1 /*
2 * FreeRTOS Kernel V10.6.2
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4 *
5 * SPDX-License-Identifier: MIT
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
8 * this software and associated documentation files (the "Software"), to deal in
9 * the Software without restriction, including without limitation the rights to
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 * the Software, and to permit persons to whom the Software is furnished to do so,
12 * subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in all
15 * copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * https://www.FreeRTOS.org
25 * https://github.com/FreeRTOS
26 *
27 */
28
29 #include <stdlib.h>
30 #include <string.h>
31
32 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
33 * all the API functions to use the MPU wrappers. That should only be done when
34 * task.h is included from an application file. */
35 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
36
37 #include "FreeRTOS.h"
38 #include "task.h"
39 #include "queue.h"
40
41 #if ( configUSE_CO_ROUTINES == 1 )
42 #include "croutine.h"
43 #endif
44
45 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
46 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
47 * for the header files above, but not in this file, in order to generate the
48 * correct privileged Vs unprivileged linkage and placement. */
49 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
50
51
52 /* Constants used with the cRxLock and cTxLock structure members. */
53 #define queueUNLOCKED ( ( int8_t ) -1 )
54 #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
55 #define queueINT8_MAX ( ( int8_t ) 127 )
56
57 /* When the Queue_t structure is used to represent a base queue its pcHead and
58 * pcTail members are used as pointers into the queue storage area. When the
59 * Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
60 * not necessary, and the pcHead pointer is set to NULL to indicate that the
61 * structure instead holds a pointer to the mutex holder (if any). Map alternative
62 * names to the pcHead and structure member to ensure the readability of the code
63 * is maintained. The QueuePointers_t and SemaphoreData_t types are used to form
64 * a union as their usage is mutually exclusive dependent on what the queue is
65 * being used for. */
66 #define uxQueueType pcHead
67 #define queueQUEUE_IS_MUTEX NULL
68
69 typedef struct QueuePointers
70 {
71 int8_t * pcTail; /**< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
72 int8_t * pcReadFrom; /**< Points to the last place that a queued item was read from when the structure is used as a queue. */
73 } QueuePointers_t;
74
75 typedef struct SemaphoreData
76 {
77 TaskHandle_t xMutexHolder; /**< The handle of the task that holds the mutex. */
78 UBaseType_t uxRecursiveCallCount; /**< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
79 } SemaphoreData_t;
80
81 /* Semaphores do not actually store or copy data, so have an item size of
82 * zero. */
83 #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
84 #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
85
86 #if ( configUSE_PREEMPTION == 0 )
87
88 /* If the cooperative scheduler is being used then a yield should not be
89 * performed just because a higher priority task has been woken. */
90 #define queueYIELD_IF_USING_PREEMPTION()
91 #else
92 #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
93 #endif
94
95 /*
96 * Definition of the queue used by the scheduler.
97 * Items are queued by copy, not reference. See the following link for the
98 * rationale: https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
99 */
100 typedef struct QueueDefinition /* The old naming convention is used to prevent breaking kernel aware debuggers. */
101 {
102 int8_t * pcHead; /**< Points to the beginning of the queue storage area. */
103 int8_t * pcWriteTo; /**< Points to the free next place in the storage area. */
104
105 union
106 {
107 QueuePointers_t xQueue; /**< Data required exclusively when this structure is used as a queue. */
108 SemaphoreData_t xSemaphore; /**< Data required exclusively when this structure is used as a semaphore. */
109 } u;
110
111 List_t xTasksWaitingToSend; /**< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
112 List_t xTasksWaitingToReceive; /**< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
113
114 volatile UBaseType_t uxMessagesWaiting; /**< The number of items currently in the queue. */
115 UBaseType_t uxLength; /**< The length of the queue defined as the number of items it will hold, not the number of bytes. */
116 UBaseType_t uxItemSize; /**< The size of each items that the queue will hold. */
117
118 volatile int8_t cRxLock; /**< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
119 volatile int8_t cTxLock; /**< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
120
121 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
122 uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
123 #endif
124
125 #if ( configUSE_QUEUE_SETS == 1 )
126 struct QueueDefinition * pxQueueSetContainer;
127 #endif
128
129 #if ( configUSE_TRACE_FACILITY == 1 )
130 UBaseType_t uxQueueNumber;
131 uint8_t ucQueueType;
132 #endif
133 } xQUEUE;
134
135 /* The old xQUEUE name is maintained above then typedefed to the new Queue_t
136 * name below to enable the use of older kernel aware debuggers. */
137 typedef xQUEUE Queue_t;
138
139 /*-----------------------------------------------------------*/
140
141 /*
142 * The queue registry is just a means for kernel aware debuggers to locate
143 * queue structures. It has no other purpose so is an optional component.
144 */
145 #if ( configQUEUE_REGISTRY_SIZE > 0 )
146
147 /* The type stored within the queue registry array. This allows a name
148 * to be assigned to each queue making kernel aware debugging a little
149 * more user friendly. */
150 typedef struct QUEUE_REGISTRY_ITEM
151 {
152 const char * pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
153 QueueHandle_t xHandle;
154 } xQueueRegistryItem;
155
156 /* The old xQueueRegistryItem name is maintained above then typedefed to the
157 * new xQueueRegistryItem name below to enable the use of older kernel aware
158 * debuggers. */
159 typedef xQueueRegistryItem QueueRegistryItem_t;
160
161 /* The queue registry is simply an array of QueueRegistryItem_t structures.
162 * The pcQueueName member of a structure being NULL is indicative of the
163 * array position being vacant. */
164 PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
165
166 #endif /* configQUEUE_REGISTRY_SIZE */
167
168 /*
169 * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
170 * prevent an ISR from adding or removing items to the queue, but does prevent
171 * an ISR from removing tasks from the queue event lists. If an ISR finds a
172 * queue is locked it will instead increment the appropriate queue lock count
173 * to indicate that a task may require unblocking. When the queue in unlocked
174 * these lock counts are inspected, and the appropriate action taken.
175 */
176 static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
177
178 /*
179 * Uses a critical section to determine if there is any data in a queue.
180 *
181 * @return pdTRUE if the queue contains no items, otherwise pdFALSE.
182 */
183 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
184
185 /*
186 * Uses a critical section to determine if there is any space in a queue.
187 *
188 * @return pdTRUE if there is no space, otherwise pdFALSE;
189 */
190 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
191
192 /*
193 * Copies an item into the queue, either at the front of the queue or the
194 * back of the queue.
195 */
196 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
197 const void * pvItemToQueue,
198 const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
199
200 /*
201 * Copies an item out of a queue.
202 */
203 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
204 void * const pvBuffer ) PRIVILEGED_FUNCTION;
205
206 #if ( configUSE_QUEUE_SETS == 1 )
207
208 /*
209 * Checks to see if a queue is a member of a queue set, and if so, notifies
210 * the queue set that the queue contains data.
211 */
212 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
213 #endif
214
215 /*
216 * Called after a Queue_t structure has been allocated either statically or
217 * dynamically to fill in the structure's members.
218 */
219 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
220 const UBaseType_t uxItemSize,
221 uint8_t * pucQueueStorage,
222 const uint8_t ucQueueType,
223 Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
224
225 /*
226 * Mutexes are a special type of queue. When a mutex is created, first the
227 * queue is created, then prvInitialiseMutex() is called to configure the queue
228 * as a mutex.
229 */
230 #if ( configUSE_MUTEXES == 1 )
231 static void prvInitialiseMutex( Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
232 #endif
233
234 #if ( configUSE_MUTEXES == 1 )
235
236 /*
237 * If a task waiting for a mutex causes the mutex holder to inherit a
238 * priority, but the waiting task times out, then the holder should
239 * disinherit the priority - but only down to the highest priority of any
240 * other tasks that are waiting for the same mutex. This function returns
241 * that priority.
242 */
243 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
244 #endif
245 /*-----------------------------------------------------------*/
246
247 /*
248 * Macro to mark a queue as locked. Locking a queue prevents an ISR from
249 * accessing the queue event lists.
250 */
251 #define prvLockQueue( pxQueue ) \
252 taskENTER_CRITICAL(); \
253 { \
254 if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
255 { \
256 ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
257 } \
258 if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
259 { \
260 ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
261 } \
262 } \
263 taskEXIT_CRITICAL()
264
265 /*
266 * Macro to increment cTxLock member of the queue data structure. It is
267 * capped at the number of tasks in the system as we cannot unblock more
268 * tasks than the number of tasks in the system.
269 */
270 #define prvIncrementQueueTxLock( pxQueue, cTxLock ) \
271 do { \
272 const UBaseType_t uxNumberOfTasks = uxTaskGetNumberOfTasks(); \
273 if( ( UBaseType_t ) ( cTxLock ) < uxNumberOfTasks ) \
274 { \
275 configASSERT( ( cTxLock ) != queueINT8_MAX ); \
276 ( pxQueue )->cTxLock = ( int8_t ) ( ( cTxLock ) + ( int8_t ) 1 ); \
277 } \
278 } while( 0 )
279
280 /*
281 * Macro to increment cRxLock member of the queue data structure. It is
282 * capped at the number of tasks in the system as we cannot unblock more
283 * tasks than the number of tasks in the system.
284 */
285 #define prvIncrementQueueRxLock( pxQueue, cRxLock ) \
286 do { \
287 const UBaseType_t uxNumberOfTasks = uxTaskGetNumberOfTasks(); \
288 if( ( UBaseType_t ) ( cRxLock ) < uxNumberOfTasks ) \
289 { \
290 configASSERT( ( cRxLock ) != queueINT8_MAX ); \
291 ( pxQueue )->cRxLock = ( int8_t ) ( ( cRxLock ) + ( int8_t ) 1 ); \
292 } \
293 } while( 0 )
294 /*-----------------------------------------------------------*/
295
xQueueGenericReset(QueueHandle_t xQueue,BaseType_t xNewQueue)296 BaseType_t xQueueGenericReset( QueueHandle_t xQueue,
297 BaseType_t xNewQueue )
298 {
299 BaseType_t xReturn = pdPASS;
300 Queue_t * const pxQueue = xQueue;
301
302 configASSERT( pxQueue );
303
304 if( ( pxQueue != NULL ) &&
305 ( pxQueue->uxLength >= 1U ) &&
306 /* Check for multiplication overflow. */
307 ( ( SIZE_MAX / pxQueue->uxLength ) >= pxQueue->uxItemSize ) )
308 {
309 taskENTER_CRITICAL();
310 {
311 pxQueue->u.xQueue.pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
312 pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
313 pxQueue->pcWriteTo = pxQueue->pcHead;
314 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - 1U ) * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
315 pxQueue->cRxLock = queueUNLOCKED;
316 pxQueue->cTxLock = queueUNLOCKED;
317
318 if( xNewQueue == pdFALSE )
319 {
320 /* If there are tasks blocked waiting to read from the queue, then
321 * the tasks will remain blocked as after this function exits the queue
322 * will still be empty. If there are tasks blocked waiting to write to
323 * the queue, then one should be unblocked as after this function exits
324 * it will be possible to write to it. */
325 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
326 {
327 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
328 {
329 queueYIELD_IF_USING_PREEMPTION();
330 }
331 else
332 {
333 mtCOVERAGE_TEST_MARKER();
334 }
335 }
336 else
337 {
338 mtCOVERAGE_TEST_MARKER();
339 }
340 }
341 else
342 {
343 /* Ensure the event queues start in the correct state. */
344 vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
345 vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
346 }
347 }
348 taskEXIT_CRITICAL();
349 }
350 else
351 {
352 xReturn = pdFAIL;
353 }
354
355 configASSERT( xReturn != pdFAIL );
356
357 /* A value is returned for calling semantic consistency with previous
358 * versions. */
359 return xReturn;
360 }
361 /*-----------------------------------------------------------*/
362
363 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
364
xQueueGenericCreateStatic(const UBaseType_t uxQueueLength,const UBaseType_t uxItemSize,uint8_t * pucQueueStorage,StaticQueue_t * pxStaticQueue,const uint8_t ucQueueType)365 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength,
366 const UBaseType_t uxItemSize,
367 uint8_t * pucQueueStorage,
368 StaticQueue_t * pxStaticQueue,
369 const uint8_t ucQueueType )
370 {
371 Queue_t * pxNewQueue = NULL;
372
373 /* The StaticQueue_t structure and the queue storage area must be
374 * supplied. */
375 configASSERT( pxStaticQueue );
376
377 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
378 ( pxStaticQueue != NULL ) &&
379
380 /* A queue storage area should be provided if the item size is not 0, and
381 * should not be provided if the item size is 0. */
382 ( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0 ) ) ) &&
383 ( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0 ) ) ) )
384 {
385 #if ( configASSERT_DEFINED == 1 )
386 {
387 /* Sanity check that the size of the structure used to declare a
388 * variable of type StaticQueue_t or StaticSemaphore_t equals the size of
389 * the real queue and semaphore structures. */
390 volatile size_t xSize = sizeof( StaticQueue_t );
391
392 /* This assertion cannot be branch covered in unit tests */
393 configASSERT( xSize == sizeof( Queue_t ) ); /* LCOV_EXCL_BR_LINE */
394 ( void ) xSize; /* Keeps lint quiet when configASSERT() is not defined. */
395 }
396 #endif /* configASSERT_DEFINED */
397
398 /* The address of a statically allocated queue was passed in, use it.
399 * The address of a statically allocated storage area was also passed in
400 * but is already set. */
401 pxNewQueue = ( Queue_t * ) pxStaticQueue; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
402
403 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
404 {
405 /* Queues can be allocated wither statically or dynamically, so
406 * note this queue was allocated statically in case the queue is
407 * later deleted. */
408 pxNewQueue->ucStaticallyAllocated = pdTRUE;
409 }
410 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
411
412 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
413 }
414 else
415 {
416 configASSERT( pxNewQueue );
417 mtCOVERAGE_TEST_MARKER();
418 }
419
420 return pxNewQueue;
421 }
422
423 #endif /* configSUPPORT_STATIC_ALLOCATION */
424 /*-----------------------------------------------------------*/
425
426 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
427
xQueueGenericGetStaticBuffers(QueueHandle_t xQueue,uint8_t ** ppucQueueStorage,StaticQueue_t ** ppxStaticQueue)428 BaseType_t xQueueGenericGetStaticBuffers( QueueHandle_t xQueue,
429 uint8_t ** ppucQueueStorage,
430 StaticQueue_t ** ppxStaticQueue )
431 {
432 BaseType_t xReturn;
433 Queue_t * const pxQueue = xQueue;
434
435 configASSERT( pxQueue );
436 configASSERT( ppxStaticQueue );
437
438 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
439 {
440 /* Check if the queue was statically allocated. */
441 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdTRUE )
442 {
443 if( ppucQueueStorage != NULL )
444 {
445 *ppucQueueStorage = ( uint8_t * ) pxQueue->pcHead;
446 }
447
448 *ppxStaticQueue = ( StaticQueue_t * ) pxQueue;
449 xReturn = pdTRUE;
450 }
451 else
452 {
453 xReturn = pdFALSE;
454 }
455 }
456 #else /* configSUPPORT_DYNAMIC_ALLOCATION */
457 {
458 /* Queue must have been statically allocated. */
459 if( ppucQueueStorage != NULL )
460 {
461 *ppucQueueStorage = ( uint8_t * ) pxQueue->pcHead;
462 }
463
464 *ppxStaticQueue = ( StaticQueue_t * ) pxQueue;
465 xReturn = pdTRUE;
466 }
467 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
468
469 return xReturn;
470 }
471
472 #endif /* configSUPPORT_STATIC_ALLOCATION */
473 /*-----------------------------------------------------------*/
474
475 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
476
xQueueGenericCreate(const UBaseType_t uxQueueLength,const UBaseType_t uxItemSize,const uint8_t ucQueueType)477 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength,
478 const UBaseType_t uxItemSize,
479 const uint8_t ucQueueType )
480 {
481 Queue_t * pxNewQueue = NULL;
482 size_t xQueueSizeInBytes;
483 uint8_t * pucQueueStorage;
484
485 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
486 /* Check for multiplication overflow. */
487 ( ( SIZE_MAX / uxQueueLength ) >= uxItemSize ) &&
488 /* Check for addition overflow. */
489 ( ( SIZE_MAX - sizeof( Queue_t ) ) >= ( uxQueueLength * uxItemSize ) ) )
490 {
491 /* Allocate enough space to hold the maximum number of items that
492 * can be in the queue at any time. It is valid for uxItemSize to be
493 * zero in the case the queue is used as a semaphore. */
494 xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
495
496 /* Allocate the queue and storage area. Justification for MISRA
497 * deviation as follows: pvPortMalloc() always ensures returned memory
498 * blocks are aligned per the requirements of the MCU stack. In this case
499 * pvPortMalloc() must return a pointer that is guaranteed to meet the
500 * alignment requirements of the Queue_t structure - which in this case
501 * is an int8_t *. Therefore, whenever the stack alignment requirements
502 * are greater than or equal to the pointer to char requirements the cast
503 * is safe. In other cases alignment requirements are not strict (one or
504 * two bytes). */
505 pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes ); /*lint !e9087 !e9079 see comment above. */
506
507 if( pxNewQueue != NULL )
508 {
509 /* Jump past the queue structure to find the location of the queue
510 * storage area. */
511 pucQueueStorage = ( uint8_t * ) pxNewQueue;
512 pucQueueStorage += sizeof( Queue_t ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
513
514 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
515 {
516 /* Queues can be created either statically or dynamically, so
517 * note this task was created dynamically in case it is later
518 * deleted. */
519 pxNewQueue->ucStaticallyAllocated = pdFALSE;
520 }
521 #endif /* configSUPPORT_STATIC_ALLOCATION */
522
523 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
524 }
525 else
526 {
527 traceQUEUE_CREATE_FAILED( ucQueueType );
528 mtCOVERAGE_TEST_MARKER();
529 }
530 }
531 else
532 {
533 configASSERT( pxNewQueue );
534 mtCOVERAGE_TEST_MARKER();
535 }
536
537 return pxNewQueue;
538 }
539
540 #endif /* configSUPPORT_STATIC_ALLOCATION */
541 /*-----------------------------------------------------------*/
542
prvInitialiseNewQueue(const UBaseType_t uxQueueLength,const UBaseType_t uxItemSize,uint8_t * pucQueueStorage,const uint8_t ucQueueType,Queue_t * pxNewQueue)543 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
544 const UBaseType_t uxItemSize,
545 uint8_t * pucQueueStorage,
546 const uint8_t ucQueueType,
547 Queue_t * pxNewQueue )
548 {
549 /* Remove compiler warnings about unused parameters should
550 * configUSE_TRACE_FACILITY not be set to 1. */
551 ( void ) ucQueueType;
552
553 if( uxItemSize == ( UBaseType_t ) 0 )
554 {
555 /* No RAM was allocated for the queue storage area, but PC head cannot
556 * be set to NULL because NULL is used as a key to say the queue is used as
557 * a mutex. Therefore just set pcHead to point to the queue as a benign
558 * value that is known to be within the memory map. */
559 pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
560 }
561 else
562 {
563 /* Set the head to the start of the queue storage area. */
564 pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
565 }
566
567 /* Initialise the queue members as described where the queue type is
568 * defined. */
569 pxNewQueue->uxLength = uxQueueLength;
570 pxNewQueue->uxItemSize = uxItemSize;
571 ( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
572
573 #if ( configUSE_TRACE_FACILITY == 1 )
574 {
575 pxNewQueue->ucQueueType = ucQueueType;
576 }
577 #endif /* configUSE_TRACE_FACILITY */
578
579 #if ( configUSE_QUEUE_SETS == 1 )
580 {
581 pxNewQueue->pxQueueSetContainer = NULL;
582 }
583 #endif /* configUSE_QUEUE_SETS */
584
585 traceQUEUE_CREATE( pxNewQueue );
586 }
587 /*-----------------------------------------------------------*/
588
589 #if ( configUSE_MUTEXES == 1 )
590
prvInitialiseMutex(Queue_t * pxNewQueue)591 static void prvInitialiseMutex( Queue_t * pxNewQueue )
592 {
593 if( pxNewQueue != NULL )
594 {
595 /* The queue create function will set all the queue structure members
596 * correctly for a generic queue, but this function is creating a
597 * mutex. Overwrite those members that need to be set differently -
598 * in particular the information required for priority inheritance. */
599 pxNewQueue->u.xSemaphore.xMutexHolder = NULL;
600 pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
601
602 /* In case this is a recursive mutex. */
603 pxNewQueue->u.xSemaphore.uxRecursiveCallCount = 0;
604
605 traceCREATE_MUTEX( pxNewQueue );
606
607 /* Start with the semaphore in the expected state. */
608 ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
609 }
610 else
611 {
612 traceCREATE_MUTEX_FAILED();
613 }
614 }
615
616 #endif /* configUSE_MUTEXES */
617 /*-----------------------------------------------------------*/
618
619 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
620
xQueueCreateMutex(const uint8_t ucQueueType)621 QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
622 {
623 QueueHandle_t xNewQueue;
624 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
625
626 xNewQueue = xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
627 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
628
629 return xNewQueue;
630 }
631
632 #endif /* configUSE_MUTEXES */
633 /*-----------------------------------------------------------*/
634
635 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
636
xQueueCreateMutexStatic(const uint8_t ucQueueType,StaticQueue_t * pxStaticQueue)637 QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType,
638 StaticQueue_t * pxStaticQueue )
639 {
640 QueueHandle_t xNewQueue;
641 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
642
643 /* Prevent compiler warnings about unused parameters if
644 * configUSE_TRACE_FACILITY does not equal 1. */
645 ( void ) ucQueueType;
646
647 xNewQueue = xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
648 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
649
650 return xNewQueue;
651 }
652
653 #endif /* configUSE_MUTEXES */
654 /*-----------------------------------------------------------*/
655
656 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
657
xQueueGetMutexHolder(QueueHandle_t xSemaphore)658 TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore )
659 {
660 TaskHandle_t pxReturn;
661 Queue_t * const pxSemaphore = ( Queue_t * ) xSemaphore;
662
663 configASSERT( xSemaphore );
664
665 /* This function is called by xSemaphoreGetMutexHolder(), and should not
666 * be called directly. Note: This is a good way of determining if the
667 * calling task is the mutex holder, but not a good way of determining the
668 * identity of the mutex holder, as the holder may change between the
669 * following critical section exiting and the function returning. */
670 taskENTER_CRITICAL();
671 {
672 if( pxSemaphore->uxQueueType == queueQUEUE_IS_MUTEX )
673 {
674 pxReturn = pxSemaphore->u.xSemaphore.xMutexHolder;
675 }
676 else
677 {
678 pxReturn = NULL;
679 }
680 }
681 taskEXIT_CRITICAL();
682
683 return pxReturn;
684 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
685
686 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
687 /*-----------------------------------------------------------*/
688
689 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
690
xQueueGetMutexHolderFromISR(QueueHandle_t xSemaphore)691 TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore )
692 {
693 TaskHandle_t pxReturn;
694
695 configASSERT( xSemaphore );
696
697 /* Mutexes cannot be used in interrupt service routines, so the mutex
698 * holder should not change in an ISR, and therefore a critical section is
699 * not required here. */
700 if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
701 {
702 pxReturn = ( ( Queue_t * ) xSemaphore )->u.xSemaphore.xMutexHolder;
703 }
704 else
705 {
706 pxReturn = NULL;
707 }
708
709 return pxReturn;
710 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
711
712 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
713 /*-----------------------------------------------------------*/
714
715 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
716
xQueueGiveMutexRecursive(QueueHandle_t xMutex)717 BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
718 {
719 BaseType_t xReturn;
720 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
721
722 configASSERT( pxMutex );
723
724 /* If this is the task that holds the mutex then xMutexHolder will not
725 * change outside of this task. If this task does not hold the mutex then
726 * pxMutexHolder can never coincidentally equal the tasks handle, and as
727 * this is the only condition we are interested in it does not matter if
728 * pxMutexHolder is accessed simultaneously by another task. Therefore no
729 * mutual exclusion is required to test the pxMutexHolder variable. */
730 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
731 {
732 traceGIVE_MUTEX_RECURSIVE( pxMutex );
733
734 /* uxRecursiveCallCount cannot be zero if xMutexHolder is equal to
735 * the task handle, therefore no underflow check is required. Also,
736 * uxRecursiveCallCount is only modified by the mutex holder, and as
737 * there can only be one, no mutual exclusion is required to modify the
738 * uxRecursiveCallCount member. */
739 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )--;
740
741 /* Has the recursive call count unwound to 0? */
742 if( pxMutex->u.xSemaphore.uxRecursiveCallCount == ( UBaseType_t ) 0 )
743 {
744 /* Return the mutex. This will automatically unblock any other
745 * task that might be waiting to access the mutex. */
746 ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
747 }
748 else
749 {
750 mtCOVERAGE_TEST_MARKER();
751 }
752
753 xReturn = pdPASS;
754 }
755 else
756 {
757 /* The mutex cannot be given because the calling task is not the
758 * holder. */
759 xReturn = pdFAIL;
760
761 traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
762 }
763
764 return xReturn;
765 }
766
767 #endif /* configUSE_RECURSIVE_MUTEXES */
768 /*-----------------------------------------------------------*/
769
770 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
771
xQueueTakeMutexRecursive(QueueHandle_t xMutex,TickType_t xTicksToWait)772 BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex,
773 TickType_t xTicksToWait )
774 {
775 BaseType_t xReturn;
776 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
777
778 configASSERT( pxMutex );
779
780 /* Comments regarding mutual exclusion as per those within
781 * xQueueGiveMutexRecursive(). */
782
783 traceTAKE_MUTEX_RECURSIVE( pxMutex );
784
785 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
786 {
787 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
788 xReturn = pdPASS;
789 }
790 else
791 {
792 xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait );
793
794 /* pdPASS will only be returned if the mutex was successfully
795 * obtained. The calling task may have entered the Blocked state
796 * before reaching here. */
797 if( xReturn != pdFAIL )
798 {
799 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
800 }
801 else
802 {
803 traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
804 }
805 }
806
807 return xReturn;
808 }
809
810 #endif /* configUSE_RECURSIVE_MUTEXES */
811 /*-----------------------------------------------------------*/
812
813 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
814
xQueueCreateCountingSemaphoreStatic(const UBaseType_t uxMaxCount,const UBaseType_t uxInitialCount,StaticQueue_t * pxStaticQueue)815 QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount,
816 const UBaseType_t uxInitialCount,
817 StaticQueue_t * pxStaticQueue )
818 {
819 QueueHandle_t xHandle = NULL;
820
821 if( ( uxMaxCount != 0 ) &&
822 ( uxInitialCount <= uxMaxCount ) )
823 {
824 xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
825
826 if( xHandle != NULL )
827 {
828 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
829
830 traceCREATE_COUNTING_SEMAPHORE();
831 }
832 else
833 {
834 traceCREATE_COUNTING_SEMAPHORE_FAILED();
835 }
836 }
837 else
838 {
839 configASSERT( xHandle );
840 mtCOVERAGE_TEST_MARKER();
841 }
842
843 return xHandle;
844 }
845
846 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
847 /*-----------------------------------------------------------*/
848
849 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
850
xQueueCreateCountingSemaphore(const UBaseType_t uxMaxCount,const UBaseType_t uxInitialCount)851 QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount,
852 const UBaseType_t uxInitialCount )
853 {
854 QueueHandle_t xHandle = NULL;
855
856 if( ( uxMaxCount != 0 ) &&
857 ( uxInitialCount <= uxMaxCount ) )
858 {
859 xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
860
861 if( xHandle != NULL )
862 {
863 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
864
865 traceCREATE_COUNTING_SEMAPHORE();
866 }
867 else
868 {
869 traceCREATE_COUNTING_SEMAPHORE_FAILED();
870 }
871 }
872 else
873 {
874 configASSERT( xHandle );
875 mtCOVERAGE_TEST_MARKER();
876 }
877
878 return xHandle;
879 }
880
881 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
882 /*-----------------------------------------------------------*/
883
xQueueGenericSend(QueueHandle_t xQueue,const void * const pvItemToQueue,TickType_t xTicksToWait,const BaseType_t xCopyPosition)884 BaseType_t xQueueGenericSend( QueueHandle_t xQueue,
885 const void * const pvItemToQueue,
886 TickType_t xTicksToWait,
887 const BaseType_t xCopyPosition )
888 {
889 BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
890 TimeOut_t xTimeOut;
891 Queue_t * const pxQueue = xQueue;
892
893 configASSERT( pxQueue );
894 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
895 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
896 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
897 {
898 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
899 }
900 #endif
901
902 /*lint -save -e904 This function relaxes the coding standard somewhat to
903 * allow return statements within the function itself. This is done in the
904 * interest of execution time efficiency. */
905 for( ; ; )
906 {
907 taskENTER_CRITICAL();
908 {
909 /* Is there room on the queue now? The running task must be the
910 * highest priority task wanting to access the queue. If the head item
911 * in the queue is to be overwritten then it does not matter if the
912 * queue is full. */
913 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
914 {
915 traceQUEUE_SEND( pxQueue );
916
917 #if ( configUSE_QUEUE_SETS == 1 )
918 {
919 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
920
921 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
922
923 if( pxQueue->pxQueueSetContainer != NULL )
924 {
925 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
926 {
927 /* Do not notify the queue set as an existing item
928 * was overwritten in the queue so the number of items
929 * in the queue has not changed. */
930 mtCOVERAGE_TEST_MARKER();
931 }
932 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
933 {
934 /* The queue is a member of a queue set, and posting
935 * to the queue set caused a higher priority task to
936 * unblock. A context switch is required. */
937 queueYIELD_IF_USING_PREEMPTION();
938 }
939 else
940 {
941 mtCOVERAGE_TEST_MARKER();
942 }
943 }
944 else
945 {
946 /* If there was a task waiting for data to arrive on the
947 * queue then unblock it now. */
948 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
949 {
950 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
951 {
952 /* The unblocked task has a priority higher than
953 * our own so yield immediately. Yes it is ok to
954 * do this from within the critical section - the
955 * kernel takes care of that. */
956 queueYIELD_IF_USING_PREEMPTION();
957 }
958 else
959 {
960 mtCOVERAGE_TEST_MARKER();
961 }
962 }
963 else if( xYieldRequired != pdFALSE )
964 {
965 /* This path is a special case that will only get
966 * executed if the task was holding multiple mutexes
967 * and the mutexes were given back in an order that is
968 * different to that in which they were taken. */
969 queueYIELD_IF_USING_PREEMPTION();
970 }
971 else
972 {
973 mtCOVERAGE_TEST_MARKER();
974 }
975 }
976 }
977 #else /* configUSE_QUEUE_SETS */
978 {
979 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
980
981 /* If there was a task waiting for data to arrive on the
982 * queue then unblock it now. */
983 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
984 {
985 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
986 {
987 /* The unblocked task has a priority higher than
988 * our own so yield immediately. Yes it is ok to do
989 * this from within the critical section - the kernel
990 * takes care of that. */
991 queueYIELD_IF_USING_PREEMPTION();
992 }
993 else
994 {
995 mtCOVERAGE_TEST_MARKER();
996 }
997 }
998 else if( xYieldRequired != pdFALSE )
999 {
1000 /* This path is a special case that will only get
1001 * executed if the task was holding multiple mutexes and
1002 * the mutexes were given back in an order that is
1003 * different to that in which they were taken. */
1004 queueYIELD_IF_USING_PREEMPTION();
1005 }
1006 else
1007 {
1008 mtCOVERAGE_TEST_MARKER();
1009 }
1010 }
1011 #endif /* configUSE_QUEUE_SETS */
1012
1013 taskEXIT_CRITICAL();
1014 return pdPASS;
1015 }
1016 else
1017 {
1018 if( xTicksToWait == ( TickType_t ) 0 )
1019 {
1020 /* The queue was full and no block time is specified (or
1021 * the block time has expired) so leave now. */
1022 taskEXIT_CRITICAL();
1023
1024 /* Return to the original privilege level before exiting
1025 * the function. */
1026 traceQUEUE_SEND_FAILED( pxQueue );
1027 return errQUEUE_FULL;
1028 }
1029 else if( xEntryTimeSet == pdFALSE )
1030 {
1031 /* The queue was full and a block time was specified so
1032 * configure the timeout structure. */
1033 vTaskInternalSetTimeOutState( &xTimeOut );
1034 xEntryTimeSet = pdTRUE;
1035 }
1036 else
1037 {
1038 /* Entry time was already set. */
1039 mtCOVERAGE_TEST_MARKER();
1040 }
1041 }
1042 }
1043 taskEXIT_CRITICAL();
1044
1045 /* Interrupts and other tasks can send to and receive from the queue
1046 * now the critical section has been exited. */
1047
1048 vTaskSuspendAll();
1049 prvLockQueue( pxQueue );
1050
1051 /* Update the timeout state to see if it has expired yet. */
1052 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1053 {
1054 if( prvIsQueueFull( pxQueue ) != pdFALSE )
1055 {
1056 traceBLOCKING_ON_QUEUE_SEND( pxQueue );
1057 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
1058
1059 /* Unlocking the queue means queue events can effect the
1060 * event list. It is possible that interrupts occurring now
1061 * remove this task from the event list again - but as the
1062 * scheduler is suspended the task will go onto the pending
1063 * ready list instead of the actual ready list. */
1064 prvUnlockQueue( pxQueue );
1065
1066 /* Resuming the scheduler will move tasks from the pending
1067 * ready list into the ready list - so it is feasible that this
1068 * task is already in the ready list before it yields - in which
1069 * case the yield will not cause a context switch unless there
1070 * is also a higher priority task in the pending ready list. */
1071 if( xTaskResumeAll() == pdFALSE )
1072 {
1073 portYIELD_WITHIN_API();
1074 }
1075 }
1076 else
1077 {
1078 /* Try again. */
1079 prvUnlockQueue( pxQueue );
1080 ( void ) xTaskResumeAll();
1081 }
1082 }
1083 else
1084 {
1085 /* The timeout has expired. */
1086 prvUnlockQueue( pxQueue );
1087 ( void ) xTaskResumeAll();
1088
1089 traceQUEUE_SEND_FAILED( pxQueue );
1090 return errQUEUE_FULL;
1091 }
1092 } /*lint -restore */
1093 }
1094 /*-----------------------------------------------------------*/
1095
xQueueGenericSendFromISR(QueueHandle_t xQueue,const void * const pvItemToQueue,BaseType_t * const pxHigherPriorityTaskWoken,const BaseType_t xCopyPosition)1096 BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue,
1097 const void * const pvItemToQueue,
1098 BaseType_t * const pxHigherPriorityTaskWoken,
1099 const BaseType_t xCopyPosition )
1100 {
1101 BaseType_t xReturn;
1102 UBaseType_t uxSavedInterruptStatus;
1103 Queue_t * const pxQueue = xQueue;
1104
1105 configASSERT( pxQueue );
1106 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
1107 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
1108
1109 /* RTOS ports that support interrupt nesting have the concept of a maximum
1110 * system call (or maximum API call) interrupt priority. Interrupts that are
1111 * above the maximum system call priority are kept permanently enabled, even
1112 * when the RTOS kernel is in a critical section, but cannot make any calls to
1113 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
1114 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1115 * failure if a FreeRTOS API function is called from an interrupt that has been
1116 * assigned a priority above the configured maximum system call priority.
1117 * Only FreeRTOS functions that end in FromISR can be called from interrupts
1118 * that have been assigned a priority at or (logically) below the maximum
1119 * system call interrupt priority. FreeRTOS maintains a separate interrupt
1120 * safe API to ensure interrupt entry is as fast and as simple as possible.
1121 * More information (albeit Cortex-M specific) is provided on the following
1122 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1123 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1124
1125 /* Similar to xQueueGenericSend, except without blocking if there is no room
1126 * in the queue. Also don't directly wake a task that was blocked on a queue
1127 * read, instead return a flag to say whether a context switch is required or
1128 * not (i.e. has a task with a higher priority than us been woken by this
1129 * post). */
1130 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
1131 {
1132 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
1133 {
1134 const int8_t cTxLock = pxQueue->cTxLock;
1135 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
1136
1137 traceQUEUE_SEND_FROM_ISR( pxQueue );
1138
1139 /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
1140 * semaphore or mutex. That means prvCopyDataToQueue() cannot result
1141 * in a task disinheriting a priority and prvCopyDataToQueue() can be
1142 * called here even though the disinherit function does not check if
1143 * the scheduler is suspended before accessing the ready lists. */
1144 ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
1145
1146 /* The event list is not altered if the queue is locked. This will
1147 * be done when the queue is unlocked later. */
1148 if( cTxLock == queueUNLOCKED )
1149 {
1150 #if ( configUSE_QUEUE_SETS == 1 )
1151 {
1152 if( pxQueue->pxQueueSetContainer != NULL )
1153 {
1154 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
1155 {
1156 /* Do not notify the queue set as an existing item
1157 * was overwritten in the queue so the number of items
1158 * in the queue has not changed. */
1159 mtCOVERAGE_TEST_MARKER();
1160 }
1161 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
1162 {
1163 /* The queue is a member of a queue set, and posting
1164 * to the queue set caused a higher priority task to
1165 * unblock. A context switch is required. */
1166 if( pxHigherPriorityTaskWoken != NULL )
1167 {
1168 *pxHigherPriorityTaskWoken = pdTRUE;
1169 }
1170 else
1171 {
1172 mtCOVERAGE_TEST_MARKER();
1173 }
1174 }
1175 else
1176 {
1177 mtCOVERAGE_TEST_MARKER();
1178 }
1179 }
1180 else
1181 {
1182 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1183 {
1184 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1185 {
1186 /* The task waiting has a higher priority so
1187 * record that a context switch is required. */
1188 if( pxHigherPriorityTaskWoken != NULL )
1189 {
1190 *pxHigherPriorityTaskWoken = pdTRUE;
1191 }
1192 else
1193 {
1194 mtCOVERAGE_TEST_MARKER();
1195 }
1196 }
1197 else
1198 {
1199 mtCOVERAGE_TEST_MARKER();
1200 }
1201 }
1202 else
1203 {
1204 mtCOVERAGE_TEST_MARKER();
1205 }
1206 }
1207 }
1208 #else /* configUSE_QUEUE_SETS */
1209 {
1210 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1211 {
1212 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1213 {
1214 /* The task waiting has a higher priority so record that a
1215 * context switch is required. */
1216 if( pxHigherPriorityTaskWoken != NULL )
1217 {
1218 *pxHigherPriorityTaskWoken = pdTRUE;
1219 }
1220 else
1221 {
1222 mtCOVERAGE_TEST_MARKER();
1223 }
1224 }
1225 else
1226 {
1227 mtCOVERAGE_TEST_MARKER();
1228 }
1229 }
1230 else
1231 {
1232 mtCOVERAGE_TEST_MARKER();
1233 }
1234
1235 /* Not used in this path. */
1236 ( void ) uxPreviousMessagesWaiting;
1237 }
1238 #endif /* configUSE_QUEUE_SETS */
1239 }
1240 else
1241 {
1242 /* Increment the lock count so the task that unlocks the queue
1243 * knows that data was posted while it was locked. */
1244 prvIncrementQueueTxLock( pxQueue, cTxLock );
1245 }
1246
1247 xReturn = pdPASS;
1248 }
1249 else
1250 {
1251 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
1252 xReturn = errQUEUE_FULL;
1253 }
1254 }
1255 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
1256
1257 return xReturn;
1258 }
1259 /*-----------------------------------------------------------*/
1260
xQueueGiveFromISR(QueueHandle_t xQueue,BaseType_t * const pxHigherPriorityTaskWoken)1261 BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue,
1262 BaseType_t * const pxHigherPriorityTaskWoken )
1263 {
1264 BaseType_t xReturn;
1265 UBaseType_t uxSavedInterruptStatus;
1266 Queue_t * const pxQueue = xQueue;
1267
1268 /* Similar to xQueueGenericSendFromISR() but used with semaphores where the
1269 * item size is 0. Don't directly wake a task that was blocked on a queue
1270 * read, instead return a flag to say whether a context switch is required or
1271 * not (i.e. has a task with a higher priority than us been woken by this
1272 * post). */
1273
1274 configASSERT( pxQueue );
1275
1276 /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
1277 * if the item size is not 0. */
1278 configASSERT( pxQueue->uxItemSize == 0 );
1279
1280 /* Normally a mutex would not be given from an interrupt, especially if
1281 * there is a mutex holder, as priority inheritance makes no sense for an
1282 * interrupts, only tasks. */
1283 configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->u.xSemaphore.xMutexHolder != NULL ) ) );
1284
1285 /* RTOS ports that support interrupt nesting have the concept of a maximum
1286 * system call (or maximum API call) interrupt priority. Interrupts that are
1287 * above the maximum system call priority are kept permanently enabled, even
1288 * when the RTOS kernel is in a critical section, but cannot make any calls to
1289 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
1290 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1291 * failure if a FreeRTOS API function is called from an interrupt that has been
1292 * assigned a priority above the configured maximum system call priority.
1293 * Only FreeRTOS functions that end in FromISR can be called from interrupts
1294 * that have been assigned a priority at or (logically) below the maximum
1295 * system call interrupt priority. FreeRTOS maintains a separate interrupt
1296 * safe API to ensure interrupt entry is as fast and as simple as possible.
1297 * More information (albeit Cortex-M specific) is provided on the following
1298 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1299 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1300
1301 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
1302 {
1303 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1304
1305 /* When the queue is used to implement a semaphore no data is ever
1306 * moved through the queue but it is still valid to see if the queue 'has
1307 * space'. */
1308 if( uxMessagesWaiting < pxQueue->uxLength )
1309 {
1310 const int8_t cTxLock = pxQueue->cTxLock;
1311
1312 traceQUEUE_SEND_FROM_ISR( pxQueue );
1313
1314 /* A task can only have an inherited priority if it is a mutex
1315 * holder - and if there is a mutex holder then the mutex cannot be
1316 * given from an ISR. As this is the ISR version of the function it
1317 * can be assumed there is no mutex holder and no need to determine if
1318 * priority disinheritance is needed. Simply increase the count of
1319 * messages (semaphores) available. */
1320 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
1321
1322 /* The event list is not altered if the queue is locked. This will
1323 * be done when the queue is unlocked later. */
1324 if( cTxLock == queueUNLOCKED )
1325 {
1326 #if ( configUSE_QUEUE_SETS == 1 )
1327 {
1328 if( pxQueue->pxQueueSetContainer != NULL )
1329 {
1330 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
1331 {
1332 /* The semaphore is a member of a queue set, and
1333 * posting to the queue set caused a higher priority
1334 * task to unblock. A context switch is required. */
1335 if( pxHigherPriorityTaskWoken != NULL )
1336 {
1337 *pxHigherPriorityTaskWoken = pdTRUE;
1338 }
1339 else
1340 {
1341 mtCOVERAGE_TEST_MARKER();
1342 }
1343 }
1344 else
1345 {
1346 mtCOVERAGE_TEST_MARKER();
1347 }
1348 }
1349 else
1350 {
1351 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1352 {
1353 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1354 {
1355 /* The task waiting has a higher priority so
1356 * record that a context switch is required. */
1357 if( pxHigherPriorityTaskWoken != NULL )
1358 {
1359 *pxHigherPriorityTaskWoken = pdTRUE;
1360 }
1361 else
1362 {
1363 mtCOVERAGE_TEST_MARKER();
1364 }
1365 }
1366 else
1367 {
1368 mtCOVERAGE_TEST_MARKER();
1369 }
1370 }
1371 else
1372 {
1373 mtCOVERAGE_TEST_MARKER();
1374 }
1375 }
1376 }
1377 #else /* configUSE_QUEUE_SETS */
1378 {
1379 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1380 {
1381 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1382 {
1383 /* The task waiting has a higher priority so record that a
1384 * context switch is required. */
1385 if( pxHigherPriorityTaskWoken != NULL )
1386 {
1387 *pxHigherPriorityTaskWoken = pdTRUE;
1388 }
1389 else
1390 {
1391 mtCOVERAGE_TEST_MARKER();
1392 }
1393 }
1394 else
1395 {
1396 mtCOVERAGE_TEST_MARKER();
1397 }
1398 }
1399 else
1400 {
1401 mtCOVERAGE_TEST_MARKER();
1402 }
1403 }
1404 #endif /* configUSE_QUEUE_SETS */
1405 }
1406 else
1407 {
1408 /* Increment the lock count so the task that unlocks the queue
1409 * knows that data was posted while it was locked. */
1410 prvIncrementQueueTxLock( pxQueue, cTxLock );
1411 }
1412
1413 xReturn = pdPASS;
1414 }
1415 else
1416 {
1417 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
1418 xReturn = errQUEUE_FULL;
1419 }
1420 }
1421 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
1422
1423 return xReturn;
1424 }
1425 /*-----------------------------------------------------------*/
1426
xQueueReceive(QueueHandle_t xQueue,void * const pvBuffer,TickType_t xTicksToWait)1427 BaseType_t xQueueReceive( QueueHandle_t xQueue,
1428 void * const pvBuffer,
1429 TickType_t xTicksToWait )
1430 {
1431 BaseType_t xEntryTimeSet = pdFALSE;
1432 TimeOut_t xTimeOut;
1433 Queue_t * const pxQueue = xQueue;
1434
1435 /* Check the pointer is not NULL. */
1436 configASSERT( ( pxQueue ) );
1437
1438 /* The buffer into which data is received can only be NULL if the data size
1439 * is zero (so no data is copied into the buffer). */
1440 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
1441
1442 /* Cannot block if the scheduler is suspended. */
1443 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1444 {
1445 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1446 }
1447 #endif
1448
1449 /*lint -save -e904 This function relaxes the coding standard somewhat to
1450 * allow return statements within the function itself. This is done in the
1451 * interest of execution time efficiency. */
1452 for( ; ; )
1453 {
1454 taskENTER_CRITICAL();
1455 {
1456 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1457
1458 /* Is there data in the queue now? To be running the calling task
1459 * must be the highest priority task wanting to access the queue. */
1460 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
1461 {
1462 /* Data available, remove one item. */
1463 prvCopyDataFromQueue( pxQueue, pvBuffer );
1464 traceQUEUE_RECEIVE( pxQueue );
1465 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
1466
1467 /* There is now space in the queue, were any tasks waiting to
1468 * post to the queue? If so, unblock the highest priority waiting
1469 * task. */
1470 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
1471 {
1472 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
1473 {
1474 queueYIELD_IF_USING_PREEMPTION();
1475 }
1476 else
1477 {
1478 mtCOVERAGE_TEST_MARKER();
1479 }
1480 }
1481 else
1482 {
1483 mtCOVERAGE_TEST_MARKER();
1484 }
1485
1486 taskEXIT_CRITICAL();
1487 return pdPASS;
1488 }
1489 else
1490 {
1491 if( xTicksToWait == ( TickType_t ) 0 )
1492 {
1493 /* The queue was empty and no block time is specified (or
1494 * the block time has expired) so leave now. */
1495 taskEXIT_CRITICAL();
1496 traceQUEUE_RECEIVE_FAILED( pxQueue );
1497 return errQUEUE_EMPTY;
1498 }
1499 else if( xEntryTimeSet == pdFALSE )
1500 {
1501 /* The queue was empty and a block time was specified so
1502 * configure the timeout structure. */
1503 vTaskInternalSetTimeOutState( &xTimeOut );
1504 xEntryTimeSet = pdTRUE;
1505 }
1506 else
1507 {
1508 /* Entry time was already set. */
1509 mtCOVERAGE_TEST_MARKER();
1510 }
1511 }
1512 }
1513 taskEXIT_CRITICAL();
1514
1515 /* Interrupts and other tasks can send to and receive from the queue
1516 * now the critical section has been exited. */
1517
1518 vTaskSuspendAll();
1519 prvLockQueue( pxQueue );
1520
1521 /* Update the timeout state to see if it has expired yet. */
1522 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1523 {
1524 /* The timeout has not expired. If the queue is still empty place
1525 * the task on the list of tasks waiting to receive from the queue. */
1526 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1527 {
1528 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
1529 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1530 prvUnlockQueue( pxQueue );
1531
1532 if( xTaskResumeAll() == pdFALSE )
1533 {
1534 portYIELD_WITHIN_API();
1535 }
1536 else
1537 {
1538 mtCOVERAGE_TEST_MARKER();
1539 }
1540 }
1541 else
1542 {
1543 /* The queue contains data again. Loop back to try and read the
1544 * data. */
1545 prvUnlockQueue( pxQueue );
1546 ( void ) xTaskResumeAll();
1547 }
1548 }
1549 else
1550 {
1551 /* Timed out. If there is no data in the queue exit, otherwise loop
1552 * back and attempt to read the data. */
1553 prvUnlockQueue( pxQueue );
1554 ( void ) xTaskResumeAll();
1555
1556 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1557 {
1558 traceQUEUE_RECEIVE_FAILED( pxQueue );
1559 return errQUEUE_EMPTY;
1560 }
1561 else
1562 {
1563 mtCOVERAGE_TEST_MARKER();
1564 }
1565 }
1566 } /*lint -restore */
1567 }
1568 /*-----------------------------------------------------------*/
1569
xQueueSemaphoreTake(QueueHandle_t xQueue,TickType_t xTicksToWait)1570 BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue,
1571 TickType_t xTicksToWait )
1572 {
1573 BaseType_t xEntryTimeSet = pdFALSE;
1574 TimeOut_t xTimeOut;
1575 Queue_t * const pxQueue = xQueue;
1576
1577 #if ( configUSE_MUTEXES == 1 )
1578 BaseType_t xInheritanceOccurred = pdFALSE;
1579 #endif
1580
1581 /* Check the queue pointer is not NULL. */
1582 configASSERT( ( pxQueue ) );
1583
1584 /* Check this really is a semaphore, in which case the item size will be
1585 * 0. */
1586 configASSERT( pxQueue->uxItemSize == 0 );
1587
1588 /* Cannot block if the scheduler is suspended. */
1589 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1590 {
1591 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1592 }
1593 #endif
1594
1595 /*lint -save -e904 This function relaxes the coding standard somewhat to allow return
1596 * statements within the function itself. This is done in the interest
1597 * of execution time efficiency. */
1598 for( ; ; )
1599 {
1600 taskENTER_CRITICAL();
1601 {
1602 /* Semaphores are queues with an item size of 0, and where the
1603 * number of messages in the queue is the semaphore's count value. */
1604 const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting;
1605
1606 /* Is there data in the queue now? To be running the calling task
1607 * must be the highest priority task wanting to access the queue. */
1608 if( uxSemaphoreCount > ( UBaseType_t ) 0 )
1609 {
1610 traceQUEUE_RECEIVE( pxQueue );
1611
1612 /* Semaphores are queues with a data size of zero and where the
1613 * messages waiting is the semaphore's count. Reduce the count. */
1614 pxQueue->uxMessagesWaiting = uxSemaphoreCount - ( UBaseType_t ) 1;
1615
1616 #if ( configUSE_MUTEXES == 1 )
1617 {
1618 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
1619 {
1620 /* Record the information required to implement
1621 * priority inheritance should it become necessary. */
1622 pxQueue->u.xSemaphore.xMutexHolder = pvTaskIncrementMutexHeldCount();
1623 }
1624 else
1625 {
1626 mtCOVERAGE_TEST_MARKER();
1627 }
1628 }
1629 #endif /* configUSE_MUTEXES */
1630
1631 /* Check to see if other tasks are blocked waiting to give the
1632 * semaphore, and if so, unblock the highest priority such task. */
1633 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
1634 {
1635 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
1636 {
1637 queueYIELD_IF_USING_PREEMPTION();
1638 }
1639 else
1640 {
1641 mtCOVERAGE_TEST_MARKER();
1642 }
1643 }
1644 else
1645 {
1646 mtCOVERAGE_TEST_MARKER();
1647 }
1648
1649 taskEXIT_CRITICAL();
1650 return pdPASS;
1651 }
1652 else
1653 {
1654 if( xTicksToWait == ( TickType_t ) 0 )
1655 {
1656 /* The semaphore count was 0 and no block time is specified
1657 * (or the block time has expired) so exit now. */
1658 taskEXIT_CRITICAL();
1659 traceQUEUE_RECEIVE_FAILED( pxQueue );
1660 return errQUEUE_EMPTY;
1661 }
1662 else if( xEntryTimeSet == pdFALSE )
1663 {
1664 /* The semaphore count was 0 and a block time was specified
1665 * so configure the timeout structure ready to block. */
1666 vTaskInternalSetTimeOutState( &xTimeOut );
1667 xEntryTimeSet = pdTRUE;
1668 }
1669 else
1670 {
1671 /* Entry time was already set. */
1672 mtCOVERAGE_TEST_MARKER();
1673 }
1674 }
1675 }
1676 taskEXIT_CRITICAL();
1677
1678 /* Interrupts and other tasks can give to and take from the semaphore
1679 * now the critical section has been exited. */
1680
1681 vTaskSuspendAll();
1682 prvLockQueue( pxQueue );
1683
1684 /* Update the timeout state to see if it has expired yet. */
1685 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1686 {
1687 /* A block time is specified and not expired. If the semaphore
1688 * count is 0 then enter the Blocked state to wait for a semaphore to
1689 * become available. As semaphores are implemented with queues the
1690 * queue being empty is equivalent to the semaphore count being 0. */
1691 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1692 {
1693 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
1694
1695 #if ( configUSE_MUTEXES == 1 )
1696 {
1697 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
1698 {
1699 taskENTER_CRITICAL();
1700 {
1701 xInheritanceOccurred = xTaskPriorityInherit( pxQueue->u.xSemaphore.xMutexHolder );
1702 }
1703 taskEXIT_CRITICAL();
1704 }
1705 else
1706 {
1707 mtCOVERAGE_TEST_MARKER();
1708 }
1709 }
1710 #endif /* if ( configUSE_MUTEXES == 1 ) */
1711
1712 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1713 prvUnlockQueue( pxQueue );
1714
1715 if( xTaskResumeAll() == pdFALSE )
1716 {
1717 portYIELD_WITHIN_API();
1718 }
1719 else
1720 {
1721 mtCOVERAGE_TEST_MARKER();
1722 }
1723 }
1724 else
1725 {
1726 /* There was no timeout and the semaphore count was not 0, so
1727 * attempt to take the semaphore again. */
1728 prvUnlockQueue( pxQueue );
1729 ( void ) xTaskResumeAll();
1730 }
1731 }
1732 else
1733 {
1734 /* Timed out. */
1735 prvUnlockQueue( pxQueue );
1736 ( void ) xTaskResumeAll();
1737
1738 /* If the semaphore count is 0 exit now as the timeout has
1739 * expired. Otherwise return to attempt to take the semaphore that is
1740 * known to be available. As semaphores are implemented by queues the
1741 * queue being empty is equivalent to the semaphore count being 0. */
1742 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1743 {
1744 #if ( configUSE_MUTEXES == 1 )
1745 {
1746 /* xInheritanceOccurred could only have be set if
1747 * pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to
1748 * test the mutex type again to check it is actually a mutex. */
1749 if( xInheritanceOccurred != pdFALSE )
1750 {
1751 taskENTER_CRITICAL();
1752 {
1753 UBaseType_t uxHighestWaitingPriority;
1754
1755 /* This task blocking on the mutex caused another
1756 * task to inherit this task's priority. Now this task
1757 * has timed out the priority should be disinherited
1758 * again, but only as low as the next highest priority
1759 * task that is waiting for the same mutex. */
1760 uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout( pxQueue );
1761 vTaskPriorityDisinheritAfterTimeout( pxQueue->u.xSemaphore.xMutexHolder, uxHighestWaitingPriority );
1762 }
1763 taskEXIT_CRITICAL();
1764 }
1765 }
1766 #endif /* configUSE_MUTEXES */
1767
1768 traceQUEUE_RECEIVE_FAILED( pxQueue );
1769 return errQUEUE_EMPTY;
1770 }
1771 else
1772 {
1773 mtCOVERAGE_TEST_MARKER();
1774 }
1775 }
1776 } /*lint -restore */
1777 }
1778 /*-----------------------------------------------------------*/
1779
xQueuePeek(QueueHandle_t xQueue,void * const pvBuffer,TickType_t xTicksToWait)1780 BaseType_t xQueuePeek( QueueHandle_t xQueue,
1781 void * const pvBuffer,
1782 TickType_t xTicksToWait )
1783 {
1784 BaseType_t xEntryTimeSet = pdFALSE;
1785 TimeOut_t xTimeOut;
1786 int8_t * pcOriginalReadPosition;
1787 Queue_t * const pxQueue = xQueue;
1788
1789 /* Check the pointer is not NULL. */
1790 configASSERT( ( pxQueue ) );
1791
1792 /* The buffer into which data is received can only be NULL if the data size
1793 * is zero (so no data is copied into the buffer. */
1794 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
1795
1796 /* Cannot block if the scheduler is suspended. */
1797 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1798 {
1799 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1800 }
1801 #endif
1802
1803 /*lint -save -e904 This function relaxes the coding standard somewhat to
1804 * allow return statements within the function itself. This is done in the
1805 * interest of execution time efficiency. */
1806 for( ; ; )
1807 {
1808 taskENTER_CRITICAL();
1809 {
1810 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1811
1812 /* Is there data in the queue now? To be running the calling task
1813 * must be the highest priority task wanting to access the queue. */
1814 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
1815 {
1816 /* Remember the read position so it can be reset after the data
1817 * is read from the queue as this function is only peeking the
1818 * data, not removing it. */
1819 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
1820
1821 prvCopyDataFromQueue( pxQueue, pvBuffer );
1822 traceQUEUE_PEEK( pxQueue );
1823
1824 /* The data is not being removed, so reset the read pointer. */
1825 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
1826
1827 /* The data is being left in the queue, so see if there are
1828 * any other tasks waiting for the data. */
1829 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1830 {
1831 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1832 {
1833 /* The task waiting has a higher priority than this task. */
1834 queueYIELD_IF_USING_PREEMPTION();
1835 }
1836 else
1837 {
1838 mtCOVERAGE_TEST_MARKER();
1839 }
1840 }
1841 else
1842 {
1843 mtCOVERAGE_TEST_MARKER();
1844 }
1845
1846 taskEXIT_CRITICAL();
1847 return pdPASS;
1848 }
1849 else
1850 {
1851 if( xTicksToWait == ( TickType_t ) 0 )
1852 {
1853 /* The queue was empty and no block time is specified (or
1854 * the block time has expired) so leave now. */
1855 taskEXIT_CRITICAL();
1856 traceQUEUE_PEEK_FAILED( pxQueue );
1857 return errQUEUE_EMPTY;
1858 }
1859 else if( xEntryTimeSet == pdFALSE )
1860 {
1861 /* The queue was empty and a block time was specified so
1862 * configure the timeout structure ready to enter the blocked
1863 * state. */
1864 vTaskInternalSetTimeOutState( &xTimeOut );
1865 xEntryTimeSet = pdTRUE;
1866 }
1867 else
1868 {
1869 /* Entry time was already set. */
1870 mtCOVERAGE_TEST_MARKER();
1871 }
1872 }
1873 }
1874 taskEXIT_CRITICAL();
1875
1876 /* Interrupts and other tasks can send to and receive from the queue
1877 * now that the critical section has been exited. */
1878
1879 vTaskSuspendAll();
1880 prvLockQueue( pxQueue );
1881
1882 /* Update the timeout state to see if it has expired yet. */
1883 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1884 {
1885 /* Timeout has not expired yet, check to see if there is data in the
1886 * queue now, and if not enter the Blocked state to wait for data. */
1887 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1888 {
1889 traceBLOCKING_ON_QUEUE_PEEK( pxQueue );
1890 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1891 prvUnlockQueue( pxQueue );
1892
1893 if( xTaskResumeAll() == pdFALSE )
1894 {
1895 portYIELD_WITHIN_API();
1896 }
1897 else
1898 {
1899 mtCOVERAGE_TEST_MARKER();
1900 }
1901 }
1902 else
1903 {
1904 /* There is data in the queue now, so don't enter the blocked
1905 * state, instead return to try and obtain the data. */
1906 prvUnlockQueue( pxQueue );
1907 ( void ) xTaskResumeAll();
1908 }
1909 }
1910 else
1911 {
1912 /* The timeout has expired. If there is still no data in the queue
1913 * exit, otherwise go back and try to read the data again. */
1914 prvUnlockQueue( pxQueue );
1915 ( void ) xTaskResumeAll();
1916
1917 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1918 {
1919 traceQUEUE_PEEK_FAILED( pxQueue );
1920 return errQUEUE_EMPTY;
1921 }
1922 else
1923 {
1924 mtCOVERAGE_TEST_MARKER();
1925 }
1926 }
1927 } /*lint -restore */
1928 }
1929 /*-----------------------------------------------------------*/
1930
xQueueReceiveFromISR(QueueHandle_t xQueue,void * const pvBuffer,BaseType_t * const pxHigherPriorityTaskWoken)1931 BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue,
1932 void * const pvBuffer,
1933 BaseType_t * const pxHigherPriorityTaskWoken )
1934 {
1935 BaseType_t xReturn;
1936 UBaseType_t uxSavedInterruptStatus;
1937 Queue_t * const pxQueue = xQueue;
1938
1939 configASSERT( pxQueue );
1940 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
1941
1942 /* RTOS ports that support interrupt nesting have the concept of a maximum
1943 * system call (or maximum API call) interrupt priority. Interrupts that are
1944 * above the maximum system call priority are kept permanently enabled, even
1945 * when the RTOS kernel is in a critical section, but cannot make any calls to
1946 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
1947 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1948 * failure if a FreeRTOS API function is called from an interrupt that has been
1949 * assigned a priority above the configured maximum system call priority.
1950 * Only FreeRTOS functions that end in FromISR can be called from interrupts
1951 * that have been assigned a priority at or (logically) below the maximum
1952 * system call interrupt priority. FreeRTOS maintains a separate interrupt
1953 * safe API to ensure interrupt entry is as fast and as simple as possible.
1954 * More information (albeit Cortex-M specific) is provided on the following
1955 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1956 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1957
1958 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
1959 {
1960 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1961
1962 /* Cannot block in an ISR, so check there is data available. */
1963 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
1964 {
1965 const int8_t cRxLock = pxQueue->cRxLock;
1966
1967 traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
1968
1969 prvCopyDataFromQueue( pxQueue, pvBuffer );
1970 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
1971
1972 /* If the queue is locked the event list will not be modified.
1973 * Instead update the lock count so the task that unlocks the queue
1974 * will know that an ISR has removed data while the queue was
1975 * locked. */
1976 if( cRxLock == queueUNLOCKED )
1977 {
1978 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
1979 {
1980 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
1981 {
1982 /* The task waiting has a higher priority than us so
1983 * force a context switch. */
1984 if( pxHigherPriorityTaskWoken != NULL )
1985 {
1986 *pxHigherPriorityTaskWoken = pdTRUE;
1987 }
1988 else
1989 {
1990 mtCOVERAGE_TEST_MARKER();
1991 }
1992 }
1993 else
1994 {
1995 mtCOVERAGE_TEST_MARKER();
1996 }
1997 }
1998 else
1999 {
2000 mtCOVERAGE_TEST_MARKER();
2001 }
2002 }
2003 else
2004 {
2005 /* Increment the lock count so the task that unlocks the queue
2006 * knows that data was removed while it was locked. */
2007 prvIncrementQueueRxLock( pxQueue, cRxLock );
2008 }
2009
2010 xReturn = pdPASS;
2011 }
2012 else
2013 {
2014 xReturn = pdFAIL;
2015 traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
2016 }
2017 }
2018 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
2019
2020 return xReturn;
2021 }
2022 /*-----------------------------------------------------------*/
2023
xQueuePeekFromISR(QueueHandle_t xQueue,void * const pvBuffer)2024 BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue,
2025 void * const pvBuffer )
2026 {
2027 BaseType_t xReturn;
2028 UBaseType_t uxSavedInterruptStatus;
2029 int8_t * pcOriginalReadPosition;
2030 Queue_t * const pxQueue = xQueue;
2031
2032 configASSERT( pxQueue );
2033 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
2034 configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
2035
2036 /* RTOS ports that support interrupt nesting have the concept of a maximum
2037 * system call (or maximum API call) interrupt priority. Interrupts that are
2038 * above the maximum system call priority are kept permanently enabled, even
2039 * when the RTOS kernel is in a critical section, but cannot make any calls to
2040 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
2041 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2042 * failure if a FreeRTOS API function is called from an interrupt that has been
2043 * assigned a priority above the configured maximum system call priority.
2044 * Only FreeRTOS functions that end in FromISR can be called from interrupts
2045 * that have been assigned a priority at or (logically) below the maximum
2046 * system call interrupt priority. FreeRTOS maintains a separate interrupt
2047 * safe API to ensure interrupt entry is as fast and as simple as possible.
2048 * More information (albeit Cortex-M specific) is provided on the following
2049 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2050 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2051
2052 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
2053 {
2054 /* Cannot block in an ISR, so check there is data available. */
2055 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2056 {
2057 traceQUEUE_PEEK_FROM_ISR( pxQueue );
2058
2059 /* Remember the read position so it can be reset as nothing is
2060 * actually being removed from the queue. */
2061 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
2062 prvCopyDataFromQueue( pxQueue, pvBuffer );
2063 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
2064
2065 xReturn = pdPASS;
2066 }
2067 else
2068 {
2069 xReturn = pdFAIL;
2070 traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
2071 }
2072 }
2073 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
2074
2075 return xReturn;
2076 }
2077 /*-----------------------------------------------------------*/
2078
uxQueueMessagesWaiting(const QueueHandle_t xQueue)2079 UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
2080 {
2081 UBaseType_t uxReturn;
2082
2083 configASSERT( xQueue );
2084
2085 taskENTER_CRITICAL();
2086 {
2087 uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
2088 }
2089 taskEXIT_CRITICAL();
2090
2091 return uxReturn;
2092 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
2093 /*-----------------------------------------------------------*/
2094
uxQueueSpacesAvailable(const QueueHandle_t xQueue)2095 UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
2096 {
2097 UBaseType_t uxReturn;
2098 Queue_t * const pxQueue = xQueue;
2099
2100 configASSERT( pxQueue );
2101
2102 taskENTER_CRITICAL();
2103 {
2104 uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting;
2105 }
2106 taskEXIT_CRITICAL();
2107
2108 return uxReturn;
2109 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
2110 /*-----------------------------------------------------------*/
2111
uxQueueMessagesWaitingFromISR(const QueueHandle_t xQueue)2112 UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
2113 {
2114 UBaseType_t uxReturn;
2115 Queue_t * const pxQueue = xQueue;
2116
2117 configASSERT( pxQueue );
2118 uxReturn = pxQueue->uxMessagesWaiting;
2119
2120 return uxReturn;
2121 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
2122 /*-----------------------------------------------------------*/
2123
vQueueDelete(QueueHandle_t xQueue)2124 void vQueueDelete( QueueHandle_t xQueue )
2125 {
2126 Queue_t * const pxQueue = xQueue;
2127
2128 configASSERT( pxQueue );
2129 traceQUEUE_DELETE( pxQueue );
2130
2131 #if ( configQUEUE_REGISTRY_SIZE > 0 )
2132 {
2133 vQueueUnregisterQueue( pxQueue );
2134 }
2135 #endif
2136
2137 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
2138 {
2139 /* The queue can only have been allocated dynamically - free it
2140 * again. */
2141 vPortFree( pxQueue );
2142 }
2143 #elif ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
2144 {
2145 /* The queue could have been allocated statically or dynamically, so
2146 * check before attempting to free the memory. */
2147 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
2148 {
2149 vPortFree( pxQueue );
2150 }
2151 else
2152 {
2153 mtCOVERAGE_TEST_MARKER();
2154 }
2155 }
2156 #else /* if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) */
2157 {
2158 /* The queue must have been statically allocated, so is not going to be
2159 * deleted. Avoid compiler warnings about the unused parameter. */
2160 ( void ) pxQueue;
2161 }
2162 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
2163 }
2164 /*-----------------------------------------------------------*/
2165
2166 #if ( configUSE_TRACE_FACILITY == 1 )
2167
uxQueueGetQueueNumber(QueueHandle_t xQueue)2168 UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
2169 {
2170 return ( ( Queue_t * ) xQueue )->uxQueueNumber;
2171 }
2172
2173 #endif /* configUSE_TRACE_FACILITY */
2174 /*-----------------------------------------------------------*/
2175
2176 #if ( configUSE_TRACE_FACILITY == 1 )
2177
vQueueSetQueueNumber(QueueHandle_t xQueue,UBaseType_t uxQueueNumber)2178 void vQueueSetQueueNumber( QueueHandle_t xQueue,
2179 UBaseType_t uxQueueNumber )
2180 {
2181 ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
2182 }
2183
2184 #endif /* configUSE_TRACE_FACILITY */
2185 /*-----------------------------------------------------------*/
2186
2187 #if ( configUSE_TRACE_FACILITY == 1 )
2188
ucQueueGetQueueType(QueueHandle_t xQueue)2189 uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
2190 {
2191 return ( ( Queue_t * ) xQueue )->ucQueueType;
2192 }
2193
2194 #endif /* configUSE_TRACE_FACILITY */
2195 /*-----------------------------------------------------------*/
2196
uxQueueGetQueueItemSize(QueueHandle_t xQueue)2197 UBaseType_t uxQueueGetQueueItemSize( QueueHandle_t xQueue ) /* PRIVILEGED_FUNCTION */
2198 {
2199 return ( ( Queue_t * ) xQueue )->uxItemSize;
2200 }
2201 /*-----------------------------------------------------------*/
2202
uxQueueGetQueueLength(QueueHandle_t xQueue)2203 UBaseType_t uxQueueGetQueueLength( QueueHandle_t xQueue ) /* PRIVILEGED_FUNCTION */
2204 {
2205 return ( ( Queue_t * ) xQueue )->uxLength;
2206 }
2207 /*-----------------------------------------------------------*/
2208
2209 #if ( configUSE_MUTEXES == 1 )
2210
prvGetDisinheritPriorityAfterTimeout(const Queue_t * const pxQueue)2211 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue )
2212 {
2213 UBaseType_t uxHighestPriorityOfWaitingTasks;
2214
2215 /* If a task waiting for a mutex causes the mutex holder to inherit a
2216 * priority, but the waiting task times out, then the holder should
2217 * disinherit the priority - but only down to the highest priority of any
2218 * other tasks that are waiting for the same mutex. For this purpose,
2219 * return the priority of the highest priority task that is waiting for the
2220 * mutex. */
2221 if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0U )
2222 {
2223 uxHighestPriorityOfWaitingTasks = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) );
2224 }
2225 else
2226 {
2227 uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY;
2228 }
2229
2230 return uxHighestPriorityOfWaitingTasks;
2231 }
2232
2233 #endif /* configUSE_MUTEXES */
2234 /*-----------------------------------------------------------*/
2235
prvCopyDataToQueue(Queue_t * const pxQueue,const void * pvItemToQueue,const BaseType_t xPosition)2236 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
2237 const void * pvItemToQueue,
2238 const BaseType_t xPosition )
2239 {
2240 BaseType_t xReturn = pdFALSE;
2241 UBaseType_t uxMessagesWaiting;
2242
2243 /* This function is called from a critical section. */
2244
2245 uxMessagesWaiting = pxQueue->uxMessagesWaiting;
2246
2247 if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
2248 {
2249 #if ( configUSE_MUTEXES == 1 )
2250 {
2251 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
2252 {
2253 /* The mutex is no longer being held. */
2254 xReturn = xTaskPriorityDisinherit( pxQueue->u.xSemaphore.xMutexHolder );
2255 pxQueue->u.xSemaphore.xMutexHolder = NULL;
2256 }
2257 else
2258 {
2259 mtCOVERAGE_TEST_MARKER();
2260 }
2261 }
2262 #endif /* configUSE_MUTEXES */
2263 }
2264 else if( xPosition == queueSEND_TO_BACK )
2265 {
2266 ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
2267 pxQueue->pcWriteTo += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
2268
2269 if( pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
2270 {
2271 pxQueue->pcWriteTo = pxQueue->pcHead;
2272 }
2273 else
2274 {
2275 mtCOVERAGE_TEST_MARKER();
2276 }
2277 }
2278 else
2279 {
2280 ( void ) memcpy( ( void * ) pxQueue->u.xQueue.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e9087 !e418 MISRA exception as the casts are only redundant for some ports. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. Assert checks null pointer only used when length is 0. */
2281 pxQueue->u.xQueue.pcReadFrom -= pxQueue->uxItemSize;
2282
2283 if( pxQueue->u.xQueue.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
2284 {
2285 pxQueue->u.xQueue.pcReadFrom = ( pxQueue->u.xQueue.pcTail - pxQueue->uxItemSize );
2286 }
2287 else
2288 {
2289 mtCOVERAGE_TEST_MARKER();
2290 }
2291
2292 if( xPosition == queueOVERWRITE )
2293 {
2294 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
2295 {
2296 /* An item is not being added but overwritten, so subtract
2297 * one from the recorded number of items in the queue so when
2298 * one is added again below the number of recorded items remains
2299 * correct. */
2300 --uxMessagesWaiting;
2301 }
2302 else
2303 {
2304 mtCOVERAGE_TEST_MARKER();
2305 }
2306 }
2307 else
2308 {
2309 mtCOVERAGE_TEST_MARKER();
2310 }
2311 }
2312
2313 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
2314
2315 return xReturn;
2316 }
2317 /*-----------------------------------------------------------*/
2318
prvCopyDataFromQueue(Queue_t * const pxQueue,void * const pvBuffer)2319 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
2320 void * const pvBuffer )
2321 {
2322 if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
2323 {
2324 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
2325
2326 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
2327 {
2328 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2329 }
2330 else
2331 {
2332 mtCOVERAGE_TEST_MARKER();
2333 }
2334
2335 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
2336 }
2337 }
2338 /*-----------------------------------------------------------*/
2339
prvUnlockQueue(Queue_t * const pxQueue)2340 static void prvUnlockQueue( Queue_t * const pxQueue )
2341 {
2342 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
2343
2344 /* The lock counts contains the number of extra data items placed or
2345 * removed from the queue while the queue was locked. When a queue is
2346 * locked items can be added or removed, but the event lists cannot be
2347 * updated. */
2348 taskENTER_CRITICAL();
2349 {
2350 int8_t cTxLock = pxQueue->cTxLock;
2351
2352 /* See if data was added to the queue while it was locked. */
2353 while( cTxLock > queueLOCKED_UNMODIFIED )
2354 {
2355 /* Data was posted while the queue was locked. Are any tasks
2356 * blocked waiting for data to become available? */
2357 #if ( configUSE_QUEUE_SETS == 1 )
2358 {
2359 if( pxQueue->pxQueueSetContainer != NULL )
2360 {
2361 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
2362 {
2363 /* The queue is a member of a queue set, and posting to
2364 * the queue set caused a higher priority task to unblock.
2365 * A context switch is required. */
2366 vTaskMissedYield();
2367 }
2368 else
2369 {
2370 mtCOVERAGE_TEST_MARKER();
2371 }
2372 }
2373 else
2374 {
2375 /* Tasks that are removed from the event list will get
2376 * added to the pending ready list as the scheduler is still
2377 * suspended. */
2378 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2379 {
2380 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2381 {
2382 /* The task waiting has a higher priority so record that a
2383 * context switch is required. */
2384 vTaskMissedYield();
2385 }
2386 else
2387 {
2388 mtCOVERAGE_TEST_MARKER();
2389 }
2390 }
2391 else
2392 {
2393 break;
2394 }
2395 }
2396 }
2397 #else /* configUSE_QUEUE_SETS */
2398 {
2399 /* Tasks that are removed from the event list will get added to
2400 * the pending ready list as the scheduler is still suspended. */
2401 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2402 {
2403 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2404 {
2405 /* The task waiting has a higher priority so record that
2406 * a context switch is required. */
2407 vTaskMissedYield();
2408 }
2409 else
2410 {
2411 mtCOVERAGE_TEST_MARKER();
2412 }
2413 }
2414 else
2415 {
2416 break;
2417 }
2418 }
2419 #endif /* configUSE_QUEUE_SETS */
2420
2421 --cTxLock;
2422 }
2423
2424 pxQueue->cTxLock = queueUNLOCKED;
2425 }
2426 taskEXIT_CRITICAL();
2427
2428 /* Do the same for the Rx lock. */
2429 taskENTER_CRITICAL();
2430 {
2431 int8_t cRxLock = pxQueue->cRxLock;
2432
2433 while( cRxLock > queueLOCKED_UNMODIFIED )
2434 {
2435 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2436 {
2437 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2438 {
2439 vTaskMissedYield();
2440 }
2441 else
2442 {
2443 mtCOVERAGE_TEST_MARKER();
2444 }
2445
2446 --cRxLock;
2447 }
2448 else
2449 {
2450 break;
2451 }
2452 }
2453
2454 pxQueue->cRxLock = queueUNLOCKED;
2455 }
2456 taskEXIT_CRITICAL();
2457 }
2458 /*-----------------------------------------------------------*/
2459
prvIsQueueEmpty(const Queue_t * pxQueue)2460 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue )
2461 {
2462 BaseType_t xReturn;
2463
2464 taskENTER_CRITICAL();
2465 {
2466 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2467 {
2468 xReturn = pdTRUE;
2469 }
2470 else
2471 {
2472 xReturn = pdFALSE;
2473 }
2474 }
2475 taskEXIT_CRITICAL();
2476
2477 return xReturn;
2478 }
2479 /*-----------------------------------------------------------*/
2480
xQueueIsQueueEmptyFromISR(const QueueHandle_t xQueue)2481 BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
2482 {
2483 BaseType_t xReturn;
2484 Queue_t * const pxQueue = xQueue;
2485
2486 configASSERT( pxQueue );
2487
2488 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2489 {
2490 xReturn = pdTRUE;
2491 }
2492 else
2493 {
2494 xReturn = pdFALSE;
2495 }
2496
2497 return xReturn;
2498 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
2499 /*-----------------------------------------------------------*/
2500
prvIsQueueFull(const Queue_t * pxQueue)2501 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue )
2502 {
2503 BaseType_t xReturn;
2504
2505 taskENTER_CRITICAL();
2506 {
2507 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
2508 {
2509 xReturn = pdTRUE;
2510 }
2511 else
2512 {
2513 xReturn = pdFALSE;
2514 }
2515 }
2516 taskEXIT_CRITICAL();
2517
2518 return xReturn;
2519 }
2520 /*-----------------------------------------------------------*/
2521
xQueueIsQueueFullFromISR(const QueueHandle_t xQueue)2522 BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
2523 {
2524 BaseType_t xReturn;
2525 Queue_t * const pxQueue = xQueue;
2526
2527 configASSERT( pxQueue );
2528
2529 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
2530 {
2531 xReturn = pdTRUE;
2532 }
2533 else
2534 {
2535 xReturn = pdFALSE;
2536 }
2537
2538 return xReturn;
2539 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
2540 /*-----------------------------------------------------------*/
2541
2542 #if ( configUSE_CO_ROUTINES == 1 )
2543
xQueueCRSend(QueueHandle_t xQueue,const void * pvItemToQueue,TickType_t xTicksToWait)2544 BaseType_t xQueueCRSend( QueueHandle_t xQueue,
2545 const void * pvItemToQueue,
2546 TickType_t xTicksToWait )
2547 {
2548 BaseType_t xReturn;
2549 Queue_t * const pxQueue = xQueue;
2550
2551 /* If the queue is already full we may have to block. A critical section
2552 * is required to prevent an interrupt removing something from the queue
2553 * between the check to see if the queue is full and blocking on the queue. */
2554 portDISABLE_INTERRUPTS();
2555 {
2556 if( prvIsQueueFull( pxQueue ) != pdFALSE )
2557 {
2558 /* The queue is full - do we want to block or just leave without
2559 * posting? */
2560 if( xTicksToWait > ( TickType_t ) 0 )
2561 {
2562 /* As this is called from a coroutine we cannot block directly, but
2563 * return indicating that we need to block. */
2564 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
2565 portENABLE_INTERRUPTS();
2566 return errQUEUE_BLOCKED;
2567 }
2568 else
2569 {
2570 portENABLE_INTERRUPTS();
2571 return errQUEUE_FULL;
2572 }
2573 }
2574 }
2575 portENABLE_INTERRUPTS();
2576
2577 portDISABLE_INTERRUPTS();
2578 {
2579 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
2580 {
2581 /* There is room in the queue, copy the data into the queue. */
2582 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
2583 xReturn = pdPASS;
2584
2585 /* Were any co-routines waiting for data to become available? */
2586 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2587 {
2588 /* In this instance the co-routine could be placed directly
2589 * into the ready list as we are within a critical section.
2590 * Instead the same pending ready list mechanism is used as if
2591 * the event were caused from within an interrupt. */
2592 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2593 {
2594 /* The co-routine waiting has a higher priority so record
2595 * that a yield might be appropriate. */
2596 xReturn = errQUEUE_YIELD;
2597 }
2598 else
2599 {
2600 mtCOVERAGE_TEST_MARKER();
2601 }
2602 }
2603 else
2604 {
2605 mtCOVERAGE_TEST_MARKER();
2606 }
2607 }
2608 else
2609 {
2610 xReturn = errQUEUE_FULL;
2611 }
2612 }
2613 portENABLE_INTERRUPTS();
2614
2615 return xReturn;
2616 }
2617
2618 #endif /* configUSE_CO_ROUTINES */
2619 /*-----------------------------------------------------------*/
2620
2621 #if ( configUSE_CO_ROUTINES == 1 )
2622
xQueueCRReceive(QueueHandle_t xQueue,void * pvBuffer,TickType_t xTicksToWait)2623 BaseType_t xQueueCRReceive( QueueHandle_t xQueue,
2624 void * pvBuffer,
2625 TickType_t xTicksToWait )
2626 {
2627 BaseType_t xReturn;
2628 Queue_t * const pxQueue = xQueue;
2629
2630 /* If the queue is already empty we may have to block. A critical section
2631 * is required to prevent an interrupt adding something to the queue
2632 * between the check to see if the queue is empty and blocking on the queue. */
2633 portDISABLE_INTERRUPTS();
2634 {
2635 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2636 {
2637 /* There are no messages in the queue, do we want to block or just
2638 * leave with nothing? */
2639 if( xTicksToWait > ( TickType_t ) 0 )
2640 {
2641 /* As this is a co-routine we cannot block directly, but return
2642 * indicating that we need to block. */
2643 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
2644 portENABLE_INTERRUPTS();
2645 return errQUEUE_BLOCKED;
2646 }
2647 else
2648 {
2649 portENABLE_INTERRUPTS();
2650 return errQUEUE_FULL;
2651 }
2652 }
2653 else
2654 {
2655 mtCOVERAGE_TEST_MARKER();
2656 }
2657 }
2658 portENABLE_INTERRUPTS();
2659
2660 portDISABLE_INTERRUPTS();
2661 {
2662 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2663 {
2664 /* Data is available from the queue. */
2665 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
2666
2667 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
2668 {
2669 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2670 }
2671 else
2672 {
2673 mtCOVERAGE_TEST_MARKER();
2674 }
2675
2676 --( pxQueue->uxMessagesWaiting );
2677 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
2678
2679 xReturn = pdPASS;
2680
2681 /* Were any co-routines waiting for space to become available? */
2682 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2683 {
2684 /* In this instance the co-routine could be placed directly
2685 * into the ready list as we are within a critical section.
2686 * Instead the same pending ready list mechanism is used as if
2687 * the event were caused from within an interrupt. */
2688 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2689 {
2690 xReturn = errQUEUE_YIELD;
2691 }
2692 else
2693 {
2694 mtCOVERAGE_TEST_MARKER();
2695 }
2696 }
2697 else
2698 {
2699 mtCOVERAGE_TEST_MARKER();
2700 }
2701 }
2702 else
2703 {
2704 xReturn = pdFAIL;
2705 }
2706 }
2707 portENABLE_INTERRUPTS();
2708
2709 return xReturn;
2710 }
2711
2712 #endif /* configUSE_CO_ROUTINES */
2713 /*-----------------------------------------------------------*/
2714
2715 #if ( configUSE_CO_ROUTINES == 1 )
2716
xQueueCRSendFromISR(QueueHandle_t xQueue,const void * pvItemToQueue,BaseType_t xCoRoutinePreviouslyWoken)2717 BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue,
2718 const void * pvItemToQueue,
2719 BaseType_t xCoRoutinePreviouslyWoken )
2720 {
2721 Queue_t * const pxQueue = xQueue;
2722
2723 /* Cannot block within an ISR so if there is no space on the queue then
2724 * exit without doing anything. */
2725 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
2726 {
2727 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
2728
2729 /* We only want to wake one co-routine per ISR, so check that a
2730 * co-routine has not already been woken. */
2731 if( xCoRoutinePreviouslyWoken == pdFALSE )
2732 {
2733 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2734 {
2735 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2736 {
2737 return pdTRUE;
2738 }
2739 else
2740 {
2741 mtCOVERAGE_TEST_MARKER();
2742 }
2743 }
2744 else
2745 {
2746 mtCOVERAGE_TEST_MARKER();
2747 }
2748 }
2749 else
2750 {
2751 mtCOVERAGE_TEST_MARKER();
2752 }
2753 }
2754 else
2755 {
2756 mtCOVERAGE_TEST_MARKER();
2757 }
2758
2759 return xCoRoutinePreviouslyWoken;
2760 }
2761
2762 #endif /* configUSE_CO_ROUTINES */
2763 /*-----------------------------------------------------------*/
2764
2765 #if ( configUSE_CO_ROUTINES == 1 )
2766
xQueueCRReceiveFromISR(QueueHandle_t xQueue,void * pvBuffer,BaseType_t * pxCoRoutineWoken)2767 BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue,
2768 void * pvBuffer,
2769 BaseType_t * pxCoRoutineWoken )
2770 {
2771 BaseType_t xReturn;
2772 Queue_t * const pxQueue = xQueue;
2773
2774 /* We cannot block from an ISR, so check there is data available. If
2775 * not then just leave without doing anything. */
2776 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2777 {
2778 /* Copy the data from the queue. */
2779 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
2780
2781 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
2782 {
2783 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2784 }
2785 else
2786 {
2787 mtCOVERAGE_TEST_MARKER();
2788 }
2789
2790 --( pxQueue->uxMessagesWaiting );
2791 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
2792
2793 if( ( *pxCoRoutineWoken ) == pdFALSE )
2794 {
2795 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2796 {
2797 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2798 {
2799 *pxCoRoutineWoken = pdTRUE;
2800 }
2801 else
2802 {
2803 mtCOVERAGE_TEST_MARKER();
2804 }
2805 }
2806 else
2807 {
2808 mtCOVERAGE_TEST_MARKER();
2809 }
2810 }
2811 else
2812 {
2813 mtCOVERAGE_TEST_MARKER();
2814 }
2815
2816 xReturn = pdPASS;
2817 }
2818 else
2819 {
2820 xReturn = pdFAIL;
2821 }
2822
2823 return xReturn;
2824 }
2825
2826 #endif /* configUSE_CO_ROUTINES */
2827 /*-----------------------------------------------------------*/
2828
2829 #if ( configQUEUE_REGISTRY_SIZE > 0 )
2830
vQueueAddToRegistry(QueueHandle_t xQueue,const char * pcQueueName)2831 void vQueueAddToRegistry( QueueHandle_t xQueue,
2832 const char * pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
2833 {
2834 UBaseType_t ux;
2835 QueueRegistryItem_t * pxEntryToWrite = NULL;
2836
2837 configASSERT( xQueue );
2838
2839 if( pcQueueName != NULL )
2840 {
2841 /* See if there is an empty space in the registry. A NULL name denotes
2842 * a free slot. */
2843 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
2844 {
2845 /* Replace an existing entry if the queue is already in the registry. */
2846 if( xQueue == xQueueRegistry[ ux ].xHandle )
2847 {
2848 pxEntryToWrite = &( xQueueRegistry[ ux ] );
2849 break;
2850 }
2851 /* Otherwise, store in the next empty location */
2852 else if( ( pxEntryToWrite == NULL ) && ( xQueueRegistry[ ux ].pcQueueName == NULL ) )
2853 {
2854 pxEntryToWrite = &( xQueueRegistry[ ux ] );
2855 }
2856 else
2857 {
2858 mtCOVERAGE_TEST_MARKER();
2859 }
2860 }
2861 }
2862
2863 if( pxEntryToWrite != NULL )
2864 {
2865 /* Store the information on this queue. */
2866 pxEntryToWrite->pcQueueName = pcQueueName;
2867 pxEntryToWrite->xHandle = xQueue;
2868
2869 traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
2870 }
2871 }
2872
2873 #endif /* configQUEUE_REGISTRY_SIZE */
2874 /*-----------------------------------------------------------*/
2875
2876 #if ( configQUEUE_REGISTRY_SIZE > 0 )
2877
pcQueueGetName(QueueHandle_t xQueue)2878 const char * pcQueueGetName( QueueHandle_t xQueue ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
2879 {
2880 UBaseType_t ux;
2881 const char * pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
2882
2883 configASSERT( xQueue );
2884
2885 /* Note there is nothing here to protect against another task adding or
2886 * removing entries from the registry while it is being searched. */
2887
2888 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
2889 {
2890 if( xQueueRegistry[ ux ].xHandle == xQueue )
2891 {
2892 pcReturn = xQueueRegistry[ ux ].pcQueueName;
2893 break;
2894 }
2895 else
2896 {
2897 mtCOVERAGE_TEST_MARKER();
2898 }
2899 }
2900
2901 return pcReturn;
2902 } /*lint !e818 xQueue cannot be a pointer to const because it is a typedef. */
2903
2904 #endif /* configQUEUE_REGISTRY_SIZE */
2905 /*-----------------------------------------------------------*/
2906
2907 #if ( configQUEUE_REGISTRY_SIZE > 0 )
2908
vQueueUnregisterQueue(QueueHandle_t xQueue)2909 void vQueueUnregisterQueue( QueueHandle_t xQueue )
2910 {
2911 UBaseType_t ux;
2912
2913 configASSERT( xQueue );
2914
2915 /* See if the handle of the queue being unregistered in actually in the
2916 * registry. */
2917 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
2918 {
2919 if( xQueueRegistry[ ux ].xHandle == xQueue )
2920 {
2921 /* Set the name to NULL to show that this slot if free again. */
2922 xQueueRegistry[ ux ].pcQueueName = NULL;
2923
2924 /* Set the handle to NULL to ensure the same queue handle cannot
2925 * appear in the registry twice if it is added, removed, then
2926 * added again. */
2927 xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
2928 break;
2929 }
2930 else
2931 {
2932 mtCOVERAGE_TEST_MARKER();
2933 }
2934 }
2935 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
2936
2937 #endif /* configQUEUE_REGISTRY_SIZE */
2938 /*-----------------------------------------------------------*/
2939
2940 #if ( configUSE_TIMERS == 1 )
2941
vQueueWaitForMessageRestricted(QueueHandle_t xQueue,TickType_t xTicksToWait,const BaseType_t xWaitIndefinitely)2942 void vQueueWaitForMessageRestricted( QueueHandle_t xQueue,
2943 TickType_t xTicksToWait,
2944 const BaseType_t xWaitIndefinitely )
2945 {
2946 Queue_t * const pxQueue = xQueue;
2947
2948 /* This function should not be called by application code hence the
2949 * 'Restricted' in its name. It is not part of the public API. It is
2950 * designed for use by kernel code, and has special calling requirements.
2951 * It can result in vListInsert() being called on a list that can only
2952 * possibly ever have one item in it, so the list will be fast, but even
2953 * so it should be called with the scheduler locked and not from a critical
2954 * section. */
2955
2956 /* Only do anything if there are no messages in the queue. This function
2957 * will not actually cause the task to block, just place it on a blocked
2958 * list. It will not block until the scheduler is unlocked - at which
2959 * time a yield will be performed. If an item is added to the queue while
2960 * the queue is locked, and the calling task blocks on the queue, then the
2961 * calling task will be immediately unblocked when the queue is unlocked. */
2962 prvLockQueue( pxQueue );
2963
2964 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
2965 {
2966 /* There is nothing in the queue, block for the specified period. */
2967 vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
2968 }
2969 else
2970 {
2971 mtCOVERAGE_TEST_MARKER();
2972 }
2973
2974 prvUnlockQueue( pxQueue );
2975 }
2976
2977 #endif /* configUSE_TIMERS */
2978 /*-----------------------------------------------------------*/
2979
2980 #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
2981
xQueueCreateSet(const UBaseType_t uxEventQueueLength)2982 QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
2983 {
2984 QueueSetHandle_t pxQueue;
2985
2986 pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
2987
2988 return pxQueue;
2989 }
2990
2991 #endif /* configUSE_QUEUE_SETS */
2992 /*-----------------------------------------------------------*/
2993
2994 #if ( configUSE_QUEUE_SETS == 1 )
2995
xQueueAddToSet(QueueSetMemberHandle_t xQueueOrSemaphore,QueueSetHandle_t xQueueSet)2996 BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore,
2997 QueueSetHandle_t xQueueSet )
2998 {
2999 BaseType_t xReturn;
3000
3001 taskENTER_CRITICAL();
3002 {
3003 if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
3004 {
3005 /* Cannot add a queue/semaphore to more than one queue set. */
3006 xReturn = pdFAIL;
3007 }
3008 else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
3009 {
3010 /* Cannot add a queue/semaphore to a queue set if there are already
3011 * items in the queue/semaphore. */
3012 xReturn = pdFAIL;
3013 }
3014 else
3015 {
3016 ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
3017 xReturn = pdPASS;
3018 }
3019 }
3020 taskEXIT_CRITICAL();
3021
3022 return xReturn;
3023 }
3024
3025 #endif /* configUSE_QUEUE_SETS */
3026 /*-----------------------------------------------------------*/
3027
3028 #if ( configUSE_QUEUE_SETS == 1 )
3029
xQueueRemoveFromSet(QueueSetMemberHandle_t xQueueOrSemaphore,QueueSetHandle_t xQueueSet)3030 BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore,
3031 QueueSetHandle_t xQueueSet )
3032 {
3033 BaseType_t xReturn;
3034 Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
3035
3036 if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
3037 {
3038 /* The queue was not a member of the set. */
3039 xReturn = pdFAIL;
3040 }
3041 else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
3042 {
3043 /* It is dangerous to remove a queue from a set when the queue is
3044 * not empty because the queue set will still hold pending events for
3045 * the queue. */
3046 xReturn = pdFAIL;
3047 }
3048 else
3049 {
3050 taskENTER_CRITICAL();
3051 {
3052 /* The queue is no longer contained in the set. */
3053 pxQueueOrSemaphore->pxQueueSetContainer = NULL;
3054 }
3055 taskEXIT_CRITICAL();
3056 xReturn = pdPASS;
3057 }
3058
3059 return xReturn;
3060 } /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
3061
3062 #endif /* configUSE_QUEUE_SETS */
3063 /*-----------------------------------------------------------*/
3064
3065 #if ( configUSE_QUEUE_SETS == 1 )
3066
xQueueSelectFromSet(QueueSetHandle_t xQueueSet,TickType_t const xTicksToWait)3067 QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet,
3068 TickType_t const xTicksToWait )
3069 {
3070 QueueSetMemberHandle_t xReturn = NULL;
3071
3072 ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait ); /*lint !e961 Casting from one typedef to another is not redundant. */
3073 return xReturn;
3074 }
3075
3076 #endif /* configUSE_QUEUE_SETS */
3077 /*-----------------------------------------------------------*/
3078
3079 #if ( configUSE_QUEUE_SETS == 1 )
3080
xQueueSelectFromSetFromISR(QueueSetHandle_t xQueueSet)3081 QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
3082 {
3083 QueueSetMemberHandle_t xReturn = NULL;
3084
3085 ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */
3086 return xReturn;
3087 }
3088
3089 #endif /* configUSE_QUEUE_SETS */
3090 /*-----------------------------------------------------------*/
3091
3092 #if ( configUSE_QUEUE_SETS == 1 )
3093
prvNotifyQueueSetContainer(const Queue_t * const pxQueue)3094 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue )
3095 {
3096 Queue_t * pxQueueSetContainer = pxQueue->pxQueueSetContainer;
3097 BaseType_t xReturn = pdFALSE;
3098
3099 /* This function must be called form a critical section. */
3100
3101 /* The following line is not reachable in unit tests because every call
3102 * to prvNotifyQueueSetContainer is preceded by a check that
3103 * pxQueueSetContainer != NULL */
3104 configASSERT( pxQueueSetContainer ); /* LCOV_EXCL_BR_LINE */
3105 configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
3106
3107 if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
3108 {
3109 const int8_t cTxLock = pxQueueSetContainer->cTxLock;
3110
3111 traceQUEUE_SET_SEND( pxQueueSetContainer );
3112
3113 /* The data copied is the handle of the queue that contains data. */
3114 xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, queueSEND_TO_BACK );
3115
3116 if( cTxLock == queueUNLOCKED )
3117 {
3118 if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
3119 {
3120 if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
3121 {
3122 /* The task waiting has a higher priority. */
3123 xReturn = pdTRUE;
3124 }
3125 else
3126 {
3127 mtCOVERAGE_TEST_MARKER();
3128 }
3129 }
3130 else
3131 {
3132 mtCOVERAGE_TEST_MARKER();
3133 }
3134 }
3135 else
3136 {
3137 prvIncrementQueueTxLock( pxQueueSetContainer, cTxLock );
3138 }
3139 }
3140 else
3141 {
3142 mtCOVERAGE_TEST_MARKER();
3143 }
3144
3145 return xReturn;
3146 }
3147
3148 #endif /* configUSE_QUEUE_SETS */
3149