1 /*
2  * FreeRTOS Kernel V11.1.0
3  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4  *
5  * SPDX-License-Identifier: MIT
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in all
15  * copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * https://www.FreeRTOS.org
25  * https://github.com/FreeRTOS
26  *
27  */
28 
29 /*-----------------------------------------------------------
30 * Implementation of functions defined in portable.h for the ARM CM4F port.
31 *----------------------------------------------------------*/
32 
33 /* Scheduler includes. */
34 #include "FreeRTOS.h"
35 #include "task.h"
36 
37 #ifndef __VFP_FP__
38     #error This port can only be used when the project options are configured to enable hardware floating point support.
39 #endif
40 
41 /* Prototype of all Interrupt Service Routines (ISRs). */
42 typedef void ( * portISR_t )( void );
43 
44 /* Constants required to manipulate the core.  Registers first... */
45 #define portNVIC_SYSTICK_CTRL_REG             ( *( ( volatile uint32_t * ) 0xe000e010 ) )
46 #define portNVIC_SYSTICK_LOAD_REG             ( *( ( volatile uint32_t * ) 0xe000e014 ) )
47 #define portNVIC_SYSTICK_CURRENT_VALUE_REG    ( *( ( volatile uint32_t * ) 0xe000e018 ) )
48 #define portNVIC_SHPR2_REG                    ( *( ( volatile uint32_t * ) 0xe000ed1c ) )
49 #define portNVIC_SHPR3_REG                    ( *( ( volatile uint32_t * ) 0xe000ed20 ) )
50 /* ...then bits in the registers. */
51 #define portNVIC_SYSTICK_CLK_BIT              ( 1UL << 2UL )
52 #define portNVIC_SYSTICK_INT_BIT              ( 1UL << 1UL )
53 #define portNVIC_SYSTICK_ENABLE_BIT           ( 1UL << 0UL )
54 #define portNVIC_SYSTICK_COUNT_FLAG_BIT       ( 1UL << 16UL )
55 #define portNVIC_PENDSVCLEAR_BIT              ( 1UL << 27UL )
56 #define portNVIC_PEND_SYSTICK_SET_BIT         ( 1UL << 26UL )
57 #define portNVIC_PEND_SYSTICK_CLEAR_BIT       ( 1UL << 25UL )
58 
59 /* Constants used to detect a Cortex-M7 r0p1 core, which should use the ARM_CM7
60  * r0p1 port. */
61 #define portCPUID                             ( *( ( volatile uint32_t * ) 0xE000ed00 ) )
62 #define portCORTEX_M7_r0p1_ID                 ( 0x410FC271UL )
63 #define portCORTEX_M7_r0p0_ID                 ( 0x410FC270UL )
64 
65 #define portMIN_INTERRUPT_PRIORITY            ( 255UL )
66 #define portNVIC_PENDSV_PRI                   ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 16UL )
67 #define portNVIC_SYSTICK_PRI                  ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 24UL )
68 
69 /* Constants used to check the installation of the FreeRTOS interrupt handlers. */
70 #define portSCB_VTOR_REG                      ( *( ( portISR_t ** ) 0xE000ED08 ) )
71 #define portVECTOR_INDEX_SVC                  ( 11 )
72 #define portVECTOR_INDEX_PENDSV               ( 14 )
73 
74 /* Constants required to check the validity of an interrupt priority. */
75 #define portFIRST_USER_INTERRUPT_NUMBER       ( 16 )
76 #define portNVIC_IP_REGISTERS_OFFSET_16       ( 0xE000E3F0 )
77 #define portAIRCR_REG                         ( *( ( volatile uint32_t * ) 0xE000ED0C ) )
78 #define portMAX_8_BIT_VALUE                   ( ( uint8_t ) 0xff )
79 #define portTOP_BIT_OF_BYTE                   ( ( uint8_t ) 0x80 )
80 #define portMAX_PRIGROUP_BITS                 ( ( uint8_t ) 7 )
81 #define portPRIORITY_GROUP_MASK               ( 0x07UL << 8UL )
82 #define portPRIGROUP_SHIFT                    ( 8UL )
83 
84 /* Masks off all bits but the VECTACTIVE bits in the ICSR register. */
85 #define portVECTACTIVE_MASK                   ( 0xFFUL )
86 
87 /* Constants required to manipulate the VFP. */
88 #define portFPCCR                             ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating point context control register. */
89 #define portASPEN_AND_LSPEN_BITS              ( 0x3UL << 30UL )
90 
91 /* Constants required to set up the initial stack. */
92 #define portINITIAL_XPSR                      ( 0x01000000 )
93 #define portINITIAL_EXC_RETURN                ( 0xfffffffd )
94 
95 /* The systick is a 24-bit counter. */
96 #define portMAX_24_BIT_NUMBER                 ( 0xffffffUL )
97 
98 /* For strict compliance with the Cortex-M spec the task start address should
99  * have bit-0 clear, as it is loaded into the PC on exit from an ISR. */
100 #define portSTART_ADDRESS_MASK                ( ( StackType_t ) 0xfffffffeUL )
101 
102 /* A fiddle factor to estimate the number of SysTick counts that would have
103  * occurred while the SysTick counter is stopped during tickless idle
104  * calculations. */
105 #define portMISSED_COUNTS_FACTOR              ( 94UL )
106 
107 /* Let the user override the default SysTick clock rate.  If defined by the
108  * user, this symbol must equal the SysTick clock rate when the CLK bit is 0 in the
109  * configuration register. */
110 #ifndef configSYSTICK_CLOCK_HZ
111     #define configSYSTICK_CLOCK_HZ             ( configCPU_CLOCK_HZ )
112     /* Ensure the SysTick is clocked at the same frequency as the core. */
113     #define portNVIC_SYSTICK_CLK_BIT_CONFIG    ( portNVIC_SYSTICK_CLK_BIT )
114 #else
115     /* Select the option to clock SysTick not at the same frequency as the core. */
116     #define portNVIC_SYSTICK_CLK_BIT_CONFIG    ( 0 )
117 #endif
118 
119 /* Let the user override the pre-loading of the initial LR with the address of
120  * prvTaskExitError() in case it messes up unwinding of the stack in the
121  * debugger. */
122 #ifdef configTASK_RETURN_ADDRESS
123     #define portTASK_RETURN_ADDRESS    configTASK_RETURN_ADDRESS
124 #else
125     #define portTASK_RETURN_ADDRESS    prvTaskExitError
126 #endif
127 
128 /*
129  * Setup the timer to generate the tick interrupts.  The implementation in this
130  * file is weak to allow application writers to change the timer used to
131  * generate the tick interrupt.
132  */
133 void vPortSetupTimerInterrupt( void );
134 
135 /*
136  * Exception handlers.
137  */
138 void xPortPendSVHandler( void ) __attribute__( ( naked ) );
139 void xPortSysTickHandler( void );
140 void vPortSVCHandler( void ) __attribute__( ( naked ) );
141 
142 /*
143  * Start first task is a separate function so it can be tested in isolation.
144  */
145 static void prvPortStartFirstTask( void ) __attribute__( ( naked ) );
146 
147 /*
148  * Function to enable the VFP.
149  */
150 static void vPortEnableVFP( void ) __attribute__( ( naked ) );
151 
152 /*
153  * Used to catch tasks that attempt to return from their implementing function.
154  */
155 static void prvTaskExitError( void );
156 
157 /*-----------------------------------------------------------*/
158 
159 /* Each task maintains its own interrupt status in the critical nesting
160  * variable. */
161 static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
162 
163 /*
164  * The number of SysTick increments that make up one tick period.
165  */
166 #if ( configUSE_TICKLESS_IDLE == 1 )
167     static uint32_t ulTimerCountsForOneTick = 0;
168 #endif /* configUSE_TICKLESS_IDLE */
169 
170 /*
171  * The maximum number of tick periods that can be suppressed is limited by the
172  * 24 bit resolution of the SysTick timer.
173  */
174 #if ( configUSE_TICKLESS_IDLE == 1 )
175     static uint32_t xMaximumPossibleSuppressedTicks = 0;
176 #endif /* configUSE_TICKLESS_IDLE */
177 
178 /*
179  * Compensate for the CPU cycles that pass while the SysTick is stopped (low
180  * power functionality only.
181  */
182 #if ( configUSE_TICKLESS_IDLE == 1 )
183     static uint32_t ulStoppedTimerCompensation = 0;
184 #endif /* configUSE_TICKLESS_IDLE */
185 
186 /*
187  * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
188  * FreeRTOS API functions are not called from interrupts that have been assigned
189  * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
190  */
191 #if ( configASSERT_DEFINED == 1 )
192     static uint8_t ucMaxSysCallPriority = 0;
193     static uint32_t ulMaxPRIGROUPValue = 0;
194     static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * const ) portNVIC_IP_REGISTERS_OFFSET_16;
195 #endif /* configASSERT_DEFINED */
196 
197 /*-----------------------------------------------------------*/
198 
199 /*
200  * See header file for description.
201  */
pxPortInitialiseStack(StackType_t * pxTopOfStack,TaskFunction_t pxCode,void * pvParameters)202 StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
203                                      TaskFunction_t pxCode,
204                                      void * pvParameters )
205 {
206     /* Simulate the stack frame as it would be created by a context switch
207      * interrupt. */
208 
209     /* Offset added to account for the way the MCU uses the stack on entry/exit
210      * of interrupts, and to ensure alignment. */
211     pxTopOfStack--;
212 
213     *pxTopOfStack = portINITIAL_XPSR;                                    /* xPSR */
214     pxTopOfStack--;
215     *pxTopOfStack = ( ( StackType_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC */
216     pxTopOfStack--;
217     *pxTopOfStack = ( StackType_t ) portTASK_RETURN_ADDRESS;             /* LR */
218 
219     /* Save code space by skipping register initialisation. */
220     pxTopOfStack -= 5;                            /* R12, R3, R2 and R1. */
221     *pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
222 
223     /* A save method is being used that requires each task to maintain its
224      * own exec return value. */
225     pxTopOfStack--;
226     *pxTopOfStack = portINITIAL_EXC_RETURN;
227 
228     pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */
229 
230     return pxTopOfStack;
231 }
232 /*-----------------------------------------------------------*/
233 
prvTaskExitError(void)234 static void prvTaskExitError( void )
235 {
236     volatile uint32_t ulDummy = 0;
237 
238     /* A function that implements a task must not exit or attempt to return to
239      * its caller as there is nothing to return to.  If a task wants to exit it
240      * should instead call vTaskDelete( NULL ).
241      *
242      * Artificially force an assert() to be triggered if configASSERT() is
243      * defined, then stop here so application writers can catch the error. */
244     configASSERT( uxCriticalNesting == ~0UL );
245     portDISABLE_INTERRUPTS();
246 
247     while( ulDummy == 0 )
248     {
249         /* This file calls prvTaskExitError() after the scheduler has been
250          * started to remove a compiler warning about the function being defined
251          * but never called.  ulDummy is used purely to quieten other warnings
252          * about code appearing after this function is called - making ulDummy
253          * volatile makes the compiler think the function could return and
254          * therefore not output an 'unreachable code' warning for code that appears
255          * after it. */
256     }
257 }
258 /*-----------------------------------------------------------*/
259 
vPortSVCHandler(void)260 void vPortSVCHandler( void )
261 {
262     __asm volatile (
263         "   ldr r3, pxCurrentTCBConst2      \n" /* Restore the context. */
264         "   ldr r1, [r3]                    \n" /* Use pxCurrentTCBConst to get the pxCurrentTCB address. */
265         "   ldr r0, [r1]                    \n" /* The first item in pxCurrentTCB is the task top of stack. */
266         "   ldmia r0!, {r4-r11, r14}        \n" /* Pop the registers that are not automatically saved on exception entry and the critical nesting count. */
267         "   msr psp, r0                     \n" /* Restore the task stack pointer. */
268         "   isb                             \n"
269         "   mov r0, #0                      \n"
270         "   msr basepri, r0                 \n"
271         "   bx r14                          \n"
272         "                                   \n"
273         "   .align 4                        \n"
274         "pxCurrentTCBConst2: .word pxCurrentTCB             \n"
275         );
276 }
277 /*-----------------------------------------------------------*/
278 
prvPortStartFirstTask(void)279 static void prvPortStartFirstTask( void )
280 {
281     /* Start the first task.  This also clears the bit that indicates the FPU is
282      * in use in case the FPU was used before the scheduler was started - which
283      * would otherwise result in the unnecessary leaving of space in the SVC stack
284      * for lazy saving of FPU registers. */
285     __asm volatile (
286         " ldr r0, =0xE000ED08   \n" /* Use the NVIC offset register to locate the stack. */
287         " ldr r0, [r0]          \n"
288         " ldr r0, [r0]          \n"
289         " msr msp, r0           \n" /* Set the msp back to the start of the stack. */
290         " mov r0, #0            \n" /* Clear the bit that indicates the FPU is in use, see comment above. */
291         " msr control, r0       \n"
292         " cpsie i               \n" /* Globally enable interrupts. */
293         " cpsie f               \n"
294         " dsb                   \n"
295         " isb                   \n"
296         " svc 0                 \n" /* System call to start first task. */
297         " nop                   \n"
298         " .ltorg                \n"
299         );
300 }
301 /*-----------------------------------------------------------*/
302 
303 /*
304  * See header file for description.
305  */
xPortStartScheduler(void)306 BaseType_t xPortStartScheduler( void )
307 {
308     /* This port can be used on all revisions of the Cortex-M7 core other than
309      * the r0p1 parts.  r0p1 parts should use the port from the
310      * /source/portable/GCC/ARM_CM7/r0p1 directory. */
311     configASSERT( portCPUID != portCORTEX_M7_r0p1_ID );
312     configASSERT( portCPUID != portCORTEX_M7_r0p0_ID );
313 
314     /* An application can install FreeRTOS interrupt handlers in one of the
315      * following ways:
316      * 1. Direct Routing - Install the functions vPortSVCHandler and
317      *    xPortPendSVHandler for SVCall and PendSV interrupts respectively.
318      * 2. Indirect Routing - Install separate handlers for SVCall and PendSV
319      *    interrupts and route program control from those handlers to
320      *    vPortSVCHandler and xPortPendSVHandler functions.
321      *
322      * Applications that use Indirect Routing must set
323      * configCHECK_HANDLER_INSTALLATION to 0 in their FreeRTOSConfig.h. Direct
324      * routing, which is validated here when configCHECK_HANDLER_INSTALLATION
325      * is 1, should be preferred when possible. */
326     #if ( configCHECK_HANDLER_INSTALLATION == 1 )
327     {
328         const portISR_t * const pxVectorTable = portSCB_VTOR_REG;
329 
330         /* Validate that the application has correctly installed the FreeRTOS
331          * handlers for SVCall and PendSV interrupts. We do not check the
332          * installation of the SysTick handler because the application may
333          * choose to drive the RTOS tick using a timer other than the SysTick
334          * timer by overriding the weak function vPortSetupTimerInterrupt().
335          *
336          * Assertion failures here indicate incorrect installation of the
337          * FreeRTOS handlers. For help installing the FreeRTOS handlers, see
338          * https://www.FreeRTOS.org/FAQHelp.html.
339          *
340          * Systems with a configurable address for the interrupt vector table
341          * can also encounter assertion failures or even system faults here if
342          * VTOR is not set correctly to point to the application's vector table. */
343         configASSERT( pxVectorTable[ portVECTOR_INDEX_SVC ] == vPortSVCHandler );
344         configASSERT( pxVectorTable[ portVECTOR_INDEX_PENDSV ] == xPortPendSVHandler );
345     }
346     #endif /* configCHECK_HANDLER_INSTALLATION */
347 
348     #if ( configASSERT_DEFINED == 1 )
349     {
350         volatile uint8_t ucOriginalPriority;
351         volatile uint32_t ulImplementedPrioBits = 0;
352         volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
353         volatile uint8_t ucMaxPriorityValue;
354 
355         /* Determine the maximum priority from which ISR safe FreeRTOS API
356          * functions can be called.  ISR safe functions are those that end in
357          * "FromISR".  FreeRTOS maintains separate thread and ISR API functions to
358          * ensure interrupt entry is as fast and simple as possible.
359          *
360          * Save the interrupt priority value that is about to be clobbered. */
361         ucOriginalPriority = *pucFirstUserPriorityRegister;
362 
363         /* Determine the number of priority bits available.  First write to all
364          * possible bits. */
365         *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
366 
367         /* Read the value back to see how many bits stuck. */
368         ucMaxPriorityValue = *pucFirstUserPriorityRegister;
369 
370         /* Use the same mask on the maximum system call priority. */
371         ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
372 
373         /* Check that the maximum system call priority is nonzero after
374          * accounting for the number of priority bits supported by the
375          * hardware. A priority of 0 is invalid because setting the BASEPRI
376          * register to 0 unmasks all interrupts, and interrupts with priority 0
377          * cannot be masked using BASEPRI.
378          * See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
379         configASSERT( ucMaxSysCallPriority );
380 
381         /* Check that the bits not implemented in hardware are zero in
382          * configMAX_SYSCALL_INTERRUPT_PRIORITY. */
383         configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & ( ~ucMaxPriorityValue ) ) == 0U );
384 
385         /* Calculate the maximum acceptable priority group value for the number
386          * of bits read back. */
387 
388         while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
389         {
390             ulImplementedPrioBits++;
391             ucMaxPriorityValue <<= ( uint8_t ) 0x01;
392         }
393 
394         if( ulImplementedPrioBits == 8 )
395         {
396             /* When the hardware implements 8 priority bits, there is no way for
397              * the software to configure PRIGROUP to not have sub-priorities. As
398              * a result, the least significant bit is always used for sub-priority
399              * and there are 128 preemption priorities and 2 sub-priorities.
400              *
401              * This may cause some confusion in some cases - for example, if
402              * configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
403              * priority interrupts will be masked in Critical Sections as those
404              * are at the same preemption priority. This may appear confusing as
405              * 4 is higher (numerically lower) priority than
406              * configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
407              * have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
408              * to 4, this confusion does not happen and the behaviour remains the same.
409              *
410              * The following assert ensures that the sub-priority bit in the
411              * configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
412              * confusion. */
413             configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
414             ulMaxPRIGROUPValue = 0;
415         }
416         else
417         {
418             ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
419         }
420 
421         /* Shift the priority group value back to its position within the AIRCR
422          * register. */
423         ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
424         ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
425 
426         /* Restore the clobbered interrupt priority register to its original
427          * value. */
428         *pucFirstUserPriorityRegister = ucOriginalPriority;
429     }
430     #endif /* configASSERT_DEFINED */
431 
432     /* Make PendSV and SysTick the lowest priority interrupts, and make SVCall
433      * the highest priority. */
434     portNVIC_SHPR3_REG |= portNVIC_PENDSV_PRI;
435     portNVIC_SHPR3_REG |= portNVIC_SYSTICK_PRI;
436     portNVIC_SHPR2_REG = 0;
437 
438     /* Start the timer that generates the tick ISR.  Interrupts are disabled
439      * here already. */
440     vPortSetupTimerInterrupt();
441 
442     /* Initialise the critical nesting count ready for the first task. */
443     uxCriticalNesting = 0;
444 
445     /* Ensure the VFP is enabled - it should be anyway. */
446     vPortEnableVFP();
447 
448     /* Lazy save always. */
449     *( portFPCCR ) |= portASPEN_AND_LSPEN_BITS;
450 
451     /* Start the first task. */
452     prvPortStartFirstTask();
453 
454     /* Should never get here as the tasks will now be executing!  Call the task
455      * exit error function to prevent compiler warnings about a static function
456      * not being called in the case that the application writer overrides this
457      * functionality by defining configTASK_RETURN_ADDRESS.  Call
458      * vTaskSwitchContext() so link time optimisation does not remove the
459      * symbol. */
460     vTaskSwitchContext();
461     prvTaskExitError();
462 
463     /* Should not get here! */
464     return 0;
465 }
466 /*-----------------------------------------------------------*/
467 
vPortEndScheduler(void)468 void vPortEndScheduler( void )
469 {
470     /* Not implemented in ports where there is nothing to return to.
471      * Artificially force an assert. */
472     configASSERT( uxCriticalNesting == 1000UL );
473 }
474 /*-----------------------------------------------------------*/
475 
vPortEnterCritical(void)476 void vPortEnterCritical( void )
477 {
478     portDISABLE_INTERRUPTS();
479     uxCriticalNesting++;
480 
481     /* This is not the interrupt safe version of the enter critical function so
482      * assert() if it is being called from an interrupt context.  Only API
483      * functions that end in "FromISR" can be used in an interrupt.  Only assert if
484      * the critical nesting count is 1 to protect against recursive calls if the
485      * assert function also uses a critical section. */
486     if( uxCriticalNesting == 1 )
487     {
488         configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
489     }
490 }
491 /*-----------------------------------------------------------*/
492 
vPortExitCritical(void)493 void vPortExitCritical( void )
494 {
495     configASSERT( uxCriticalNesting );
496     uxCriticalNesting--;
497 
498     if( uxCriticalNesting == 0 )
499     {
500         portENABLE_INTERRUPTS();
501     }
502 }
503 /*-----------------------------------------------------------*/
504 
xPortPendSVHandler(void)505 void xPortPendSVHandler( void )
506 {
507     /* This is a naked function. */
508 
509     __asm volatile
510     (
511         "   mrs r0, psp                         \n"
512         "   isb                                 \n"
513         "                                       \n"
514         "   ldr r3, pxCurrentTCBConst           \n" /* Get the location of the current TCB. */
515         "   ldr r2, [r3]                        \n"
516         "                                       \n"
517         "   tst r14, #0x10                      \n" /* Is the task using the FPU context?  If so, push high vfp registers. */
518         "   it eq                               \n"
519         "   vstmdbeq r0!, {s16-s31}             \n"
520         "                                       \n"
521         "   stmdb r0!, {r4-r11, r14}            \n" /* Save the core registers. */
522         "   str r0, [r2]                        \n" /* Save the new top of stack into the first member of the TCB. */
523         "                                       \n"
524         "   stmdb sp!, {r0, r3}                 \n"
525         "   mov r0, %0                          \n"
526         "   msr basepri, r0                     \n"
527         "   dsb                                 \n"
528         "   isb                                 \n"
529         "   bl vTaskSwitchContext               \n"
530         "   mov r0, #0                          \n"
531         "   msr basepri, r0                     \n"
532         "   ldmia sp!, {r0, r3}                 \n"
533         "                                       \n"
534         "   ldr r1, [r3]                        \n" /* The first item in pxCurrentTCB is the task top of stack. */
535         "   ldr r0, [r1]                        \n"
536         "                                       \n"
537         "   ldmia r0!, {r4-r11, r14}            \n" /* Pop the core registers. */
538         "                                       \n"
539         "   tst r14, #0x10                      \n" /* Is the task using the FPU context?  If so, pop the high vfp registers too. */
540         "   it eq                               \n"
541         "   vldmiaeq r0!, {s16-s31}             \n"
542         "                                       \n"
543         "   msr psp, r0                         \n"
544         "   isb                                 \n"
545         "                                       \n"
546         #ifdef WORKAROUND_PMU_CM001 /* XMC4000 specific errata workaround. */
547             #if WORKAROUND_PMU_CM001 == 1
548                 "           push { r14 }                \n"
549                 "           pop { pc }                  \n"
550             #endif
551         #endif
552         "                                       \n"
553         "   bx r14                              \n"
554         "                                       \n"
555         "   .align 4                            \n"
556         "pxCurrentTCBConst: .word pxCurrentTCB  \n"
557         ::"i" ( configMAX_SYSCALL_INTERRUPT_PRIORITY )
558     );
559 }
560 /*-----------------------------------------------------------*/
561 
xPortSysTickHandler(void)562 void xPortSysTickHandler( void )
563 {
564     /* The SysTick runs at the lowest interrupt priority, so when this interrupt
565      * executes all interrupts must be unmasked.  There is therefore no need to
566      * save and then restore the interrupt mask value as its value is already
567      * known. */
568     portDISABLE_INTERRUPTS();
569     traceISR_ENTER();
570     {
571         /* Increment the RTOS tick. */
572         if( xTaskIncrementTick() != pdFALSE )
573         {
574             traceISR_EXIT_TO_SCHEDULER();
575 
576             /* A context switch is required.  Context switching is performed in
577              * the PendSV interrupt.  Pend the PendSV interrupt. */
578             portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
579         }
580         else
581         {
582             traceISR_EXIT();
583         }
584     }
585     portENABLE_INTERRUPTS();
586 }
587 /*-----------------------------------------------------------*/
588 
589 #if ( configUSE_TICKLESS_IDLE == 1 )
590 
vPortSuppressTicksAndSleep(TickType_t xExpectedIdleTime)591     __attribute__( ( weak ) ) void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
592     {
593         uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickDecrementsLeft;
594         TickType_t xModifiableIdleTime;
595 
596         /* Make sure the SysTick reload value does not overflow the counter. */
597         if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
598         {
599             xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
600         }
601 
602         /* Enter a critical section but don't use the taskENTER_CRITICAL()
603          * method as that will mask interrupts that should exit sleep mode. */
604         __asm volatile ( "cpsid i" ::: "memory" );
605         __asm volatile ( "dsb" );
606         __asm volatile ( "isb" );
607 
608         /* If a context switch is pending or a task is waiting for the scheduler
609          * to be unsuspended then abandon the low power entry. */
610         if( eTaskConfirmSleepModeStatus() == eAbortSleep )
611         {
612             /* Re-enable interrupts - see comments above the cpsid instruction
613              * above. */
614             __asm volatile ( "cpsie i" ::: "memory" );
615         }
616         else
617         {
618             /* Stop the SysTick momentarily.  The time the SysTick is stopped for
619              * is accounted for as best it can be, but using the tickless mode will
620              * inevitably result in some tiny drift of the time maintained by the
621              * kernel with respect to calendar time. */
622             portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
623 
624             /* Use the SysTick current-value register to determine the number of
625              * SysTick decrements remaining until the next tick interrupt.  If the
626              * current-value register is zero, then there are actually
627              * ulTimerCountsForOneTick decrements remaining, not zero, because the
628              * SysTick requests the interrupt when decrementing from 1 to 0. */
629             ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
630 
631             if( ulSysTickDecrementsLeft == 0 )
632             {
633                 ulSysTickDecrementsLeft = ulTimerCountsForOneTick;
634             }
635 
636             /* Calculate the reload value required to wait xExpectedIdleTime
637              * tick periods.  -1 is used because this code normally executes part
638              * way through the first tick period.  But if the SysTick IRQ is now
639              * pending, then clear the IRQ, suppressing the first tick, and correct
640              * the reload value to reflect that the second tick period is already
641              * underway.  The expected idle time is always at least two ticks. */
642             ulReloadValue = ulSysTickDecrementsLeft + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
643 
644             if( ( portNVIC_INT_CTRL_REG & portNVIC_PEND_SYSTICK_SET_BIT ) != 0 )
645             {
646                 portNVIC_INT_CTRL_REG = portNVIC_PEND_SYSTICK_CLEAR_BIT;
647                 ulReloadValue -= ulTimerCountsForOneTick;
648             }
649 
650             if( ulReloadValue > ulStoppedTimerCompensation )
651             {
652                 ulReloadValue -= ulStoppedTimerCompensation;
653             }
654 
655             /* Set the new reload value. */
656             portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
657 
658             /* Clear the SysTick count flag and set the count value back to
659              * zero. */
660             portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
661 
662             /* Restart SysTick. */
663             portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
664 
665             /* Sleep until something happens.  configPRE_SLEEP_PROCESSING() can
666              * set its parameter to 0 to indicate that its implementation contains
667              * its own wait for interrupt or wait for event instruction, and so wfi
668              * should not be executed again.  However, the original expected idle
669              * time variable must remain unmodified, so a copy is taken. */
670             xModifiableIdleTime = xExpectedIdleTime;
671             configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
672 
673             if( xModifiableIdleTime > 0 )
674             {
675                 __asm volatile ( "dsb" ::: "memory" );
676                 __asm volatile ( "wfi" );
677                 __asm volatile ( "isb" );
678             }
679 
680             configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
681 
682             /* Re-enable interrupts to allow the interrupt that brought the MCU
683              * out of sleep mode to execute immediately.  See comments above
684              * the cpsid instruction above. */
685             __asm volatile ( "cpsie i" ::: "memory" );
686             __asm volatile ( "dsb" );
687             __asm volatile ( "isb" );
688 
689             /* Disable interrupts again because the clock is about to be stopped
690              * and interrupts that execute while the clock is stopped will increase
691              * any slippage between the time maintained by the RTOS and calendar
692              * time. */
693             __asm volatile ( "cpsid i" ::: "memory" );
694             __asm volatile ( "dsb" );
695             __asm volatile ( "isb" );
696 
697             /* Disable the SysTick clock without reading the
698              * portNVIC_SYSTICK_CTRL_REG register to ensure the
699              * portNVIC_SYSTICK_COUNT_FLAG_BIT is not cleared if it is set.  Again,
700              * the time the SysTick is stopped for is accounted for as best it can
701              * be, but using the tickless mode will inevitably result in some tiny
702              * drift of the time maintained by the kernel with respect to calendar
703              * time*/
704             portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
705 
706             /* Determine whether the SysTick has already counted to zero. */
707             if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
708             {
709                 uint32_t ulCalculatedLoadValue;
710 
711                 /* The tick interrupt ended the sleep (or is now pending), and
712                  * a new tick period has started.  Reset portNVIC_SYSTICK_LOAD_REG
713                  * with whatever remains of the new tick period. */
714                 ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
715 
716                 /* Don't allow a tiny value, or values that have somehow
717                  * underflowed because the post sleep hook did something
718                  * that took too long or because the SysTick current-value register
719                  * is zero. */
720                 if( ( ulCalculatedLoadValue <= ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
721                 {
722                     ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL );
723                 }
724 
725                 portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
726 
727                 /* As the pending tick will be processed as soon as this
728                  * function exits, the tick value maintained by the tick is stepped
729                  * forward by one less than the time spent waiting. */
730                 ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
731             }
732             else
733             {
734                 /* Something other than the tick interrupt ended the sleep. */
735 
736                 /* Use the SysTick current-value register to determine the
737                  * number of SysTick decrements remaining until the expected idle
738                  * time would have ended. */
739                 ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
740                 #if ( portNVIC_SYSTICK_CLK_BIT_CONFIG != portNVIC_SYSTICK_CLK_BIT )
741                 {
742                     /* If the SysTick is not using the core clock, the current-
743                      * value register might still be zero here.  In that case, the
744                      * SysTick didn't load from the reload register, and there are
745                      * ulReloadValue decrements remaining in the expected idle
746                      * time, not zero. */
747                     if( ulSysTickDecrementsLeft == 0 )
748                     {
749                         ulSysTickDecrementsLeft = ulReloadValue;
750                     }
751                 }
752                 #endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
753 
754                 /* Work out how long the sleep lasted rounded to complete tick
755                  * periods (not the ulReload value which accounted for part
756                  * ticks). */
757                 ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - ulSysTickDecrementsLeft;
758 
759                 /* How many complete tick periods passed while the processor
760                  * was waiting? */
761                 ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
762 
763                 /* The reload value is set to whatever fraction of a single tick
764                  * period remains. */
765                 portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1UL ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
766             }
767 
768             /* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG again,
769              * then set portNVIC_SYSTICK_LOAD_REG back to its standard value.  If
770              * the SysTick is not using the core clock, temporarily configure it to
771              * use the core clock.  This configuration forces the SysTick to load
772              * from portNVIC_SYSTICK_LOAD_REG immediately instead of at the next
773              * cycle of the other clock.  Then portNVIC_SYSTICK_LOAD_REG is ready
774              * to receive the standard value immediately. */
775             portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
776             portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
777             #if ( portNVIC_SYSTICK_CLK_BIT_CONFIG == portNVIC_SYSTICK_CLK_BIT )
778             {
779                 portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
780             }
781             #else
782             {
783                 /* The temporary usage of the core clock has served its purpose,
784                  * as described above.  Resume usage of the other clock. */
785                 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT;
786 
787                 if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
788                 {
789                     /* The partial tick period already ended.  Be sure the SysTick
790                      * counts it only once. */
791                     portNVIC_SYSTICK_CURRENT_VALUE_REG = 0;
792                 }
793 
794                 portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
795                 portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
796             }
797             #endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
798 
799             /* Step the tick to account for any tick periods that elapsed. */
800             vTaskStepTick( ulCompleteTickPeriods );
801 
802             /* Exit with interrupts enabled. */
803             __asm volatile ( "cpsie i" ::: "memory" );
804         }
805     }
806 
807 #endif /* #if configUSE_TICKLESS_IDLE */
808 /*-----------------------------------------------------------*/
809 
810 /*
811  * Setup the systick timer to generate the tick interrupts at the required
812  * frequency.
813  */
vPortSetupTimerInterrupt(void)814 __attribute__( ( weak ) ) void vPortSetupTimerInterrupt( void )
815 {
816     /* Calculate the constants required to configure the tick interrupt. */
817     #if ( configUSE_TICKLESS_IDLE == 1 )
818     {
819         ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ );
820         xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
821         ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ );
822     }
823     #endif /* configUSE_TICKLESS_IDLE */
824 
825     /* Stop and clear the SysTick. */
826     portNVIC_SYSTICK_CTRL_REG = 0UL;
827     portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
828 
829     /* Configure SysTick to interrupt at the requested rate. */
830     portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
831     portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT );
832 }
833 /*-----------------------------------------------------------*/
834 
835 /* This is a naked function. */
vPortEnableVFP(void)836 static void vPortEnableVFP( void )
837 {
838     __asm volatile
839     (
840         "   ldr.w r0, =0xE000ED88       \n" /* The FPU enable bits are in the CPACR. */
841         "   ldr r1, [r0]                \n"
842         "                               \n"
843         "   orr r1, r1, #( 0xf << 20 )  \n" /* Enable CP10 and CP11 coprocessors, then save back. */
844         "   str r1, [r0]                \n"
845         "   bx r14                      \n"
846         "   .ltorg                      \n"
847     );
848 }
849 /*-----------------------------------------------------------*/
850 
851 #if ( configASSERT_DEFINED == 1 )
852 
vPortValidateInterruptPriority(void)853     void vPortValidateInterruptPriority( void )
854     {
855         uint32_t ulCurrentInterrupt;
856         uint8_t ucCurrentPriority;
857 
858         /* Obtain the number of the currently executing interrupt. */
859         __asm volatile ( "mrs %0, ipsr" : "=r" ( ulCurrentInterrupt )::"memory" );
860 
861         /* Is the interrupt number a user defined interrupt? */
862         if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
863         {
864             /* Look up the interrupt's priority. */
865             ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
866 
867             /* The following assertion will fail if a service routine (ISR) for
868              * an interrupt that has been assigned a priority above
869              * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
870              * function.  ISR safe FreeRTOS API functions must *only* be called
871              * from interrupts that have been assigned a priority at or below
872              * configMAX_SYSCALL_INTERRUPT_PRIORITY.
873              *
874              * Numerically low interrupt priority numbers represent logically high
875              * interrupt priorities, therefore the priority of the interrupt must
876              * be set to a value equal to or numerically *higher* than
877              * configMAX_SYSCALL_INTERRUPT_PRIORITY.
878              *
879              * Interrupts that  use the FreeRTOS API must not be left at their
880              * default priority of  zero as that is the highest possible priority,
881              * which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
882              * and  therefore also guaranteed to be invalid.
883              *
884              * FreeRTOS maintains separate thread and ISR API functions to ensure
885              * interrupt entry is as fast and simple as possible.
886              *
887              * The following links provide detailed information:
888              * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
889              * https://www.FreeRTOS.org/FAQHelp.html */
890             configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
891         }
892 
893         /* Priority grouping:  The interrupt controller (NVIC) allows the bits
894          * that define each interrupt's priority to be split between bits that
895          * define the interrupt's pre-emption priority bits and bits that define
896          * the interrupt's sub-priority.  For simplicity all bits must be defined
897          * to be pre-emption priority bits.  The following assertion will fail if
898          * this is not the case (if some bits represent a sub-priority).
899          *
900          * If the application only uses CMSIS libraries for interrupt
901          * configuration then the correct setting can be achieved on all Cortex-M
902          * devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
903          * scheduler.  Note however that some vendor specific peripheral libraries
904          * assume a non-zero priority group setting, in which cases using a value
905          * of zero will result in unpredictable behaviour. */
906         configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
907     }
908 
909 #endif /* configASSERT_DEFINED */
910