maintained by the
504              * kernel with respect to calendar time. */
505             portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
506 
507             /* Use the SysTick current-value register to determine the number of
508              * SysTick decrements remaining until the next tick interrupt.  If the
509              * current-value register is zero, then there are actually
510              * ulTimerCountsForOneTick decrements remaining, not zero, because the
511              * SysTick requests the interrupt when decrementing from 1 to 0. */
512             ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
513 
514             if( ulSysTickDecrementsLeft == 0 )
515             {
516                 ulSysTickDecrementsLeft = ulTimerCountsForOneTick;
517             }
518 
519             /* Calculate the reload value required to wait xExpectedIdleTime
520              * tick periods.  -1 is used because this code normally executes part
521              * way through the first tick period.  But if the SysTick IRQ is now
522              * pending, then clear the IRQ, suppressing the first tick, and correct
523              * the reload value to reflect that the second tick period is already
524              * underway.  The expected idle time is always at least two ticks. */
525             ulReloadValue = ulSysTickDecrementsLeft + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
526 
527             if( ( portNVIC_INT_CTRL_REG & portNVIC_PEND_SYSTICK_SET_BIT ) != 0 )
528             {
529                 portNVIC_INT_CTRL_REG = portNVIC_PEND_SYSTICK_CLEAR_BIT;
530                 ulReloadValue -= ulTimerCountsForOneTick;
531             }
532 
533             if( ulReloadValue > ulStoppedTimerCompensation )
534             {
535                 ulReloadValue -= ulStoppedTimerCompensation;
536             }
537 
538             /* Set the new reload value. */
539             portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
540 
541             /* Clear the SysTick count flag and set the count value back to
542              * zero. */
543             portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
544 
545             /* Restart SysTick. */
546             portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
547 
548             /* Sleep until something happens.  configPRE_SLEEP_PROCESSING() can
549              * set its parameter to 0 to indicate that its implementation contains
550              * its own wait for interrupt or wait for event instruction, and so wfi
551              * should not be executed again.  However, the original expected idle
552              * time variable must remain unmodified, so a copy is taken. */
553             xModifiableIdleTime = xExpectedIdleTime;
554             configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
555 
556             if( xModifiableIdleTime > 0 )
557             {
558                 __DSB();
559                 __WFI();
560                 __ISB();
561             }
562 
563             configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
564 
565             /* Re-enable interrupts to allow the interrupt that brought the MCU
566              * out of sleep mode to execute immediately.  See comments above
567              * the __disable_interrupt() call above. */
568             __enable_interrupt();
569             __DSB();
570             __ISB();
571 
572             /* Disable interrupts again because the clock is about to be stopped
573              * and interrupts that execute while the clock is stopped will increase
574              * any slippage between the time maintained by the RTOS and calendar
575              * time. */
576             __disable_interrupt();
577             __DSB();
578             __ISB();
579 
580             /* Disable the SysTick clock without reading the
581              * portNVIC_SYSTICK_CTRL_REG register to ensure the
582              * portNVIC_SYSTICK_COUNT_FLAG_BIT is not cleared if it is set.  Again,
583              * the time the SysTick is stopped for is accounted for as best it can
584              * be, but using the tickless mode will inevitably result in some tiny
585              * drift of the time maintained by the kernel with respect to calendar
586              * time*/
587             portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
588 
589             /* Determine whether the SysTick has already counted to zero. */
590             if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
591             {
592                 uint32_t ulCalculatedLoadValue;
593 
594                 /* The tick interrupt ended the sleep (or is now pending), and
595                  * a new tick period has started.  Reset portNVIC_SYSTICK_LOAD_REG
596                  * with whatever remains of the new tick period. */
597                 ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
598 
599                 /* Don't allow a tiny value, or values that have somehow
600                  * underflowed because the post sleep hook did something
601                  * that took too long or because the SysTick current-value register
602                  * is zero. */
603                 if( ( ulCalculatedLoadValue <= ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
604                 {
605                     ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL );
606                 }
607 
608                 portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
609 
610                 /* As the pending tick will be processed as soon as this
611                  * function exits, the tick value maintained by the tick is stepped
612                  * forward by one less than the time spent waiting. */
613                 ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
614             }
615             else
616             {
617                 /* Something other than the tick interrupt ended the sleep. */
618 
619                 /* Use the SysTick current-value register to determine the
620                  * number of SysTick decrements remaining until the expected idle
621                  * time would have ended. */
622                 ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
623                 #if ( portNVIC_SYSTICK_CLK_BIT_CONFIG != portNVIC_SYSTICK_CLK_BIT )
624                 {
625                     /* If the SysTick is not using the core clock, the current-
626                      * value register might still be zero here.  In that case, the
627                      * SysTick didn't load from the reload register, and there are
628                      * ulReloadValue decrements remaining in the expected idle
629                      * time, not zero. */
630                     if( ulSysTickDecrementsLeft == 0 )
631                     {
632                         ulSysTickDecrementsLeft = ulReloadValue;
633                     }
634                 }
635                 #endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
636 
637                 /* Work out how long the sleep lasted rounded to complete tick
638                  * periods (not the ulReload value which accounted for part
639                  * ticks). */
640                 ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - ulSysTickDecrementsLeft;
641 
642                 /* How many complete tick periods passed while the processor
643                  * was waiting? */
644                 ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
645 
646                 /* The reload value is set to whatever fraction of a single tick
647                  * period remains. */
648                 portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1UL ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
649             }
650 
651             /* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG again,
652              * then set portNVIC_SYSTICK_LOAD_REG back to its standard value.  If
653              * the SysTick is not using the core clock, temporarily configure it to
654              * use the core clock.  This configuration forces the SysTick to load
655              * from portNVIC_SYSTICK_LOAD_REG immediately instead of at the next
656              * cycle of the other clock.  Then portNVIC_SYSTICK_LOAD_REG is ready
657              * to receive the standard value immediately. */
658             portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
659             portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
660             #if ( portNVIC_SYSTICK_CLK_BIT_CONFIG == portNVIC_SYSTICK_CLK_BIT )
661             {
662                 portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
663             }
664             #else
665             {
666                 /* The temporary usage of the core clock has served its purpose,
667                  * as described above.  Resume usage of the other clock. */
668                 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT;
669 
670                 if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
671                 {
672                     /* The partial tick period already ended.  Be sure the SysTick
673                      * counts it only once. */
674                     portNVIC_SYSTICK_CURRENT_VALUE_REG = 0;
675                 }
676 
677                 portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
678                 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
679             }
680             #endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
681 
682             /* Step the tick to account for any tick periods that elapsed. */
683             vTaskStepTick( ulCompleteTickPeriods );
684 
685             /* Exit with interrupts enabled. */
686             __enable_interrupt();
687         }
688     }
689 
690 #endif /* configUSE_TICKLESS_IDLE */
691 /*-----------------------------------------------------------*/
692 
693 /*
694  * Setup the systick timer to generate the tick interrupts at the required
695  * frequency.
696  */
vPortSetupTimerInterrupt(void)697 __weak void vPortSetupTimerInterrupt( void )
698 {
699     /* Calculate the constants required to configure the tick interrupt. */
700     #if ( configUSE_TICKLESS_IDLE == 1 )
701     {
702         ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ );
703         xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
704         ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ );
705     }
706     #endif /* configUSE_TICKLESS_IDLE */
707 
708     /* Stop and clear the SysTick. */
709     portNVIC_SYSTICK_CTRL_REG = 0UL;
710     portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
711 
712     /* Configure SysTick to interrupt at the requested rate. */
713     portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
714     portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT );
715 }
716 /*-----------------------------------------------------------*/
717 
718 #if ( configASSERT_DEFINED == 1 )
719 
vPortValidateInterruptPriority(void)720     void vPortValidateInterruptPriority( void )
721     {
722         uint32_t ulCurrentInterrupt;
723         uint8_t ucCurrentPriority;
724 
725         /* Obtain the number of the currently executing interrupt. */
726         __asm volatile ( "mrs %0, ipsr" : "=r" ( ulCurrentInterrupt )::"memory" );
727 
728         /* Is the interrupt number a user defined interrupt? */
729         if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
730         {
731             /* Look up the interrupt's priority. */
732             ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
733 
734             /* The following assertion will fail if a service routine (ISR) for
735              * an interrupt that has been assigned a priority above
736              * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
737              * function.  ISR safe FreeRTOS API functions must *only* be called
738              * from interrupts that have been assigned a priority at or below
739              * configMAX_SYSCALL_INTERRUPT_PRIORITY.
740              *
741              * Numerically low interrupt priority numbers represent logically high
742              * interrupt priorities, therefore the priority of the interrupt must
743              * be set to a value equal to or numerically *higher* than
744              * configMAX_SYSCALL_INTERRUPT_PRIORITY.
745              *
746              * Interrupts that  use the FreeRTOS API must not be left at their
747              * default priority of  zero as that is the highest possible priority,
748              * which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
749              * and  therefore also guaranteed to be invalid.
750              *
751              * FreeRTOS maintains separate thread and ISR API functions to ensure
752              * interrupt entry is as fast and simple as possible.
753              *
754              * The following links provide detailed information:
755              * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
756              * https://www.FreeRTOS.org/FAQHelp.html */
757             configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
758         }
759 
760         /* Priority grouping:  The interrupt controller (NVIC) allows the bits
761          * that define each interrupt's priority to be split between bits that
762          * define the interrupt's pre-emption priority bits and bits that define
763          * the interrupt's sub-priority.  For simplicity all bits must be defined
764          * to be pre-emption priority bits.  The following assertion will fail if
765          * this is not the case (if some bits represent a sub-priority).
766          *
767          * If the application only uses CMSIS libraries for interrupt
768          * configuration then the correct setting can be achieved on all Cortex-M
769          * devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
770          * scheduler.  Note however that some vendor specific peripheral libraries
771          * assume a non-zero priority group setting, in which cases using a value
772          * of zero will result in unpredictable behaviour. */
773         configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
774     }
775 
776 #endif /* configASSERT_DEFINED */
777