/* * FreeRTOS Kernel V11.1.0 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * https://www.FreeRTOS.org * https://github.com/FreeRTOS * */ /*----------------------------------------------------------- * Implementation of functions defined in portable.h for the ARM CM4F MPU port. *----------------------------------------------------------*/ /* IAR includes. */ #include /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining * all the API functions to use the MPU wrappers. That should only be done when * task.h is included from an application file. */ #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE /* Scheduler includes. */ #include "FreeRTOS.h" #include "task.h" #include "mpu_syscall_numbers.h" #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE #ifndef __ARMVFP__ #error This port can only be used when the project options are configured to enable hardware floating point support. #endif #if ( configMAX_SYSCALL_INTERRUPT_PRIORITY == 0 ) #error configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0. See http: /*www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ #endif #ifndef configSYSTICK_CLOCK_HZ #define configSYSTICK_CLOCK_HZ configCPU_CLOCK_HZ /* Ensure the SysTick is clocked at the same frequency as the core. */ #define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL ) #else /* The way the SysTick is clocked is not modified in case it is not the same * as the core. */ #define portNVIC_SYSTICK_CLK_BIT ( 0 ) #endif #ifndef configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS #warning "configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS is not defined. We recommend defining it to 0 in FreeRTOSConfig.h for better security." #define configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS 1 #endif /* Prototype of all Interrupt Service Routines (ISRs). */ typedef void ( * portISR_t )( void ); /* Constants required to manipulate the core. Registers first... */ #define portNVIC_SYSTICK_CTRL_REG ( *( ( volatile uint32_t * ) 0xe000e010 ) ) #define portNVIC_SYSTICK_LOAD_REG ( *( ( volatile uint32_t * ) 0xe000e014 ) ) #define portNVIC_SYSTICK_CURRENT_VALUE_REG ( *( ( volatile uint32_t * ) 0xe000e018 ) ) #define portNVIC_SHPR3_REG ( *( ( volatile uint32_t * ) 0xe000ed20 ) ) #define portNVIC_SHPR2_REG ( *( ( volatile uint32_t * ) 0xe000ed1c ) ) #define portNVIC_SYS_CTRL_STATE_REG ( *( ( volatile uint32_t * ) 0xe000ed24 ) ) #define portNVIC_MEM_FAULT_ENABLE ( 1UL << 16UL ) /* Constants required to access and manipulate the MPU. */ #define portMPU_TYPE_REG ( *( ( volatile uint32_t * ) 0xe000ed90 ) ) #define portMPU_REGION_BASE_ADDRESS_REG ( *( ( volatile uint32_t * ) 0xe000ed9C ) ) #define portMPU_REGION_ATTRIBUTE_REG ( *( ( volatile uint32_t * ) 0xe000edA0 ) ) #define portMPU_CTRL_REG ( *( ( volatile uint32_t * ) 0xe000ed94 ) ) #define portEXPECTED_MPU_TYPE_VALUE ( configTOTAL_MPU_REGIONS << 8UL ) #define portMPU_ENABLE ( 0x01UL ) #define portMPU_BACKGROUND_ENABLE ( 1UL << 2UL ) #define portPRIVILEGED_EXECUTION_START_ADDRESS ( 0UL ) #define portMPU_REGION_VALID ( 0x10UL ) #define portMPU_REGION_ENABLE ( 0x01UL ) #define portPERIPHERALS_START_ADDRESS 0x40000000UL #define portPERIPHERALS_END_ADDRESS 0x5FFFFFFFUL /* ...then bits in the registers. */ #define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL ) #define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL ) #define portNVIC_SYSTICK_COUNT_FLAG_BIT ( 1UL << 16UL ) #define portNVIC_PENDSVCLEAR_BIT ( 1UL << 27UL ) #define portNVIC_PEND_SYSTICK_CLEAR_BIT ( 1UL << 25UL ) /* Constants used to detect Cortex-M7 r0p0 and r0p1 cores, and ensure * that a work around is active for errata 837070. */ #define portCPUID ( *( ( volatile uint32_t * ) 0xE000ed00 ) ) #define portCORTEX_M7_r0p1_ID ( 0x410FC271UL ) #define portCORTEX_M7_r0p0_ID ( 0x410FC270UL ) #define portMIN_INTERRUPT_PRIORITY ( 255UL ) #define portNVIC_PENDSV_PRI ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 16UL ) #define portNVIC_SYSTICK_PRI ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 24UL ) /* Constants used to check the installation of the FreeRTOS interrupt handlers. */ #define portSCB_VTOR_REG ( *( ( portISR_t ** ) 0xE000ED08 ) ) #define portVECTOR_INDEX_SVC ( 11 ) #define portVECTOR_INDEX_PENDSV ( 14 ) /* Constants required to check the validity of an interrupt priority. */ #define portFIRST_USER_INTERRUPT_NUMBER ( 16 ) #define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 ) #define portAIRCR_REG ( *( ( volatile uint32_t * ) 0xE000ED0C ) ) #define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff ) #define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 ) #define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 ) #define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL ) #define portPRIGROUP_SHIFT ( 8UL ) /* Masks off all bits but the VECTACTIVE bits in the ICSR register. */ #define portVECTACTIVE_MASK ( 0xFFUL ) /* Constants required to manipulate the VFP. */ #define portFPCCR ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating point context control register. */ #define portASPEN_AND_LSPEN_BITS ( 0x3UL << 30UL ) /* Constants required to set up the initial stack. */ #define portINITIAL_XPSR ( 0x01000000 ) #define portINITIAL_EXC_RETURN ( 0xfffffffd ) #define portINITIAL_CONTROL_IF_UNPRIVILEGED ( 0x03 ) #define portINITIAL_CONTROL_IF_PRIVILEGED ( 0x02 ) /* Constants used during system call enter and exit. */ #define portPSR_STACK_PADDING_MASK ( 1UL << 9UL ) #define portEXC_RETURN_STACK_FRAME_TYPE_MASK ( 1UL << 4UL ) /* Offsets in the stack to the parameters when inside the SVC handler. */ #define portOFFSET_TO_LR ( 5 ) #define portOFFSET_TO_PC ( 6 ) #define portOFFSET_TO_PSR ( 7 ) /* The systick is a 24-bit counter. */ #define portMAX_24_BIT_NUMBER ( 0xffffffUL ) /* A fiddle factor to estimate the number of SysTick counts that would have * occurred while the SysTick counter is stopped during tickless idle * calculations. */ #define portMISSED_COUNTS_FACTOR ( 45UL ) /* For strict compliance with the Cortex-M spec the task start address should * have bit-0 clear, as it is loaded into the PC on exit from an ISR. */ #define portSTART_ADDRESS_MASK ( ( StackType_t ) 0xfffffffeUL ) /* Does addr lie within [start, end] address range? */ #define portIS_ADDRESS_WITHIN_RANGE( addr, start, end ) \ ( ( ( addr ) >= ( start ) ) && ( ( addr ) <= ( end ) ) ) /* Is the access request satisfied by the available permissions? */ #define portIS_AUTHORIZED( accessRequest, permissions ) \ ( ( ( permissions ) & ( accessRequest ) ) == accessRequest ) /* Max value that fits in a uint32_t type. */ #define portUINT32_MAX ( ~( ( uint32_t ) 0 ) ) /* Check if adding a and b will result in overflow. */ #define portADD_UINT32_WILL_OVERFLOW( a, b ) ( ( a ) > ( portUINT32_MAX - ( b ) ) ) /*-----------------------------------------------------------*/ /* * Configure a number of standard MPU regions that are used by all tasks. */ static void prvSetupMPU( void ) PRIVILEGED_FUNCTION; /* * Return the smallest MPU region size that a given number of bytes will fit * into. The region size is returned as the value that should be programmed * into the region attribute register for that region. */ static uint32_t prvGetMPURegionSizeSetting( uint32_t ulActualSizeInBytes ) PRIVILEGED_FUNCTION; /* * Setup the timer to generate the tick interrupts. The implementation in this * file is weak to allow application writers to change the timer used to * generate the tick interrupt. */ void vPortSetupTimerInterrupt( void ); /* * Exception handlers. */ void xPortSysTickHandler( void ) PRIVILEGED_FUNCTION; /* * Start first task is a separate function so it can be tested in isolation. */ extern void vPortStartFirstTask( void ) PRIVILEGED_FUNCTION; /* * Turn the VFP on. */ extern void vPortEnableVFP( void ); /* * The C portion of the SVC handler. */ void vPortSVCHandler_C( uint32_t * pulParam ) PRIVILEGED_FUNCTION; /* * Called from the SVC handler used to start the scheduler. */ extern void vPortRestoreContextOfFirstTask( void ) PRIVILEGED_FUNCTION; /** * @brief Enter critical section. */ #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) void vPortEnterCritical( void ) FREERTOS_SYSTEM_CALL; #else void vPortEnterCritical( void ) PRIVILEGED_FUNCTION; #endif /** * @brief Exit from critical section. */ #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) void vPortExitCritical( void ) FREERTOS_SYSTEM_CALL; #else void vPortExitCritical( void ) PRIVILEGED_FUNCTION; #endif #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) /** * @brief Sets up the system call stack so that upon returning from * SVC, the system call stack is used. * * @param pulTaskStack The current SP when the SVC was raised. * @param ulLR The value of Link Register (EXC_RETURN) in the SVC handler. * @param ucSystemCallNumber The system call number of the system call. */ void vSystemCallEnter( uint32_t * pulTaskStack, uint32_t ulLR, uint8_t ucSystemCallNumber ) PRIVILEGED_FUNCTION; #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) /** * @brief Raise SVC for exiting from a system call. */ void vRequestSystemCallExit( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION; #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) /** * @brief Sets up the task stack so that upon returning from * SVC, the task stack is used again. * * @param pulSystemCallStack The current SP when the SVC was raised. * @param ulLR The value of Link Register (EXC_RETURN) in the SVC handler. */ void vSystemCallExit( uint32_t * pulSystemCallStack, uint32_t ulLR ) PRIVILEGED_FUNCTION; #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ /** * @brief Checks whether or not the calling task is privileged. * * @return pdTRUE if the calling task is privileged, pdFALSE otherwise. */ BaseType_t xPortIsTaskPrivileged( void ) PRIVILEGED_FUNCTION; /** * @brief Make a task unprivileged. */ void vPortSwitchToUserMode( void ); /* * FreeRTOS handlers implemented in assembly. */ extern void vPortSVCHandler( void ) PRIVILEGED_FUNCTION; extern void xPortPendSVHandler( void ) PRIVILEGED_FUNCTION; /*-----------------------------------------------------------*/ /* Each task maintains its own interrupt status in the critical nesting * variable. */ static UBaseType_t uxCriticalNesting = 0xaaaaaaaa; #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) /* * This variable is set to pdTRUE when the scheduler is started. */ PRIVILEGED_DATA static BaseType_t xSchedulerRunning = pdFALSE; #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ /* * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure * FreeRTOS API functions are not called from interrupts that have been assigned * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY. */ #if ( configASSERT_DEFINED == 1 ) static uint8_t ucMaxSysCallPriority = 0; static uint32_t ulMaxPRIGROUPValue = 0; static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * const ) portNVIC_IP_REGISTERS_OFFSET_16; #endif /* configASSERT_DEFINED */ /*-----------------------------------------------------------*/ /* * See header file for description. */ StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, TaskFunction_t pxCode, void * pvParameters, BaseType_t xRunPrivileged, xMPU_SETTINGS * xMPUSettings ) { if( xRunPrivileged == pdTRUE ) { xMPUSettings->ulTaskFlags |= portTASK_IS_PRIVILEGED_FLAG; xMPUSettings->ulContext[ 0 ] = portINITIAL_CONTROL_IF_PRIVILEGED; } else { xMPUSettings->ulTaskFlags &= ( ~( portTASK_IS_PRIVILEGED_FLAG ) ); xMPUSettings->ulContext[ 0 ] = portINITIAL_CONTROL_IF_UNPRIVILEGED; } xMPUSettings->ulContext[ 1 ] = 0x04040404; /* r4. */ xMPUSettings->ulContext[ 2 ] = 0x05050505; /* r5. */ xMPUSettings->ulContext[ 3 ] = 0x06060606; /* r6. */ xMPUSettings->ulContext[ 4 ] = 0x07070707; /* r7. */ xMPUSettings->ulContext[ 5 ] = 0x08080808; /* r8. */ xMPUSettings->ulContext[ 6 ] = 0x09090909; /* r9. */ xMPUSettings->ulContext[ 7 ] = 0x10101010; /* r10. */ xMPUSettings->ulContext[ 8 ] = 0x11111111; /* r11. */ xMPUSettings->ulContext[ 9 ] = portINITIAL_EXC_RETURN; /* EXC_RETURN. */ xMPUSettings->ulContext[ 10 ] = ( uint32_t ) ( pxTopOfStack - 8 ); /* PSP with the hardware saved stack. */ xMPUSettings->ulContext[ 11 ] = ( uint32_t ) pvParameters; /* r0. */ xMPUSettings->ulContext[ 12 ] = 0x01010101; /* r1. */ xMPUSettings->ulContext[ 13 ] = 0x02020202; /* r2. */ xMPUSettings->ulContext[ 14 ] = 0x03030303; /* r3. */ xMPUSettings->ulContext[ 15 ] = 0x12121212; /* r12. */ xMPUSettings->ulContext[ 16 ] = 0; /* LR. */ xMPUSettings->ulContext[ 17 ] = ( ( uint32_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC. */ xMPUSettings->ulContext[ 18 ] = portINITIAL_XPSR; /* xPSR. */ #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) { /* Ensure that the system call stack is double word aligned. */ xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = &( xMPUSettings->xSystemCallStackInfo.ulSystemCallStackBuffer[ configSYSTEM_CALL_STACK_SIZE - 1 ] ); xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = ( uint32_t * ) ( ( uint32_t ) ( xMPUSettings->xSystemCallStackInfo.pulSystemCallStack ) & ( uint32_t ) ( ~( portBYTE_ALIGNMENT_MASK ) ) ); /* This is not NULL only for the duration of a system call. */ xMPUSettings->xSystemCallStackInfo.pulTaskStack = NULL; } #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ return &( xMPUSettings->ulContext[ 19 ] ); } /*-----------------------------------------------------------*/ void vPortSVCHandler_C( uint32_t * pulParam ) /* PRIVILEGED_FUNCTION */ { uint8_t ucSVCNumber; uint32_t ulPC; #if ( ( configUSE_MPU_WRAPPERS_V1 == 1 ) && ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) ) extern uint32_t __syscalls_flash_start__[]; extern uint32_t __syscalls_flash_end__[]; #endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 1 ) && ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) ) */ /* The stack contains: r0, r1, r2, r3, r12, LR, PC and xPSR. The first * argument (r0) is pulParam[ 0 ]. */ ulPC = pulParam[ portOFFSET_TO_PC ]; ucSVCNumber = ( ( uint8_t * ) ulPC )[ -2 ]; switch( ucSVCNumber ) { case portSVC_START_SCHEDULER: vPortRestoreContextOfFirstTask(); break; case portSVC_YIELD: portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT; /* Barriers are normally not required * but do ensure the code is completely * within the specified behaviour for the * architecture. */ __asm volatile ( "dsb" ::: "memory" ); __asm volatile ( "isb" ); break; #if ( configUSE_MPU_WRAPPERS_V1 == 1 ) #if ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) case portSVC_RAISE_PRIVILEGE: /* Only raise the privilege, if the * svc was raised from any of the * system calls. */ if( ( ulPC >= ( uint32_t ) __syscalls_flash_start__ ) && ( ulPC <= ( uint32_t ) __syscalls_flash_end__ ) ) { __asm volatile ( " mrs r1, control \n" /* Obtain current control value. */ " bic r1, r1, #1 \n" /* Set privilege bit. */ " msr control, r1 \n" /* Write back new control value. */ ::: "r1", "memory" ); } break; #else /* if ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) */ case portSVC_RAISE_PRIVILEGE: __asm volatile ( " mrs r1, control \n" /* Obtain current control value. */ " bic r1, r1, #1 \n" /* Set privilege bit. */ " msr control, r1 \n" /* Write back new control value. */ ::: "r1", "memory" ); break; #endif /* #if( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) */ #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 1 ) */ default: /* Unknown SVC call. */ break; } } /*-----------------------------------------------------------*/ #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) void vSystemCallEnter( uint32_t * pulTaskStack, uint32_t ulLR, uint8_t ucSystemCallNumber ) /* PRIVILEGED_FUNCTION */ { extern TaskHandle_t pxCurrentTCB; extern UBaseType_t uxSystemCallImplementations[ NUM_SYSTEM_CALLS ]; xMPU_SETTINGS * pxMpuSettings; uint32_t * pulSystemCallStack; uint32_t ulStackFrameSize, ulSystemCallLocation, i; #if defined( __ARMCC_VERSION ) /* Declaration when these variable are defined in code instead of being * exported from linker scripts. */ extern uint32_t * __syscalls_flash_start__; extern uint32_t * __syscalls_flash_end__; #else /* Declaration when these variable are exported from linker scripts. */ extern uint32_t __syscalls_flash_start__[]; extern uint32_t __syscalls_flash_end__[]; #endif /* #if defined( __ARMCC_VERSION ) */ ulSystemCallLocation = pulTaskStack[ portOFFSET_TO_PC ]; pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB ); /* Checks: * 1. SVC is raised from the system call section (i.e. application is * not raising SVC directly). * 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must be NULL as * it is non-NULL only during the execution of a system call (i.e. * between system call enter and exit). * 3. System call is not for a kernel API disabled by the configuration * in FreeRTOSConfig.h. * 4. We do not need to check that ucSystemCallNumber is within range * because the assembly SVC handler checks that before calling * this function. */ if( ( ulSystemCallLocation >= ( uint32_t ) __syscalls_flash_start__ ) && ( ulSystemCallLocation <= ( uint32_t ) __syscalls_flash_end__ ) && ( pxMpuSettings->xSystemCallStackInfo.pulTaskStack == NULL ) && ( uxSystemCallImplementations[ ucSystemCallNumber ] != ( UBaseType_t ) 0 ) ) { pulSystemCallStack = pxMpuSettings->xSystemCallStackInfo.pulSystemCallStack; if( ( ulLR & portEXC_RETURN_STACK_FRAME_TYPE_MASK ) == 0UL ) { /* Extended frame i.e. FPU in use. */ ulStackFrameSize = 26; __asm volatile ( " vpush {s0} \n" /* Trigger lazy stacking. */ " vpop {s0} \n" /* Nullify the affect of the above instruction. */ ::: "memory" ); } else { /* Standard frame i.e. FPU not in use. */ ulStackFrameSize = 8; } /* Make space on the system call stack for the stack frame. */ pulSystemCallStack = pulSystemCallStack - ulStackFrameSize; /* Copy the stack frame. */ for( i = 0; i < ulStackFrameSize; i++ ) { pulSystemCallStack[ i ] = pulTaskStack[ i ]; } /* Use the pulSystemCallStack in thread mode. */ __asm volatile ( "msr psp, %0" : : "r" ( pulSystemCallStack ) ); /* Raise the privilege for the duration of the system call. */ __asm volatile ( " mrs r1, control \n" /* Obtain current control value. */ " bic r1, #1 \n" /* Clear nPRIV bit. */ " msr control, r1 \n" /* Write back new control value. */ ::: "r1", "memory" ); /* Remember the location where we should copy the stack frame when we exit from * the system call. */ pxMpuSettings->xSystemCallStackInfo.pulTaskStack = pulTaskStack + ulStackFrameSize; /* Store the value of the Link Register before the SVC was raised. * It contains the address of the caller of the System Call entry * point (i.e. the caller of the MPU_). We need to restore it * when we exit from the system call. */ pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry = pulTaskStack[ portOFFSET_TO_LR ]; /* Start executing the system call upon returning from this handler. */ pulSystemCallStack[ portOFFSET_TO_PC ] = uxSystemCallImplementations[ ucSystemCallNumber ]; /* Raise a request to exit from the system call upon finishing the * system call. */ pulSystemCallStack[ portOFFSET_TO_LR ] = ( uint32_t ) vRequestSystemCallExit; /* Record if the hardware used padding to force the stack pointer * to be double word aligned. */ if( ( pulTaskStack[ portOFFSET_TO_PSR ] & portPSR_STACK_PADDING_MASK ) == portPSR_STACK_PADDING_MASK ) { pxMpuSettings->ulTaskFlags |= portSTACK_FRAME_HAS_PADDING_FLAG; } else { pxMpuSettings->ulTaskFlags &= ( ~portSTACK_FRAME_HAS_PADDING_FLAG ); } /* We ensure in pxPortInitialiseStack that the system call stack is * double word aligned and therefore, there is no need of padding. * Clear the bit[9] of stacked xPSR. */ pulSystemCallStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK ); } } #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ /*-----------------------------------------------------------*/ #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) void vRequestSystemCallExit( void ) /* __attribute__( ( naked ) ) PRIVILEGED_FUNCTION */ { __asm volatile ( "svc %0 \n" ::"i" ( portSVC_SYSTEM_CALL_EXIT ) : "memory" ); } #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ /*-----------------------------------------------------------*/ #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) void vSystemCallExit( uint32_t * pulSystemCallStack, uint32_t ulLR ) /* PRIVILEGED_FUNCTION */ { extern TaskHandle_t pxCurrentTCB; xMPU_SETTINGS * pxMpuSettings; uint32_t * pulTaskStack; uint32_t ulStackFrameSize, ulSystemCallLocation, i; #if defined( __ARMCC_VERSION ) /* Declaration when these variable are defined in code instead of being * exported from linker scripts. */ extern uint32_t * __privileged_functions_start__; extern uint32_t * __privileged_functions_end__; #else /* Declaration when these variable are exported from linker scripts. */ extern uint32_t __privileged_functions_start__[]; extern uint32_t __privileged_functions_end__[]; #endif /* #if defined( __ARMCC_VERSION ) */ ulSystemCallLocation = pulSystemCallStack[ portOFFSET_TO_PC ]; pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB ); /* Checks: * 1. SVC is raised from the privileged code (i.e. application is not * raising SVC directly). This SVC is only raised from * vRequestSystemCallExit which is in the privileged code section. * 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must not be NULL - * this means that we previously entered a system call and the * application is not attempting to exit without entering a system * call. */ if( ( ulSystemCallLocation >= ( uint32_t ) __privileged_functions_start__ ) && ( ulSystemCallLocation <= ( uint32_t ) __privileged_functions_end__ ) && ( pxMpuSettings->xSystemCallStackInfo.pulTaskStack != NULL ) ) { pulTaskStack = pxMpuSettings->xSystemCallStackInfo.pulTaskStack; if( ( ulLR & portEXC_RETURN_STACK_FRAME_TYPE_MASK ) == 0UL ) { /* Extended frame i.e. FPU in use. */ ulStackFrameSize = 26; __asm volatile ( " vpush {s0} \n" /* Trigger lazy stacking. */ " vpop {s0} \n" /* Nullify the affect of the above instruction. */ ::: "memory" ); } else { /* Standard frame i.e. FPU not in use. */ ulStackFrameSize = 8; } /* Make space on the task stack for the stack frame. */ pulTaskStack = pulTaskStack - ulStackFrameSize; /* Copy the stack frame. */ for( i = 0; i < ulStackFrameSize; i++ ) { pulTaskStack[ i ] = pulSystemCallStack[ i ]; } /* Use the pulTaskStack in thread mode. */ __asm volatile ( "msr psp, %0" : : "r" ( pulTaskStack ) ); /* Drop the privilege before returning to the thread mode. */ __asm volatile ( " mrs r1, control \n" /* Obtain current control value. */ " orr r1, #1 \n" /* Set nPRIV bit. */ " msr control, r1 \n" /* Write back new control value. */ ::: "r1", "memory" ); /* Return to the caller of the System Call entry point (i.e. the * caller of the MPU_). */ pulTaskStack[ portOFFSET_TO_PC ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry; /* Ensure that LR has a valid value.*/ pulTaskStack[ portOFFSET_TO_LR ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry; /* If the hardware used padding to force the stack pointer * to be double word aligned, set the stacked xPSR bit[9], * otherwise clear it. */ if( ( pxMpuSettings->ulTaskFlags & portSTACK_FRAME_HAS_PADDING_FLAG ) == portSTACK_FRAME_HAS_PADDING_FLAG ) { pulTaskStack[ portOFFSET_TO_PSR ] |= portPSR_STACK_PADDING_MASK; } else { pulTaskStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK ); } /* This is not NULL only for the duration of the system call. */ pxMpuSettings->xSystemCallStackInfo.pulTaskStack = NULL; } } #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ /*-----------------------------------------------------------*/ BaseType_t xPortIsTaskPrivileged( void ) /* PRIVILEGED_FUNCTION */ { BaseType_t xTaskIsPrivileged = pdFALSE; const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */ if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG ) { xTaskIsPrivileged = pdTRUE; } return xTaskIsPrivileged; } /*-----------------------------------------------------------*/ void vPortSwitchToUserMode( void ) { /* Load the current task's MPU settings from its TCB. */ xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Mark the task as unprivileged. */ xTaskMpuSettings->ulTaskFlags &= ( ~( portTASK_IS_PRIVILEGED_FLAG ) ); /* Lower the processor's privilege level. */ vResetPrivilege(); } /*-----------------------------------------------------------*/ /* * See header file for description. */ BaseType_t xPortStartScheduler( void ) { /* Errata 837070 workaround must only be enabled on Cortex-M7 r0p0 * and r0p1 cores. */ #if ( configENABLE_ERRATA_837070_WORKAROUND == 1 ) configASSERT( ( portCPUID == portCORTEX_M7_r0p1_ID ) || ( portCPUID == portCORTEX_M7_r0p0_ID ) ); #else /* When using this port on a Cortex-M7 r0p0 or r0p1 core, define * configENABLE_ERRATA_837070_WORKAROUND to 1 in your * FreeRTOSConfig.h. */ configASSERT( portCPUID != portCORTEX_M7_r0p1_ID ); configASSERT( portCPUID != portCORTEX_M7_r0p0_ID ); #endif /* An application can install FreeRTOS interrupt handlers in one of the * following ways: * 1. Direct Routing - Install the functions vPortSVCHandler and * xPortPendSVHandler for SVCall and PendSV interrupts respectively. * 2. Indirect Routing - Install separate handlers for SVCall and PendSV * interrupts and route program control from those handlers to * vPortSVCHandler and xPortPendSVHandler functions. * * Applications that use Indirect Routing must set * configCHECK_HANDLER_INSTALLATION to 0 in their FreeRTOSConfig.h. Direct * routing, which is validated here when configCHECK_HANDLER_INSTALLATION * is 1, should be preferred when possible. */ #if ( configCHECK_HANDLER_INSTALLATION == 1 ) { const portISR_t * const pxVectorTable = portSCB_VTOR_REG; /* Validate that the application has correctly installed the FreeRTOS * handlers for SVCall and PendSV interrupts. We do not check the * installation of the SysTick handler because the application may * choose to drive the RTOS tick using a timer other than the SysTick * timer by overriding the weak function vPortSetupTimerInterrupt(). * * Assertion failures here indicate incorrect installation of the * FreeRTOS handlers. For help installing the FreeRTOS handlers, see * https://www.FreeRTOS.org/FAQHelp.html. * * Systems with a configurable address for the interrupt vector table * can also encounter assertion failures or even system faults here if * VTOR is not set correctly to point to the application's vector table. */ configASSERT( pxVectorTable[ portVECTOR_INDEX_SVC ] == vPortSVCHandler ); configASSERT( pxVectorTable[ portVECTOR_INDEX_PENDSV ] == xPortPendSVHandler ); } #endif /* configCHECK_HANDLER_INSTALLATION */ #if ( configASSERT_DEFINED == 1 ) { volatile uint8_t ucOriginalPriority; volatile uint32_t ulImplementedPrioBits = 0; volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER ); volatile uint8_t ucMaxPriorityValue; /* Determine the maximum priority from which ISR safe FreeRTOS API * functions can be called. ISR safe functions are those that end in * "FromISR". FreeRTOS maintains separate thread and ISR API functions to * ensure interrupt entry is as fast and simple as possible. * * Save the interrupt priority value that is about to be clobbered. */ ucOriginalPriority = *pucFirstUserPriorityRegister; /* Determine the number of priority bits available. First write to all * possible bits. */ *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE; /* Read the value back to see how many bits stuck. */ ucMaxPriorityValue = *pucFirstUserPriorityRegister; /* Use the same mask on the maximum system call priority. */ ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue; /* Check that the maximum system call priority is nonzero after * accounting for the number of priority bits supported by the * hardware. A priority of 0 is invalid because setting the BASEPRI * register to 0 unmasks all interrupts, and interrupts with priority 0 * cannot be masked using BASEPRI. * See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ configASSERT( ucMaxSysCallPriority ); /* Check that the bits not implemented in hardware are zero in * configMAX_SYSCALL_INTERRUPT_PRIORITY. */ configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & ( uint8_t ) ( ~( uint32_t ) ucMaxPriorityValue ) ) == 0U ); /* Calculate the maximum acceptable priority group value for the number * of bits read back. */ while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE ) { ulImplementedPrioBits++; ucMaxPriorityValue <<= ( uint8_t ) 0x01; } if( ulImplementedPrioBits == 8 ) { /* When the hardware implements 8 priority bits, there is no way for * the software to configure PRIGROUP to not have sub-priorities. As * a result, the least significant bit is always used for sub-priority * and there are 128 preemption priorities and 2 sub-priorities. * * This may cause some confusion in some cases - for example, if * configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4 * priority interrupts will be masked in Critical Sections as those * are at the same preemption priority. This may appear confusing as * 4 is higher (numerically lower) priority than * configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not * have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY * to 4, this confusion does not happen and the behaviour remains the same. * * The following assert ensures that the sub-priority bit in the * configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned * confusion. */ configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U ); ulMaxPRIGROUPValue = 0; } else { ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits; } /* Shift the priority group value back to its position within the AIRCR * register. */ ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT; ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK; /* Restore the clobbered interrupt priority register to its original * value. */ *pucFirstUserPriorityRegister = ucOriginalPriority; } #endif /* configASSERT_DEFINED */ /* Make PendSV and SysTick the lowest priority interrupts, and make SVCall * the highest priority. */ portNVIC_SHPR3_REG |= portNVIC_PENDSV_PRI; portNVIC_SHPR3_REG |= portNVIC_SYSTICK_PRI; portNVIC_SHPR2_REG = 0; /* Configure the regions in the MPU that are common to all tasks. */ prvSetupMPU(); /* Start the timer that generates the tick ISR. Interrupts are disabled * here already. */ vPortSetupTimerInterrupt(); /* Initialise the critical nesting count ready for the first task. */ uxCriticalNesting = 0; #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) { xSchedulerRunning = pdTRUE; } #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ /* Ensure the VFP is enabled - it should be anyway. */ vPortEnableVFP(); /* Lazy save always. */ *( portFPCCR ) |= portASPEN_AND_LSPEN_BITS; /* Start the first task. */ vPortStartFirstTask(); /* Should not get here! */ return 0; } /*-----------------------------------------------------------*/ void vPortEndScheduler( void ) { /* Not implemented in ports where there is nothing to return to. * Artificially force an assert. */ configASSERT( uxCriticalNesting == 1000UL ); } /*-----------------------------------------------------------*/ void vPortEnterCritical( void ) { #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) if( portIS_PRIVILEGED() == pdFALSE ) { portRAISE_PRIVILEGE(); portMEMORY_BARRIER(); portDISABLE_INTERRUPTS(); uxCriticalNesting++; /* This is not the interrupt safe version of the enter critical function so * assert() if it is being called from an interrupt context. Only API * functions that end in "FromISR" can be used in an interrupt. Only assert if * the critical nesting count is 1 to protect against recursive calls if the * assert function also uses a critical section. */ if( uxCriticalNesting == 1 ) { configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 ); } portMEMORY_BARRIER(); portRESET_PRIVILEGE(); portMEMORY_BARRIER(); } else { portDISABLE_INTERRUPTS(); uxCriticalNesting++; /* This is not the interrupt safe version of the enter critical function so * assert() if it is being called from an interrupt context. Only API * functions that end in "FromISR" can be used in an interrupt. Only assert if * the critical nesting count is 1 to protect against recursive calls if the * assert function also uses a critical section. */ if( uxCriticalNesting == 1 ) { configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 ); } } #else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */ portDISABLE_INTERRUPTS(); uxCriticalNesting++; /* This is not the interrupt safe version of the enter critical function so * assert() if it is being called from an interrupt context. Only API * functions that end in "FromISR" can be used in an interrupt. Only assert if * the critical nesting count is 1 to protect against recursive calls if the * assert function also uses a critical section. */ if( uxCriticalNesting == 1 ) { configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 ); } #endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */ } /*-----------------------------------------------------------*/ void vPortExitCritical( void ) { #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) if( portIS_PRIVILEGED() == pdFALSE ) { portRAISE_PRIVILEGE(); portMEMORY_BARRIER(); configASSERT( uxCriticalNesting ); uxCriticalNesting--; if( uxCriticalNesting == 0 ) { portENABLE_INTERRUPTS(); } portMEMORY_BARRIER(); portRESET_PRIVILEGE(); portMEMORY_BARRIER(); } else { configASSERT( uxCriticalNesting ); uxCriticalNesting--; if( uxCriticalNesting == 0 ) { portENABLE_INTERRUPTS(); } } #else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */ configASSERT( uxCriticalNesting ); uxCriticalNesting--; if( uxCriticalNesting == 0 ) { portENABLE_INTERRUPTS(); } #endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */ } /*-----------------------------------------------------------*/ void xPortSysTickHandler( void ) { /* The SysTick runs at the lowest interrupt priority, so when this interrupt * executes all interrupts must be unmasked. There is therefore no need to * save and then restore the interrupt mask value as its value is already * known. */ portDISABLE_INTERRUPTS(); traceISR_ENTER(); { /* Increment the RTOS tick. */ if( xTaskIncrementTick() != pdFALSE ) { traceISR_EXIT_TO_SCHEDULER(); /* A context switch is required. Context switching is performed in * the PendSV interrupt. Pend the PendSV interrupt. */ portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT; } else { traceISR_EXIT(); } } portENABLE_INTERRUPTS(); } /*-----------------------------------------------------------*/ /* * Setup the systick timer to generate the tick interrupts at the required * frequency. */ __weak void vPortSetupTimerInterrupt( void ) { /* Stop and clear the SysTick. */ portNVIC_SYSTICK_CTRL_REG = 0UL; portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL; /* Configure SysTick to interrupt at the requested rate. */ portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL; portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT ); } /*-----------------------------------------------------------*/ static void prvSetupMPU( void ) { extern uint32_t __privileged_functions_start__[]; extern uint32_t __privileged_functions_end__[]; extern uint32_t __FLASH_segment_start__[]; extern uint32_t __FLASH_segment_end__[]; extern uint32_t __privileged_data_start__[]; extern uint32_t __privileged_data_end__[]; /* The only permitted number of regions are 8 or 16. */ configASSERT( ( configTOTAL_MPU_REGIONS == 8 ) || ( configTOTAL_MPU_REGIONS == 16 ) ); /* Ensure that the configTOTAL_MPU_REGIONS is configured correctly. */ configASSERT( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE ); /* Check the expected MPU is present. */ if( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE ) { /* First setup the unprivileged flash for unprivileged read only access. */ portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __FLASH_segment_start__ ) | /* Base address. */ ( portMPU_REGION_VALID ) | ( portUNPRIVILEGED_FLASH_REGION ); portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_READ_ONLY ) | ( ( configTEX_S_C_B_FLASH & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) | ( prvGetMPURegionSizeSetting( ( uint32_t ) __FLASH_segment_end__ - ( uint32_t ) __FLASH_segment_start__ ) ) | ( portMPU_REGION_ENABLE ); /* Setup the privileged flash for privileged only access. This is where * the kernel code is placed. */ portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __privileged_functions_start__ ) | /* Base address. */ ( portMPU_REGION_VALID ) | ( portPRIVILEGED_FLASH_REGION ); portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_PRIVILEGED_READ_ONLY ) | ( ( configTEX_S_C_B_FLASH & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) | ( prvGetMPURegionSizeSetting( ( uint32_t ) __privileged_functions_end__ - ( uint32_t ) __privileged_functions_start__ ) ) | ( portMPU_REGION_ENABLE ); /* Setup the privileged data RAM region. This is where the kernel data * is placed. */ portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __privileged_data_start__ ) | /* Base address. */ ( portMPU_REGION_VALID ) | ( portPRIVILEGED_RAM_REGION ); portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_PRIVILEGED_READ_WRITE ) | ( portMPU_REGION_EXECUTE_NEVER ) | ( ( configTEX_S_C_B_SRAM & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) | prvGetMPURegionSizeSetting( ( uint32_t ) __privileged_data_end__ - ( uint32_t ) __privileged_data_start__ ) | ( portMPU_REGION_ENABLE ); /* By default allow everything to access the general peripherals. The * system peripherals and registers are protected. */ portMPU_REGION_BASE_ADDRESS_REG = ( portPERIPHERALS_START_ADDRESS ) | ( portMPU_REGION_VALID ) | ( portGENERAL_PERIPHERALS_REGION ); portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_READ_WRITE | portMPU_REGION_EXECUTE_NEVER ) | ( prvGetMPURegionSizeSetting( portPERIPHERALS_END_ADDRESS - portPERIPHERALS_START_ADDRESS ) ) | ( portMPU_REGION_ENABLE ); /* Enable the memory fault exception. */ portNVIC_SYS_CTRL_STATE_REG |= portNVIC_MEM_FAULT_ENABLE; /* Enable the MPU with the background region configured. */ portMPU_CTRL_REG |= ( portMPU_ENABLE | portMPU_BACKGROUND_ENABLE ); } } /*-----------------------------------------------------------*/ static uint32_t prvGetMPURegionSizeSetting( uint32_t ulActualSizeInBytes ) { uint32_t ulRegionSize, ulReturnValue = 4; /* 32 is the smallest region size, 31 is the largest valid value for * ulReturnValue. */ for( ulRegionSize = 32UL; ulReturnValue < 31UL; ( ulRegionSize <<= 1UL ) ) { if( ulActualSizeInBytes <= ulRegionSize ) { break; } else { ulReturnValue++; } } /* Shift the code by one before returning so it can be written directly * into the the correct bit position of the attribute register. */ return( ulReturnValue << 1UL ); } /*-----------------------------------------------------------*/ void vPortStoreTaskMPUSettings( xMPU_SETTINGS * xMPUSettings, const struct xMEMORY_REGION * const xRegions, StackType_t * pxBottomOfStack, configSTACK_DEPTH_TYPE uxStackDepth ) { extern uint32_t __SRAM_segment_start__[]; extern uint32_t __SRAM_segment_end__[]; extern uint32_t __privileged_data_start__[]; extern uint32_t __privileged_data_end__[]; int32_t lIndex; uint32_t ul; if( xRegions == NULL ) { /* No MPU regions are specified so allow access to all RAM. */ xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress = ( ( uint32_t ) __SRAM_segment_start__ ) | /* Base address. */ ( portMPU_REGION_VALID ) | ( portSTACK_REGION ); /* Region number. */ xMPUSettings->xRegion[ 0 ].ulRegionAttribute = ( portMPU_REGION_READ_WRITE ) | ( portMPU_REGION_EXECUTE_NEVER ) | ( ( configTEX_S_C_B_SRAM & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) | ( prvGetMPURegionSizeSetting( ( uint32_t ) __SRAM_segment_end__ - ( uint32_t ) __SRAM_segment_start__ ) ) | ( portMPU_REGION_ENABLE ); xMPUSettings->xRegionSettings[ 0 ].ulRegionStartAddress = ( uint32_t ) __SRAM_segment_start__; xMPUSettings->xRegionSettings[ 0 ].ulRegionEndAddress = ( uint32_t ) __SRAM_segment_end__; xMPUSettings->xRegionSettings[ 0 ].ulRegionPermissions = ( tskMPU_READ_PERMISSION | tskMPU_WRITE_PERMISSION ); /* Invalidate user configurable regions. */ for( ul = 1UL; ul <= portNUM_CONFIGURABLE_REGIONS; ul++ ) { xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( ( ul - 1UL ) | portMPU_REGION_VALID ); xMPUSettings->xRegion[ ul ].ulRegionAttribute = 0UL; xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = 0UL; xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = 0UL; xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL; } } else { /* This function is called automatically when the task is created - in * which case the stack region parameters will be valid. At all other * times the stack parameters will not be valid and it is assumed that the * stack region has already been configured. */ if( uxStackDepth > 0 ) { /* Define the region that allows access to the stack. */ xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress = ( ( uint32_t ) pxBottomOfStack ) | ( portMPU_REGION_VALID ) | ( portSTACK_REGION ); /* Region number. */ xMPUSettings->xRegion[ 0 ].ulRegionAttribute = ( portMPU_REGION_READ_WRITE ) | ( portMPU_REGION_EXECUTE_NEVER ) | ( prvGetMPURegionSizeSetting( uxStackDepth * ( configSTACK_DEPTH_TYPE ) sizeof( StackType_t ) ) ) | ( ( configTEX_S_C_B_SRAM & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) | ( portMPU_REGION_ENABLE ); xMPUSettings->xRegionSettings[ 0 ].ulRegionStartAddress = ( uint32_t ) pxBottomOfStack; xMPUSettings->xRegionSettings[ 0 ].ulRegionEndAddress = ( uint32_t ) ( ( uint32_t ) ( pxBottomOfStack ) + ( uxStackDepth * ( configSTACK_DEPTH_TYPE ) sizeof( StackType_t ) ) - 1UL ); xMPUSettings->xRegionSettings[ 0 ].ulRegionPermissions = ( tskMPU_READ_PERMISSION | tskMPU_WRITE_PERMISSION ); } lIndex = 0; for( ul = 1UL; ul <= portNUM_CONFIGURABLE_REGIONS; ul++ ) { if( ( xRegions[ lIndex ] ).ulLengthInBytes > 0UL ) { /* Translate the generic region definition contained in * xRegions into the CM4 specific MPU settings that are then * stored in xMPUSettings. */ xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( ( uint32_t ) xRegions[ lIndex ].pvBaseAddress ) | ( portMPU_REGION_VALID ) | ( ul - 1UL ); /* Region number. */ xMPUSettings->xRegion[ ul ].ulRegionAttribute = ( prvGetMPURegionSizeSetting( xRegions[ lIndex ].ulLengthInBytes ) ) | ( xRegions[ lIndex ].ulParameters ) | ( portMPU_REGION_ENABLE ); xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = ( uint32_t ) xRegions[ lIndex ].pvBaseAddress; xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = ( uint32_t ) ( ( uint32_t ) xRegions[ lIndex ].pvBaseAddress + xRegions[ lIndex ].ulLengthInBytes - 1UL ); xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL; if( ( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_READ_ONLY ) == portMPU_REGION_READ_ONLY ) || ( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_PRIVILEGED_READ_WRITE_UNPRIV_READ_ONLY ) == portMPU_REGION_PRIVILEGED_READ_WRITE_UNPRIV_READ_ONLY ) ) { xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = tskMPU_READ_PERMISSION; } if( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_READ_WRITE ) == portMPU_REGION_READ_WRITE ) { xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = ( tskMPU_READ_PERMISSION | tskMPU_WRITE_PERMISSION ); } } else { /* Invalidate the region. */ xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( ( ul - 1UL ) | portMPU_REGION_VALID ); xMPUSettings->xRegion[ ul ].ulRegionAttribute = 0UL; xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = 0UL; xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = 0UL; xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL; } lIndex++; } } } /*-----------------------------------------------------------*/ #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) BaseType_t xPortIsAuthorizedToAccessBuffer( const void * pvBuffer, uint32_t ulBufferLength, uint32_t ulAccessRequested ) /* PRIVILEGED_FUNCTION */ { uint32_t i, ulBufferStartAddress, ulBufferEndAddress; BaseType_t xAccessGranted = pdFALSE; const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */ if( xSchedulerRunning == pdFALSE ) { /* Grant access to all the kernel objects before the scheduler * is started. It is necessary because there is no task running * yet and therefore, we cannot use the permissions of any * task. */ xAccessGranted = pdTRUE; } else if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG ) { xAccessGranted = pdTRUE; } else { if( portADD_UINT32_WILL_OVERFLOW( ( ( uint32_t ) pvBuffer ), ( ulBufferLength - 1UL ) ) == pdFALSE ) { ulBufferStartAddress = ( uint32_t ) pvBuffer; ulBufferEndAddress = ( ( ( uint32_t ) pvBuffer ) + ulBufferLength - 1UL ); for( i = 0; i < portTOTAL_NUM_REGIONS_IN_TCB; i++ ) { if( portIS_ADDRESS_WITHIN_RANGE( ulBufferStartAddress, xTaskMpuSettings->xRegionSettings[ i ].ulRegionStartAddress, xTaskMpuSettings->xRegionSettings[ i ].ulRegionEndAddress ) && portIS_ADDRESS_WITHIN_RANGE( ulBufferEndAddress, xTaskMpuSettings->xRegionSettings[ i ].ulRegionStartAddress, xTaskMpuSettings->xRegionSettings[ i ].ulRegionEndAddress ) && portIS_AUTHORIZED( ulAccessRequested, xTaskMpuSettings->xRegionSettings[ i ].ulRegionPermissions ) ) { xAccessGranted = pdTRUE; break; } } } } return xAccessGranted; } #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ /*-----------------------------------------------------------*/ #if ( configASSERT_DEFINED == 1 ) void vPortValidateInterruptPriority( void ) { uint32_t ulCurrentInterrupt; uint8_t ucCurrentPriority; /* Obtain the number of the currently executing interrupt. */ __asm volatile ( "mrs %0, ipsr" : "=r" ( ulCurrentInterrupt )::"memory" ); /* Is the interrupt number a user defined interrupt? */ if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER ) { /* Look up the interrupt's priority. */ ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ]; /* The following assertion will fail if a service routine (ISR) for * an interrupt that has been assigned a priority above * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API * function. ISR safe FreeRTOS API functions must *only* be called * from interrupts that have been assigned a priority at or below * configMAX_SYSCALL_INTERRUPT_PRIORITY. * * Numerically low interrupt priority numbers represent logically high * interrupt priorities, therefore the priority of the interrupt must * be set to a value equal to or numerically *higher* than * configMAX_SYSCALL_INTERRUPT_PRIORITY. * * Interrupts that use the FreeRTOS API must not be left at their * default priority of zero as that is the highest possible priority, * which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY, * and therefore also guaranteed to be invalid. * * FreeRTOS maintains separate thread and ISR API functions to ensure * interrupt entry is as fast and simple as possible. * * The following links provide detailed information: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html * https://www.FreeRTOS.org/FAQHelp.html */ configASSERT( ucCurrentPriority >= ucMaxSysCallPriority ); } /* Priority grouping: The interrupt controller (NVIC) allows the bits * that define each interrupt's priority to be split between bits that * define the interrupt's pre-emption priority bits and bits that define * the interrupt's sub-priority. For simplicity all bits must be defined * to be pre-emption priority bits. The following assertion will fail if * this is not the case (if some bits represent a sub-priority). * * If the application only uses CMSIS libraries for interrupt * configuration then the correct setting can be achieved on all Cortex-M * devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the * scheduler. Note however that some vendor specific peripheral libraries * assume a non-zero priority group setting, in which cases using a value * of zero will result in unpredictable behaviour. */ configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue ); } #endif /* configASSERT_DEFINED */ /*-----------------------------------------------------------*/ #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) void vPortGrantAccessToKernelObject( TaskHandle_t xInternalTaskHandle, int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */ { uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit; xMPU_SETTINGS * xTaskMpuSettings; ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS ); ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS ); xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle ); xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] |= ( 1U << ulAccessControlListEntryBit ); } #endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) void vPortRevokeAccessToKernelObject( TaskHandle_t xInternalTaskHandle, int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */ { uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit; xMPU_SETTINGS * xTaskMpuSettings; ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS ); ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS ); xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle ); xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] &= ~( 1U << ulAccessControlListEntryBit ); } #endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */ { uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit; BaseType_t xAccessGranted = pdFALSE; const xMPU_SETTINGS * xTaskMpuSettings; if( xSchedulerRunning == pdFALSE ) { /* Grant access to all the kernel objects before the scheduler * is started. It is necessary because there is no task running * yet and therefore, we cannot use the permissions of any * task. */ xAccessGranted = pdTRUE; } else { xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */ ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS ); ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS ); if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG ) { xAccessGranted = pdTRUE; } else { if( ( xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] & ( 1U << ulAccessControlListEntryBit ) ) != 0 ) { xAccessGranted = pdTRUE; } } } return xAccessGranted; } #else /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */ BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */ { ( void ) lInternalIndexOfKernelObject; /* If Access Control List feature is not used, all the tasks have * access to all the kernel objects. */ return pdTRUE; } #endif /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */ #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ /*-----------------------------------------------------------*/