/* * FreeRTOS Kernel V11.1.0 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * https://www.FreeRTOS.org * https://github.com/FreeRTOS * */ /* Standard includes. */ #include #include /* Scheduler includes. */ #include "FreeRTOS.h" #include "task.h" #ifndef configINTERRUPT_CONTROLLER_BASE_ADDRESS #error "configINTERRUPT_CONTROLLER_BASE_ADDRESS must be defined. See www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html" #endif #ifndef configINTERRUPT_CONTROLLER_CPU_INTERFACE_OFFSET #error "configINTERRUPT_CONTROLLER_CPU_INTERFACE_OFFSET must be defined. See www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html" #endif #ifndef configUNIQUE_INTERRUPT_PRIORITIES #error "configUNIQUE_INTERRUPT_PRIORITIES must be defined. See www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html" #endif #ifndef configSETUP_TICK_INTERRUPT #error "configSETUP_TICK_INTERRUPT() must be defined. See www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html" #endif /* configSETUP_TICK_INTERRUPT */ #ifndef configMAX_API_CALL_INTERRUPT_PRIORITY #error "configMAX_API_CALL_INTERRUPT_PRIORITY must be defined. See www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html" #endif #if configMAX_API_CALL_INTERRUPT_PRIORITY == 0 #error "configMAX_API_CALL_INTERRUPT_PRIORITY must not be set to 0" #endif #if configMAX_API_CALL_INTERRUPT_PRIORITY > configUNIQUE_INTERRUPT_PRIORITIES #error "configMAX_API_CALL_INTERRUPT_PRIORITY must be less than or equal to configUNIQUE_INTERRUPT_PRIORITIES as the lower the numeric priority value the higher the logical interrupt priority" #endif #if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1 /* Check the configuration. */ #if ( configMAX_PRIORITIES > 32 ) #error "configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice." #endif #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ /* In case security extensions are implemented. */ #if configMAX_API_CALL_INTERRUPT_PRIORITY <= ( configUNIQUE_INTERRUPT_PRIORITIES / 2 ) #error "configMAX_API_CALL_INTERRUPT_PRIORITY must be greater than ( configUNIQUE_INTERRUPT_PRIORITIES / 2 )" #endif /* Some vendor specific files default configCLEAR_TICK_INTERRUPT() in * portmacro.h. */ #ifndef configCLEAR_TICK_INTERRUPT #define configCLEAR_TICK_INTERRUPT() #endif /* A critical section is exited when the critical section nesting count reaches * this value. */ #define portNO_CRITICAL_NESTING ( ( uint32_t ) 0 ) /* In all GICs 255 can be written to the priority mask register to unmask all * (but the lowest) interrupt priority. */ #define portUNMASK_VALUE ( 0xFFUL ) /* Tasks are not created with a floating point context, but can be given a * floating point context after they have been created. A variable is stored as * part of the tasks context that holds portNO_FLOATING_POINT_CONTEXT if the task * does not have an FPU context, or any other value if the task does have an FPU * context. */ #define portNO_FLOATING_POINT_CONTEXT ( ( StackType_t ) 0 ) /* Constants required to setup the initial task context. */ #define portINITIAL_SPSR ( ( StackType_t ) 0x1f ) /* System mode, ARM mode, IRQ enabled FIQ enabled. */ #define portTHUMB_MODE_BIT ( ( StackType_t ) 0x20 ) #define portINTERRUPT_ENABLE_BIT ( 0x80UL ) #define portTHUMB_MODE_ADDRESS ( 0x01UL ) /* Used by portASSERT_IF_INTERRUPT_PRIORITY_INVALID() when ensuring the binary * point is zero. */ #define portBINARY_POINT_BITS ( ( uint8_t ) 0x03 ) /* Masks all bits in the APSR other than the mode bits. */ #define portAPSR_MODE_BITS_MASK ( 0x1F ) /* The value of the mode bits in the APSR when the CPU is executing in user * mode. */ #define portAPSR_USER_MODE ( 0x10 ) /* The critical section macros only mask interrupts up to an application * determined priority level. Sometimes it is necessary to turn interrupt off in * the CPU itself before modifying certain hardware registers. */ #define portCPU_IRQ_DISABLE() \ __asm volatile ( "CPSID i" ::: "memory" ); \ __asm volatile ( "DSB" ); \ __asm volatile ( "ISB" ); #define portCPU_IRQ_ENABLE() \ __asm volatile ( "CPSIE i" ::: "memory" ); \ __asm volatile ( "DSB" ); \ __asm volatile ( "ISB" ); /* Macro to unmask all interrupt priorities. */ #define portCLEAR_INTERRUPT_MASK() \ { \ portCPU_IRQ_DISABLE(); \ portICCPMR_PRIORITY_MASK_REGISTER = portUNMASK_VALUE; \ __asm volatile ( "DSB \n" \ "ISB \n" ); \ portCPU_IRQ_ENABLE(); \ } #define portINTERRUPT_PRIORITY_REGISTER_OFFSET 0x400UL #define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff ) #define portBIT_0_SET ( ( uint8_t ) 0x01 ) /* Let the user override the pre-loading of the initial LR with the address of * prvTaskExitError() in case it messes up unwinding of the stack in the * debugger. */ #ifdef configTASK_RETURN_ADDRESS #define portTASK_RETURN_ADDRESS configTASK_RETURN_ADDRESS #else #define portTASK_RETURN_ADDRESS prvTaskExitError #endif /* The space on the stack required to hold the FPU registers. This is 32 64-bit * registers, plus a 32-bit status register. */ #define portFPU_REGISTER_WORDS ( ( 32 * 2 ) + 1 ) /*-----------------------------------------------------------*/ /* * Starts the first task executing. This function is necessarily written in * assembly code so is implemented in portASM.s. */ extern void vPortRestoreTaskContext( void ); /* * Used to catch tasks that attempt to return from their implementing function. */ static void prvTaskExitError( void ); /* * If the application provides an implementation of vApplicationIRQHandler(), * then it will get called directly without saving the FPU registers on * interrupt entry, and this weak implementation of * vApplicationFPUSafeIRQHandler() is just provided to remove linkage errors - * it should never actually get called so its implementation contains a * call to configASSERT() that will always fail. * * If the application provides its own implementation of * vApplicationFPUSafeIRQHandler() then the implementation of * vApplicationIRQHandler() provided in portASM.S will save the FPU registers * before calling it. * * Therefore, if the application writer wants FPU registers to be saved on * interrupt entry their IRQ handler must be called * vApplicationFPUSafeIRQHandler(), and if the application writer does not want * FPU registers to be saved on interrupt entry their IRQ handler must be * called vApplicationIRQHandler(). */ void vApplicationFPUSafeIRQHandler( uint32_t ulICCIAR ) __attribute__( ( weak ) ); /*-----------------------------------------------------------*/ /* A variable is used to keep track of the critical section nesting. This * variable has to be stored as part of the task context and must be initialised to * a non zero value to ensure interrupts don't inadvertently become unmasked before * the scheduler starts. As it is stored as part of the task context it will * automatically be set to 0 when the first task is started. */ volatile uint32_t ulCriticalNesting = 9999UL; /* Saved as part of the task context. If ulPortTaskHasFPUContext is non-zero then * a floating point context must be saved and restored for the task. */ volatile uint32_t ulPortTaskHasFPUContext = pdFALSE; /* Set to 1 to pend a context switch from an ISR. */ volatile uint32_t ulPortYieldRequired = pdFALSE; /* Counts the interrupt nesting depth. A context switch is only performed if * if the nesting depth is 0. */ volatile uint32_t ulPortInterruptNesting = 0UL; /* Used in the asm file. */ __attribute__( ( used ) ) const uint32_t ulICCIAR = portICCIAR_INTERRUPT_ACKNOWLEDGE_REGISTER_ADDRESS; __attribute__( ( used ) ) const uint32_t ulICCEOIR = portICCEOIR_END_OF_INTERRUPT_REGISTER_ADDRESS; __attribute__( ( used ) ) const uint32_t ulICCPMR = portICCPMR_PRIORITY_MASK_REGISTER_ADDRESS; __attribute__( ( used ) ) const uint32_t ulMaxAPIPriorityMask = ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ); /*-----------------------------------------------------------*/ /* * See header file for description. */ StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, TaskFunction_t pxCode, void * pvParameters ) { /* Setup the initial stack of the task. The stack is set exactly as * expected by the portRESTORE_CONTEXT() macro. * * The fist real value on the stack is the status register, which is set for * system mode, with interrupts enabled. A few NULLs are added first to ensure * GDB does not try decoding a non-existent return address. */ *pxTopOfStack = ( StackType_t ) NULL; pxTopOfStack--; *pxTopOfStack = ( StackType_t ) NULL; pxTopOfStack--; *pxTopOfStack = ( StackType_t ) NULL; pxTopOfStack--; *pxTopOfStack = ( StackType_t ) portINITIAL_SPSR; if( ( ( uint32_t ) pxCode & portTHUMB_MODE_ADDRESS ) != 0x00UL ) { /* The task will start in THUMB mode. */ *pxTopOfStack |= portTHUMB_MODE_BIT; } pxTopOfStack--; /* Next the return address, which in this case is the start of the task. */ *pxTopOfStack = ( StackType_t ) pxCode; pxTopOfStack--; /* Next all the registers other than the stack pointer. */ *pxTopOfStack = ( StackType_t ) portTASK_RETURN_ADDRESS; /* R14 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x12121212; /* R12 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x11111111; /* R11 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x10101010; /* R10 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x09090909; /* R9 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x08080808; /* R8 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x07070707; /* R7 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x06060606; /* R6 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x05050505; /* R5 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x04040404; /* R4 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x03030303; /* R3 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x02020202; /* R2 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x01010101; /* R1 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */ pxTopOfStack--; /* The task will start with a critical nesting count of 0 as interrupts are * enabled. */ *pxTopOfStack = portNO_CRITICAL_NESTING; #if ( configUSE_TASK_FPU_SUPPORT == 1 ) { /* The task will start without a floating point context. A task that * uses the floating point hardware must call vPortTaskUsesFPU() before * executing any floating point instructions. */ pxTopOfStack--; *pxTopOfStack = portNO_FLOATING_POINT_CONTEXT; } #elif ( configUSE_TASK_FPU_SUPPORT == 2 ) { /* The task will start with a floating point context. Leave enough * space for the registers - and ensure they are initialised to 0. */ pxTopOfStack -= portFPU_REGISTER_WORDS; memset( pxTopOfStack, 0x00, portFPU_REGISTER_WORDS * sizeof( StackType_t ) ); pxTopOfStack--; *pxTopOfStack = pdTRUE; ulPortTaskHasFPUContext = pdTRUE; } #else /* if ( configUSE_TASK_FPU_SUPPORT == 1 ) */ { #error "Invalid configUSE_TASK_FPU_SUPPORT setting - configUSE_TASK_FPU_SUPPORT must be set to 1, 2, or left undefined." } #endif /* if ( configUSE_TASK_FPU_SUPPORT == 1 ) */ return pxTopOfStack; } /*-----------------------------------------------------------*/ static void prvTaskExitError( void ) { /* A function that implements a task must not exit or attempt to return to * its caller as there is nothing to return to. If a task wants to exit it * should instead call vTaskDelete( NULL ). * * Artificially force an assert() to be triggered if configASSERT() is * defined, then stop here so application writers can catch the error. */ configASSERT( ulPortInterruptNesting == ~0UL ); portDISABLE_INTERRUPTS(); for( ; ; ) { } } /*-----------------------------------------------------------*/ BaseType_t xPortStartScheduler( void ) { uint32_t ulAPSR; #if ( configASSERT_DEFINED == 1 ) { volatile uint8_t ucOriginalPriority; volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( configINTERRUPT_CONTROLLER_BASE_ADDRESS + portINTERRUPT_PRIORITY_REGISTER_OFFSET ); volatile uint8_t ucMaxPriorityValue; /* Determine how many priority bits are implemented in the GIC. * * Save the interrupt priority value that is about to be clobbered. */ ucOriginalPriority = *pucFirstUserPriorityRegister; /* Determine the number of priority bits available. First write to * all possible bits. */ *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE; /* Read the value back to see how many bits stuck. */ ucMaxPriorityValue = *pucFirstUserPriorityRegister; /* Shift to the least significant bits. */ while( ( ucMaxPriorityValue & portBIT_0_SET ) != portBIT_0_SET ) { ucMaxPriorityValue >>= ( uint8_t ) 0x01; } /* Sanity check configUNIQUE_INTERRUPT_PRIORITIES matches the read * value. */ configASSERT( ucMaxPriorityValue == portLOWEST_INTERRUPT_PRIORITY ); /* Restore the clobbered interrupt priority register to its original * value. */ *pucFirstUserPriorityRegister = ucOriginalPriority; } #endif /* configASSERT_DEFINED */ /* Only continue if the CPU is not in User mode. The CPU must be in a * Privileged mode for the scheduler to start. */ __asm volatile ( "MRS %0, APSR" : "=r" ( ulAPSR )::"memory" ); ulAPSR &= portAPSR_MODE_BITS_MASK; configASSERT( ulAPSR != portAPSR_USER_MODE ); if( ulAPSR != portAPSR_USER_MODE ) { /* Only continue if the binary point value is set to its lowest possible * setting. See the comments in vPortValidateInterruptPriority() below for * more information. */ configASSERT( ( portICCBPR_BINARY_POINT_REGISTER & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE ); if( ( portICCBPR_BINARY_POINT_REGISTER & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE ) { /* Interrupts are turned off in the CPU itself to ensure tick does * not execute while the scheduler is being started. Interrupts are * automatically turned back on in the CPU when the first task starts * executing. */ portCPU_IRQ_DISABLE(); /* Start the timer that generates the tick ISR. */ configSETUP_TICK_INTERRUPT(); /* Start the first task executing. */ vPortRestoreTaskContext(); } } /* Will only get here if vTaskStartScheduler() was called with the CPU in * a non-privileged mode or the binary point register was not set to its lowest * possible value. prvTaskExitError() is referenced to prevent a compiler * warning about it being defined but not referenced in the case that the user * defines their own exit address. */ ( void ) prvTaskExitError; return 0; } /*-----------------------------------------------------------*/ void vPortEndScheduler( void ) { /* Not implemented in ports where there is nothing to return to. * Artificially force an assert. */ configASSERT( ulCriticalNesting == 1000UL ); } /*-----------------------------------------------------------*/ void vPortEnterCritical( void ) { /* Mask interrupts up to the max syscall interrupt priority. */ ulPortSetInterruptMask(); /* Now that interrupts are disabled, ulCriticalNesting can be accessed * directly. Increment ulCriticalNesting to keep a count of how many times * portENTER_CRITICAL() has been called. */ ulCriticalNesting++; /* This is not the interrupt safe version of the enter critical function so * assert() if it is being called from an interrupt context. Only API * functions that end in "FromISR" can be used in an interrupt. Only assert if * the critical nesting count is 1 to protect against recursive calls if the * assert function also uses a critical section. */ if( ulCriticalNesting == 1 ) { configASSERT( ulPortInterruptNesting == 0 ); } } /*-----------------------------------------------------------*/ void vPortExitCritical( void ) { if( ulCriticalNesting > portNO_CRITICAL_NESTING ) { /* Decrement the nesting count as the critical section is being * exited. */ ulCriticalNesting--; /* If the nesting level has reached zero then all interrupt * priorities must be re-enabled. */ if( ulCriticalNesting == portNO_CRITICAL_NESTING ) { /* Critical nesting has reached zero so all interrupt priorities * should be unmasked. */ portCLEAR_INTERRUPT_MASK(); } } } /*-----------------------------------------------------------*/ void FreeRTOS_Tick_Handler( void ) { /* Set interrupt mask before altering scheduler structures. The tick * handler runs at the lowest priority, so interrupts cannot already be masked, * so there is no need to save and restore the current mask value. It is * necessary to turn off interrupts in the CPU itself while the ICCPMR is being * updated. */ portCPU_IRQ_DISABLE(); portICCPMR_PRIORITY_MASK_REGISTER = ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ); __asm volatile ( "dsb \n" "isb \n" ::: "memory" ); portCPU_IRQ_ENABLE(); /* Increment the RTOS tick. */ if( xTaskIncrementTick() != pdFALSE ) { ulPortYieldRequired = pdTRUE; } /* Ensure all interrupt priorities are active again. */ portCLEAR_INTERRUPT_MASK(); configCLEAR_TICK_INTERRUPT(); } /*-----------------------------------------------------------*/ #if ( configUSE_TASK_FPU_SUPPORT != 2 ) void vPortTaskUsesFPU( void ) { uint32_t ulInitialFPSCR = 0; /* A task is registering the fact that it needs an FPU context. Set the * FPU flag (which is saved as part of the task context). */ ulPortTaskHasFPUContext = pdTRUE; /* Initialise the floating point status register. */ __asm volatile ( "FMXR FPSCR, %0" ::"r" ( ulInitialFPSCR ) : "memory" ); } #endif /* configUSE_TASK_FPU_SUPPORT */ /*-----------------------------------------------------------*/ void vPortClearInterruptMask( uint32_t ulNewMaskValue ) { if( ulNewMaskValue == pdFALSE ) { portCLEAR_INTERRUPT_MASK(); } } /*-----------------------------------------------------------*/ uint32_t ulPortSetInterruptMask( void ) { uint32_t ulReturn; /* Interrupt in the CPU must be turned off while the ICCPMR is being * updated. */ portCPU_IRQ_DISABLE(); if( portICCPMR_PRIORITY_MASK_REGISTER == ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) ) { /* Interrupts were already masked. */ ulReturn = pdTRUE; } else { ulReturn = pdFALSE; portICCPMR_PRIORITY_MASK_REGISTER = ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ); __asm volatile ( "dsb \n" "isb \n" ::: "memory" ); } portCPU_IRQ_ENABLE(); return ulReturn; } /*-----------------------------------------------------------*/ #if ( configASSERT_DEFINED == 1 ) void vPortValidateInterruptPriority( void ) { /* The following assertion will fail if a service routine (ISR) for * an interrupt that has been assigned a priority above * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API * function. ISR safe FreeRTOS API functions must *only* be called * from interrupts that have been assigned a priority at or below * configMAX_SYSCALL_INTERRUPT_PRIORITY. * * Numerically low interrupt priority numbers represent logically high * interrupt priorities, therefore the priority of the interrupt must * be set to a value equal to or numerically *higher* than * configMAX_SYSCALL_INTERRUPT_PRIORITY. * * FreeRTOS maintains separate thread and ISR API functions to ensure * interrupt entry is as fast and simple as possible. */ configASSERT( portICCRPR_RUNNING_PRIORITY_REGISTER >= ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) ); /* Priority grouping: The interrupt controller (GIC) allows the bits * that define each interrupt's priority to be split between bits that * define the interrupt's pre-emption priority bits and bits that define * the interrupt's sub-priority. For simplicity all bits must be defined * to be pre-emption priority bits. The following assertion will fail if * this is not the case (if some bits represent a sub-priority). * * The priority grouping is configured by the GIC's binary point register * (ICCBPR). Writting 0 to ICCBPR will ensure it is set to its lowest * possible value (which may be above 0). */ configASSERT( ( portICCBPR_BINARY_POINT_REGISTER & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE ); } #endif /* configASSERT_DEFINED */ /*-----------------------------------------------------------*/ void vApplicationFPUSafeIRQHandler( uint32_t ulICCIAR ) { ( void ) ulICCIAR; configASSERT( ( volatile void * ) NULL ); }