1 /*
2  * FreeRTOS Kernel V11.1.0
3  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4  *
5  * SPDX-License-Identifier: MIT
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in all
15  * copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * https://www.FreeRTOS.org
25  * https://github.com/FreeRTOS
26  *
27  */
28 
29 /* Standard includes. */
30 #include <stdlib.h>
31 #include <string.h>
32 
33 /* TriCore specific includes. */
34 #include <tc1782.h>
35 #include <machine/intrinsics.h>
36 #include <machine/cint.h>
37 #include <machine/wdtcon.h>
38 
39 /* Kernel includes. */
40 #include "FreeRTOS.h"
41 #include "task.h"
42 #include "list.h"
43 
44 #if configCHECK_FOR_STACK_OVERFLOW > 0
45     #error "Stack checking cannot be used with this port, as, unlike most ports, the pxTopOfStack member of the TCB is consumed CSA.  CSA starvation, loosely equivalent to stack overflow, will result in a trap exception."
46     /* The stack pointer is accessible using portCSA_TO_ADDRESS( portCSA_TO_ADDRESS( pxCurrentTCB->pxTopOfStack )[ 0 ] )[ 2 ]; */
47 #endif /* configCHECK_FOR_STACK_OVERFLOW */
48 
49 
50 /*-----------------------------------------------------------*/
51 
52 /* System register Definitions. */
53 #define portSYSTEM_PROGRAM_STATUS_WORD                  ( 0x000008FFUL ) /* Supervisor Mode, MPU Register Set 0 and Call Depth Counting disabled. */
54 #define portINITIAL_PRIVILEGED_PROGRAM_STATUS_WORD      ( 0x000014FFUL ) /* IO Level 1, MPU Register Set 1 and Call Depth Counting disabled. */
55 #define portINITIAL_UNPRIVILEGED_PROGRAM_STATUS_WORD    ( 0x000010FFUL ) /* IO Level 0, MPU Register Set 1 and Call Depth Counting disabled. */
56 #define portINITIAL_PCXI_UPPER_CONTEXT_WORD             ( 0x00C00000UL ) /* The lower 20 bits identify the CSA address. */
57 #define portINITIAL_SYSCON                              ( 0x00000000UL ) /* MPU Disable. */
58 
59 /* CSA manipulation macros. */
60 #define portCSA_FCX_MASK                                ( 0x000FFFFFUL )
61 
62 /* OS Interrupt and Trap mechanisms. */
63 #define portRESTORE_PSW_MASK                            ( ~( 0x000000FFUL ) )
64 #define portSYSCALL_TRAP                                ( 6 )
65 
66 /* Each CSA contains 16 words of data. */
67 #define portNUM_WORDS_IN_CSA                            ( 16 )
68 
69 /* The interrupt enable bit in the PCP_SRC register. */
70 #define portENABLE_CPU_INTERRUPT                        ( 1U << 12U )
71 /*-----------------------------------------------------------*/
72 
73 /*
74  * Perform any hardware configuration necessary to generate the tick interrupt.
75  */
76 static void prvSystemTickHandler( int ) __attribute__( ( longcall ) );
77 static void prvSetupTimerInterrupt( void );
78 
79 /*
80  * Trap handler for yields.
81  */
82 static void prvTrapYield( int iTrapIdentification );
83 
84 /*
85  * Priority 1 interrupt handler for yields pended from an interrupt.
86  */
87 static void prvInterruptYield( int iTrapIdentification );
88 
89 /*-----------------------------------------------------------*/
90 
91 /* This reference is required by the save/restore context macros. */
92 extern volatile uint32_t * pxCurrentTCB;
93 
94 /* Precalculate the compare match value at compile time. */
95 static const uint32_t ulCompareMatchValue = ( configPERIPHERAL_CLOCK_HZ / configTICK_RATE_HZ );
96 
97 /*-----------------------------------------------------------*/
98 
pxPortInitialiseStack(StackType_t * pxTopOfStack,TaskFunction_t pxCode,void * pvParameters)99 StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
100                                      TaskFunction_t pxCode,
101                                      void * pvParameters )
102 {
103     uint32_t * pulUpperCSA = NULL;
104     uint32_t * pulLowerCSA = NULL;
105 
106     /* 16 Address Registers (4 Address registers are global), 16 Data
107      * Registers, and 3 System Registers.
108      *
109      * There are 3 registers that track the CSAs.
110      *  FCX points to the head of globally free set of CSAs.
111      *  PCX for the task needs to point to Lower->Upper->NULL arrangement.
112      *  LCX points to the last free CSA so that corrective action can be taken.
113      *
114      * Need two CSAs to store the context of a task.
115      *  The upper context contains D8-D15, A10-A15, PSW and PCXI->NULL.
116      *  The lower context contains D0-D7, A2-A7, A11 and PCXI->UpperContext.
117      *  The pxCurrentTCB->pxTopOfStack points to the Lower Context RSLCX matching the initial BISR.
118      *  The Lower Context points to the Upper Context ready for the return from the interrupt handler.
119      *
120      * The Real stack pointer for the task is stored in the A10 which is restored
121      * with the upper context. */
122 
123     /* Have to disable interrupts here because the CSAs are going to be
124      * manipulated. */
125     portENTER_CRITICAL();
126     {
127         /* DSync to ensure that buffering is not a problem. */
128         _dsync();
129 
130         /* Consume two free CSAs. */
131         pulLowerCSA = portCSA_TO_ADDRESS( __MFCR( $FCX ) );
132 
133         if( NULL != pulLowerCSA )
134         {
135             /* The Lower Links to the Upper. */
136             pulUpperCSA = portCSA_TO_ADDRESS( pulLowerCSA[ 0 ] );
137         }
138 
139         /* Check that we have successfully reserved two CSAs. */
140         if( ( NULL != pulLowerCSA ) && ( NULL != pulUpperCSA ) )
141         {
142             /* Remove the two consumed CSAs from the free CSA list. */
143             _disable();
144             _dsync();
145             _mtcr( $FCX, pulUpperCSA[ 0 ] );
146             _isync();
147             _enable();
148         }
149         else
150         {
151             /* Simply trigger a context list depletion trap. */
152             _svlcx();
153         }
154     }
155     portEXIT_CRITICAL();
156 
157     /* Clear the upper CSA. */
158     memset( pulUpperCSA, 0, portNUM_WORDS_IN_CSA * sizeof( uint32_t ) );
159 
160     /* Upper Context. */
161     pulUpperCSA[ 2 ] = ( uint32_t ) pxTopOfStack;      /* A10; Stack Return aka Stack Pointer */
162     pulUpperCSA[ 1 ] = portSYSTEM_PROGRAM_STATUS_WORD; /* PSW  */
163 
164     /* Clear the lower CSA. */
165     memset( pulLowerCSA, 0, portNUM_WORDS_IN_CSA * sizeof( uint32_t ) );
166 
167     /* Lower Context. */
168     pulLowerCSA[ 8 ] = ( uint32_t ) pvParameters; /* A4;  Address Type Parameter Register */
169     pulLowerCSA[ 1 ] = ( uint32_t ) pxCode;       /* A11; Return Address aka RA */
170 
171     /* PCXI pointing to the Upper context. */
172     pulLowerCSA[ 0 ] = ( portINITIAL_PCXI_UPPER_CONTEXT_WORD | ( uint32_t ) portADDRESS_TO_CSA( pulUpperCSA ) );
173 
174     /* Save the link to the CSA in the top of stack. */
175     pxTopOfStack = ( uint32_t * ) portADDRESS_TO_CSA( pulLowerCSA );
176 
177     /* DSync to ensure that buffering is not a problem. */
178     _dsync();
179 
180     return pxTopOfStack;
181 }
182 /*-----------------------------------------------------------*/
183 
xPortStartScheduler(void)184 int32_t xPortStartScheduler( void )
185 {
186     extern void vTrapInstallHandlers( void );
187     uint32_t ulMFCR = 0UL;
188     uint32_t * pulUpperCSA = NULL;
189     uint32_t * pulLowerCSA = NULL;
190 
191     /* Interrupts at or below configMAX_SYSCALL_INTERRUPT_PRIORITY are disable
192      * when this function is called. */
193 
194     /* Set-up the timer interrupt. */
195     prvSetupTimerInterrupt();
196 
197     /* Install the Trap Handlers. */
198     vTrapInstallHandlers();
199 
200     /* Install the Syscall Handler for yield calls. */
201     if( 0 == _install_trap_handler( portSYSCALL_TRAP, prvTrapYield ) )
202     {
203         /* Failed to install the yield handler, force an assert. */
204         configASSERT( ( ( volatile void * ) NULL ) );
205     }
206 
207     /* Enable then install the priority 1 interrupt for pending context
208      * switches from an ISR.  See mod_SRC in the TriCore manual. */
209     CPU_SRC0.reg = ( portENABLE_CPU_INTERRUPT ) | ( configKERNEL_YIELD_PRIORITY );
210 
211     if( 0 == _install_int_handler( configKERNEL_YIELD_PRIORITY, prvInterruptYield, 0 ) )
212     {
213         /* Failed to install the yield handler, force an assert. */
214         configASSERT( ( ( volatile void * ) NULL ) );
215     }
216 
217     _disable();
218 
219     /* Load the initial SYSCON. */
220     _mtcr( $SYSCON, portINITIAL_SYSCON );
221     _isync();
222 
223     /* ENDINIT has already been applied in the 'cstart.c' code. */
224 
225     /* Clear the PSW.CDC to enable the use of an RFE without it generating an
226      * exception because this code is not genuinely in an exception. */
227     ulMFCR = __MFCR( $PSW );
228     ulMFCR &= portRESTORE_PSW_MASK;
229     _dsync();
230     _mtcr( $PSW, ulMFCR );
231     _isync();
232 
233     /* Finally, perform the equivalent of a portRESTORE_CONTEXT() */
234     pulLowerCSA = portCSA_TO_ADDRESS( ( *pxCurrentTCB ) );
235     pulUpperCSA = portCSA_TO_ADDRESS( pulLowerCSA[ 0 ] );
236     _dsync();
237     _mtcr( $PCXI, *pxCurrentTCB );
238     _isync();
239     _nop();
240     _rslcx();
241     _nop();
242 
243     /* Return to the first task selected to execute. */
244     __asm volatile ( "rfe" );
245 
246     /* Will not get here. */
247     return 0;
248 }
249 /*-----------------------------------------------------------*/
250 
prvSetupTimerInterrupt(void)251 static void prvSetupTimerInterrupt( void )
252 {
253     /* Set-up the clock divider. */
254     unlock_wdtcon();
255     {
256         /* Wait until access to Endint protected register is enabled. */
257         while( 0 != ( WDT_CON0.reg & 0x1UL ) )
258         {
259         }
260 
261         /* RMC == 1 so STM Clock == FPI */
262         STM_CLC.reg = ( 1UL << 8 );
263     }
264     lock_wdtcon();
265 
266     /* Determine how many bits are used without changing other bits in the CMCON register. */
267     STM_CMCON.reg &= ~( 0x1fUL );
268     STM_CMCON.reg |= ( 0x1fUL - __CLZ( configPERIPHERAL_CLOCK_HZ / configTICK_RATE_HZ ) );
269 
270     /* Take into account the current time so a tick doesn't happen immediately. */
271     STM_CMP0.reg = ulCompareMatchValue + STM_TIM0.reg;
272 
273     if( 0 != _install_int_handler( configKERNEL_INTERRUPT_PRIORITY, prvSystemTickHandler, 0 ) )
274     {
275         /* Set-up the interrupt. */
276         STM_SRC0.reg = ( configKERNEL_INTERRUPT_PRIORITY | 0x00005000UL );
277 
278         /* Enable the Interrupt. */
279         STM_ISRR.reg &= ~( 0x03UL );
280         STM_ISRR.reg |= 0x1UL;
281         STM_ISRR.reg &= ~( 0x07UL );
282         STM_ICR.reg |= 0x1UL;
283     }
284     else
285     {
286         /* Failed to install the Tick Interrupt. */
287         configASSERT( ( ( volatile void * ) NULL ) );
288     }
289 }
290 /*-----------------------------------------------------------*/
291 
prvSystemTickHandler(int iArg)292 static void prvSystemTickHandler( int iArg )
293 {
294     uint32_t ulSavedInterruptMask;
295     uint32_t * pxUpperCSA = NULL;
296     uint32_t xUpperCSA = 0UL;
297     extern volatile uint32_t * pxCurrentTCB;
298     int32_t lYieldRequired;
299 
300     /* Just to avoid compiler warnings about unused parameters. */
301     ( void ) iArg;
302 
303     /* Clear the interrupt source. */
304     STM_ISRR.reg = 1UL;
305 
306     /* Reload the Compare Match register for X ticks into the future.
307      *
308      * If critical section or interrupt nesting budgets are exceeded, then
309      * it is possible that the calculated next compare match value is in the
310      * past.  If this occurs (unlikely), it is possible that the resulting
311      * time slippage will exceed a single tick period.  Any adverse effect of
312      * this is time bounded by the fact that only the first n bits of the 56 bit
313      * STM timer are being used for a compare match, so another compare match
314      * will occur after an overflow in just those n bits (not the entire 56 bits).
315      * As an example, if the peripheral clock is 75MHz, and the tick rate is 1KHz,
316      * a missed tick could result in the next tick interrupt occurring within a
317      * time that is 1.7 times the desired period.  The fact that this is greater
318      * than a single tick period is an effect of using a timer that cannot be
319      * automatically reset, in hardware, by the occurrence of a tick interrupt.
320      * Changing the tick source to a timer that has an automatic reset on compare
321      * match (such as a GPTA timer) will reduce the maximum possible additional
322      * period to exactly 1 times the desired period. */
323     STM_CMP0.reg += ulCompareMatchValue;
324 
325     /* Kernel API calls require Critical Sections. */
326     ulSavedInterruptMask = portSET_INTERRUPT_MASK_FROM_ISR();
327     {
328         /* Increment the Tick. */
329         lYieldRequired = xTaskIncrementTick();
330     }
331     portCLEAR_INTERRUPT_MASK_FROM_ISR( ulSavedInterruptMask );
332 
333     if( lYieldRequired != pdFALSE )
334     {
335         /* Save the context of a task.
336          * The upper context is automatically saved when entering a trap or interrupt.
337          * Need to save the lower context as well and copy the PCXI CSA ID into
338          * pxCurrentTCB->pxTopOfStack. Only Lower Context CSA IDs may be saved to the
339          * TCB of a task.
340          *
341          * Call vTaskSwitchContext to select the next task, note that this changes the
342          * value of pxCurrentTCB so that it needs to be reloaded.
343          *
344          * Call vPortSetMPURegisterSetOne to change the MPU mapping for the task
345          * that has just been switched in.
346          *
347          * Load the context of the task.
348          * Need to restore the lower context by loading the CSA from
349          * pxCurrentTCB->pxTopOfStack into PCXI (effectively changing the call stack).
350          * In the Interrupt handler post-amble, RSLCX will restore the lower context
351          * of the task. RFE will restore the upper context of the task, jump to the
352          * return address and restore the previous state of interrupts being
353          * enabled/disabled. */
354         _disable();
355         _dsync();
356         xUpperCSA = __MFCR( $PCXI );
357         pxUpperCSA = portCSA_TO_ADDRESS( xUpperCSA );
358         *pxCurrentTCB = pxUpperCSA[ 0 ];
359         vTaskSwitchContext();
360         pxUpperCSA[ 0 ] = *pxCurrentTCB;
361         CPU_SRC0.bits.SETR = 0;
362         _isync();
363     }
364 }
365 /*-----------------------------------------------------------*/
366 
367 /*
368  * When a task is deleted, it is yielded permanently until the IDLE task
369  * has an opportunity to reclaim the memory that that task was using.
370  * Typically, the memory used by a task is the TCB and Stack but in the
371  * TriCore this includes the CSAs that were consumed as part of the Call
372  * Stack. These CSAs can only be returned to the Globally Free Pool when
373  * they are not part of the current Call Stack, hence, delaying the
374  * reclamation until the IDLE task is freeing the task's other resources.
375  * This function uses the head of the linked list of CSAs (from when the
376  * task yielded for the last time) and finds the tail (the very bottom of
377  * the call stack) and inserts this list at the head of the Free list,
378  * attaching the existing Free List to the tail of the reclaimed call stack.
379  *
380  * NOTE: the IDLE task needs processing time to complete this function
381  * and in heavily loaded systems, the Free CSAs may be consumed faster
382  * than they can be freed assuming that tasks are being spawned and
383  * deleted frequently.
384  */
vPortReclaimCSA(uint32_t * pxTCB)385 void vPortReclaimCSA( uint32_t * pxTCB )
386 {
387     uint32_t pxHeadCSA, pxTailCSA, pxFreeCSA;
388     uint32_t * pulNextCSA;
389 
390     /* A pointer to the first CSA in the list of CSAs consumed by the task is
391      * stored in the first element of the tasks TCB structure (where the stack
392      * pointer would be on a traditional stack based architecture). */
393     pxHeadCSA = ( *pxTCB ) & portCSA_FCX_MASK;
394 
395     /* Mask off everything in the CSA link field other than the address.  If
396      * the address is NULL, then the CSA is not linking anywhere and there is
397      * nothing to do. */
398     pxTailCSA = pxHeadCSA;
399 
400     /* Convert the link value to contain just a raw address and store this
401      * in a local variable. */
402     pulNextCSA = portCSA_TO_ADDRESS( pxTailCSA );
403 
404     /* Iterate over the CSAs that were consumed as part of the task.  The
405      * first field in the CSA is the pointer to then next CSA.  Mask off
406      * everything in the pointer to the next CSA, other than the link address.
407      * If this is NULL, then the CSA currently being pointed to is the last in
408      * the chain. */
409     while( 0UL != ( pulNextCSA[ 0 ] & portCSA_FCX_MASK ) )
410     {
411         /* Clear all bits of the pointer to the next in the chain, other
412          * than the address bits themselves. */
413         pulNextCSA[ 0 ] = pulNextCSA[ 0 ] & portCSA_FCX_MASK;
414 
415         /* Move the pointer to point to the next CSA in the list. */
416         pxTailCSA = pulNextCSA[ 0 ];
417 
418         /* Update the local pointer to the CSA. */
419         pulNextCSA = portCSA_TO_ADDRESS( pxTailCSA );
420     }
421 
422     _disable();
423     {
424         /* Look up the current free CSA head. */
425         _dsync();
426         pxFreeCSA = __MFCR( $FCX );
427 
428         /* Join the current Free onto the Tail of what is being reclaimed. */
429         portCSA_TO_ADDRESS( pxTailCSA )[ 0 ] = pxFreeCSA;
430 
431         /* Move the head of the reclaimed into the Free. */
432         _dsync();
433         _mtcr( $FCX, pxHeadCSA );
434         _isync();
435     }
436     _enable();
437 }
438 /*-----------------------------------------------------------*/
439 
vPortEndScheduler(void)440 void vPortEndScheduler( void )
441 {
442     /* Nothing to do. Unlikely to want to end. */
443 }
444 /*-----------------------------------------------------------*/
445 
prvTrapYield(int iTrapIdentification)446 static void prvTrapYield( int iTrapIdentification )
447 {
448     uint32_t * pxUpperCSA = NULL;
449     uint32_t xUpperCSA = 0UL;
450     extern volatile uint32_t * pxCurrentTCB;
451 
452     switch( iTrapIdentification )
453     {
454         case portSYSCALL_TASK_YIELD:
455 
456             /* Save the context of a task.
457              * The upper context is automatically saved when entering a trap or interrupt.
458              * Need to save the lower context as well and copy the PCXI CSA ID into
459              * pxCurrentTCB->pxTopOfStack. Only Lower Context CSA IDs may be saved to the
460              * TCB of a task.
461              *
462              * Call vTaskSwitchContext to select the next task, note that this changes the
463              * value of pxCurrentTCB so that it needs to be reloaded.
464              *
465              * Call vPortSetMPURegisterSetOne to change the MPU mapping for the task
466              * that has just been switched in.
467              *
468              * Load the context of the task.
469              * Need to restore the lower context by loading the CSA from
470              * pxCurrentTCB->pxTopOfStack into PCXI (effectively changing the call stack).
471              * In the Interrupt handler post-amble, RSLCX will restore the lower context
472              * of the task. RFE will restore the upper context of the task, jump to the
473              * return address and restore the previous state of interrupts being
474              * enabled/disabled. */
475             _disable();
476             _dsync();
477             xUpperCSA = __MFCR( $PCXI );
478             pxUpperCSA = portCSA_TO_ADDRESS( xUpperCSA );
479             *pxCurrentTCB = pxUpperCSA[ 0 ];
480             vTaskSwitchContext();
481             pxUpperCSA[ 0 ] = *pxCurrentTCB;
482             CPU_SRC0.bits.SETR = 0;
483             _isync();
484             break;
485 
486         default:
487             /* Unimplemented trap called. */
488             configASSERT( ( ( volatile void * ) NULL ) );
489             break;
490     }
491 }
492 /*-----------------------------------------------------------*/
493 
prvInterruptYield(int iId)494 static void prvInterruptYield( int iId )
495 {
496     uint32_t * pxUpperCSA = NULL;
497     uint32_t xUpperCSA = 0UL;
498     extern volatile uint32_t * pxCurrentTCB;
499 
500     /* Just to remove compiler warnings. */
501     ( void ) iId;
502 
503     /* Save the context of a task.
504      * The upper context is automatically saved when entering a trap or interrupt.
505      * Need to save the lower context as well and copy the PCXI CSA ID into
506      * pxCurrentTCB->pxTopOfStack. Only Lower Context CSA IDs may be saved to the
507      * TCB of a task.
508      *
509      * Call vTaskSwitchContext to select the next task, note that this changes the
510      * value of pxCurrentTCB so that it needs to be reloaded.
511      *
512      * Call vPortSetMPURegisterSetOne to change the MPU mapping for the task
513      * that has just been switched in.
514      *
515      * Load the context of the task.
516      * Need to restore the lower context by loading the CSA from
517      * pxCurrentTCB->pxTopOfStack into PCXI (effectively changing the call stack).
518      * In the Interrupt handler post-amble, RSLCX will restore the lower context
519      * of the task. RFE will restore the upper context of the task, jump to the
520      * return address and restore the previous state of interrupts being
521      * enabled/disabled. */
522     _disable();
523     _dsync();
524     xUpperCSA = __MFCR( $PCXI );
525     pxUpperCSA = portCSA_TO_ADDRESS( xUpperCSA );
526     *pxCurrentTCB = pxUpperCSA[ 0 ];
527     vTaskSwitchContext();
528     pxUpperCSA[ 0 ] = *pxCurrentTCB;
529     CPU_SRC0.bits.SETR = 0;
530     _isync();
531 }
532 /*-----------------------------------------------------------*/
533 
uxPortSetInterruptMaskFromISR(void)534 uint32_t uxPortSetInterruptMaskFromISR( void )
535 {
536     uint32_t uxReturn = 0UL;
537 
538     _disable();
539     uxReturn = __MFCR( $ICR );
540     _mtcr( $ICR, ( ( uxReturn & ~portCCPN_MASK ) | configMAX_SYSCALL_INTERRUPT_PRIORITY ) );
541     _isync();
542     _enable();
543 
544     /* Return just the interrupt mask bits. */
545     return( uxReturn & portCCPN_MASK );
546 }
547 /*-----------------------------------------------------------*/
548